Skip to main content

Structural, Nanomechanical and Nanotribological Characterization of Human Hair Using Atomic Force Microscopy and Nanoindentation

  • Reference work entry
  • 10k Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

Human hair is a nanocomposite biological fiber. Healthy, soft hair with good feel, shine, color and overall aesthetics is generally highly desirable. It is important to study hair care products such as shampoos and conditioners as well as damaging processes such as chemical dyeing and permanent wave treatments because they affect the maintenance and grooming process and therefore alter many hair properties. Nanoscale characterization of the cellular structure, the mechanical properties, as well as the morphological, frictional and adhesive properties (tribological properties) of hair is essential if we wish to evaluate and develop better cosmetic products, and crucial to advancing the understanding of biological and cosmetic science. The atomic/friction force microscope (AFM/FFM) and nanoindenter have recently become important tools for studying the micro/nanoscale properties of human hair. In this chapter, we present a comprehensive review of structural, mechanical, and tribological properties of various hair and skin as a function of ethnicity, damage, conditioning treatment, and various environments. Various cellular structures of human hair and fine sublamellar structures of the cuticle are identified and studied. Nanomechanical properties such as hardness, elastic modulus, creep and scratch resistance are discussed. Nanotribological properties such as roughness, friction, and adhesion are presented, as well as investigations of conditioner distribution, thickness and binding interactions.

This is a preview of subscription content, log in via an institution.

Abbreviations

AFM:

atomic force microscopy

DI:

deionized

FCP:

force calibration plot

FESP:

force modulation etched Si probe

FFM:

friction force microscope

PDMS:

polydimethylsiloxane

RH:

relative humidity

SEM:

scanning electron microscopy

SFA:

surface force apparatus

TEM:

transmission electron microscopy

References

  1. C. LaTorre, B. Bhushan: Nanotribological characterization of human hair and skin using atomic force microscopy, Ultramicroscopy 105, 155–175 (2005)

    Article  CAS  Google Scholar 

  2. C. LaTorre, B. Bhushan, J. Z. Yang, P. M. Torgerson: Nanotribological effects of silicone type, silicone deposition level, and surfactant type on human hair using atomic force microscopy, J. Cosmetic Sci. 57, 37–56 (2006)

    CAS  Google Scholar 

  3. C. Robbins: Chemical and Physical Behavior of Human Hair, 3rd edn. (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  4. A. Feughelman: Mechanical Properties and Structure of Alpha-Keratin Fibres: Wool, Human Hair and Related Fibres (Univ. South Wales Press, Sydney 1997)

    Google Scholar 

  5. J. A. Swift: The mechanics of fracture of human hair, Int. J. Cosmet. Sci. 21, 227–239 (1999)

    Article  CAS  Google Scholar 

  6. J. A. Swift: The cuticle controls bending stiffness of hair, J. Cosmet. Sci. 51, 37–38 (2000)

    Google Scholar 

  7. H. A. Barnes, G. P. Roberts: The non-linear viscoelastic behaviour of human hair at moderate extensions, Int. J. Cosmet. Sci. 22, 259–264 (2000)

    Article  CAS  Google Scholar 

  8. J. Jachowicz, R. McMullen: Mechanical analysis of elasticity and flexibility of virgin and polymer-treated hair fiber assemblies, J. Cosmet. Sci. 53, 345–361 (2002)

    CAS  Google Scholar 

  9. A. N. Syed, A. Kuhajda, H. Ayoub, K. Ahmad, E. M. Frank: African-American hair: Its physical properties and differences relative to Caucasian hair. In: Hair Care, Cosmet. Toil. Appl. Res. Ser. (Allured, Carol Stream 1996)

    Google Scholar 

  10. N. H. Chen, B. Bhushan: Morphological, nanomechanical and cellular structural characterization of human hair and conditioner distribution using torsional resonance mode with an AFM, J. Microscopy 220, 96–112 (2005)

    Article  CAS  Google Scholar 

  11. N. H. Chen, B. Bhushan: Atomic force microscopy studies of conditioner thickness distribution and binding interactions on the hair surface, J. Microscopy 221, 203–215 (2006)

    Article  CAS  Google Scholar 

  12. C. LaTorre, B. Bhushan: Nanotribological effects of hair care products and environment on human hair using atomic force microscopy, J. Vac. Sci. Technol., A 23, 1034–1045 (2005)

    Article  CAS  Google Scholar 

  13. G. Wei, B. Bhushan, P. M. Torgerson: Nanomechanical characterization of human hair using nanoindentation and SEM, Ultramicroscopy 105, 248–266 (2005)

    Article  CAS  Google Scholar 

  14. G. Wei, B. Bhushan: Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique, Ultramicroscopy 106, 742–754 (2006)

    Article  CAS  Google Scholar 

  15. G. Swanbeck, J. Nyren, L. Juhlin: Mechanical properties of hair from patients with different types of hair diseases, J. Invest. Dermatol. 54, 248–251 (1970)

    Article  CAS  Google Scholar 

  16. G. Nikiforidis, C. Balas, D. Tsambaos: Mechanical parameters of human hair: possible applications in the diagnosis and follow-up of hair disorders, Clin. Phys. Physiol. Meas. 13, 281–290 (1992)

    Article  CAS  Google Scholar 

  17. C. Zviak (Ed.): The Science of Hair Care (Marcel Dekker, New York 1986)

    Google Scholar 

  18. P. Jolles, H. Zahn, H. Höcker (Eds.): Formation and Structure of Human Hair (Birkhäuser, Basel 1997)

    Google Scholar 

  19. J. R. Smith, J. A. Swift: Lamellar subcomponents of the cuticular cell membrane complex of mammalian keratin fibres show friction and hardness contrast by AFM, J. Microsc. 206, 182–193 (2002)

    Article  CAS  Google Scholar 

  20. J. A. Swift: Morphology and histochemistry of human hair. In: Formation and Structure of Human Hair, ed. by P. Jolles, H. Zahn, H. Höcker (Birkhäuser, Basel 1997) pp. 149–175

    Google Scholar 

  21. R. J. Randebrook: J. Soc. Cosmet. Chem. 15, 691 (1964)

    Google Scholar 

  22. P. T. Pugliese: Physiology of the Skin (Allured, Carol Stream 1996)

    Google Scholar 

  23. P. W. Wertz, D. T. Downing: Stratum corneum: biological and biochemical considerations. In: Transdermal Drug Delivery, ed. by J. Swarbrick, R. H. Guy (Marcel Dekker, New York 1989)

    Google Scholar 

  24. P. W. Wertz, K. C. Madison, D. T. Downing: Covalently bound lipids of human stratum corneum, J. Invest. Dermatol. 92, 109 (1989)

    Article  CAS  Google Scholar 

  25. J. Gray: Hair care and hair care products, Clin. Dermatol. 19, 227–236 (2001)

    Article  CAS  Google Scholar 

  26. J. Gray: The World of Hair (Procter & Gamble, Cincinnati 2003)

    Google Scholar 

  27. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  28. B. Bhushan, X. Li: Nanomechanical properties of solid surfaces and thin films, Int. Mater. Rev. 48, 125–164 (2003)

    Article  CAS  Google Scholar 

  29. J. A. Swift: Fine details on the surface of human hair, Int. J. Cosmet. Sci. 13, 143–159 (1991)

    Article  CAS  Google Scholar 

  30. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  31. B. Bhushan: Handbook of Micro/Nanotribology, 2nd edn. (CRC, Boca Raton 1999)

    Google Scholar 

  32. B. Bhushan (Ed.): Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  33. B. Bhushan: Nanotribology and Nanomechanics – An Introduction (Springer, Berlin, Heidelberg 2005)

    Book  Google Scholar 

  34. X. Li, B. Bhushan, P. B. McGinnis: Nanoscale mechanical characterization of glass fibers, Mater. Lett. 29, 215–220 (1996)

    Article  Google Scholar 

  35. A. N. Parbhu, W. G. Bryson, R. Lal: Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an AFM, Biochemistry 38, 11755–11761 (1999)

    Article  CAS  Google Scholar 

  36. T. Kasai, B. Bhushan, L. Huang, C. M. Su: Topography and phase imaging using the torsional resonance mode, Nanotechnology 15, 731–742 (2004)

    Article  CAS  Google Scholar 

  37. B. Bhushan, T. Kasai: A surface topography-independent friction measurement technique using torsional resonance mode in an AFM, Nanotechnology 15, 923–935 (2004)

    Article  Google Scholar 

  38. B. Bhushan, J. Qi: Phase contrast imaging of nanocomposites and molecularly thick lubricant films in magnetic media, Nanotechnology 14, 886–895 (2003)

    Article  CAS  Google Scholar 

  39. W. W. Scott, B. Bhushan: Use of phase imaging in atomic force microscopy for measurement of viscoelastic contrast in polymer nanocomposites and molecularly thick lubricant films, Ultramicroscopy 97, 151–169 (2003)

    Article  CAS  Google Scholar 

  40. Y. Song, B. Bhushan: Quantitiative extraction of in-plane surface properties using torsional resonance mode of atomic force microscopy, J. Appl. Phys. 97, 083533 (2005)

    Article  Google Scholar 

  41. B. Bhushan, G. Wei, P. Haddad: Friction and wear studies of human hair and skin, Wear 259, 1012–1021 (2005)

    Article  CAS  Google Scholar 

  42. B. Bhushan, C. Dandavate: Thin-film friction and adhesion studies using atomic force microscopy, J. Appl. Phys. 87, 1201–1210 (2000)

    Article  CAS  Google Scholar 

  43. R. Molina, F. Comelles, M. R. Julia, P. Erra: Chemical modifications on human hair studied by means of contact angle determination, J. Colloid Interf. Sci. 237, 40–46 (2001)

    Article  CAS  Google Scholar 

  44. B. Bhushan, Z. Burton: Adhesion and friction properties of polymers in microfluidic devices, Nanotechnology 16, 467–478 (2005)

    Article  CAS  Google Scholar 

  45. C. Jalbert, J. T. Koberstein, I. Yilgor, P. Gallagher, V. Krukonis: Molecular weight dependence and end-group effects on the surface tension of poly(dimethylsiloxane), Macromolecules 26, 3069–3074 (1993)

    Article  CAS  Google Scholar 

  46. G. Lerebour, S. Cupferman, C. Cohen, M. N. Bellon-Fontaine: Comparison of surface free energy between reconstructed human epidermis and in situ human skin, Skin Res. Technol. 6, 245–249 (2000)

    Article  Google Scholar 

  47. H. Schott: Contact angles and wettability of human skin, J. Pharm. Sci. 60, 1893–1895 (1971)

    Article  CAS  Google Scholar 

  48. M. E. Ginn, C. M. Noyes, E. Jungermann: The contact angle of water on viable human skin, J. Colloid Interf. Sci. 26, 146–151 (1968)

    Article  CAS  Google Scholar 

  49. H. Yanazawa: Adhesion model and experimental-verification for polymer SiO2 system, Colloids Surface 9, 133–145 (1984)

    Article  CAS  Google Scholar 

  50. F. J. Wortmann, H. Zahn: The stress/strain curve of α-keratin fibers and the structure of the intermediate filament, Text. Res. J. 64, 737–743 (1994)

    Article  CAS  Google Scholar 

  51. B. J. Briscoe, A. Winkler, M. J. Adams: A statistical analysis of the frictional forces generated between monofilaments during intermittent sliding, J. Phys. D 18, 2143–2167 (1985)

    Article  CAS  Google Scholar 

  52. B. Bhushan: Influence of test parameters in the measurement of the coefficient of friction of magnetic tapes, Wear 93, 81–89 (1984)

    Article  Google Scholar 

  53. G. V. Scott, C. R. Robbins: Effects of surfactant solutions on hair fibre friction, J. Soc. Cosmet. Chem. 31, 179–200 (1980)

    CAS  Google Scholar 

  54. H. Liu, B. Bhushan: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM, Ultramicroscopy 97, 321–340 (2003)

    Article  CAS  Google Scholar 

  55. C. Bolduc, J. Shapiro: Hair care products: waving, straightening, conditioning, and coloring, Clin. Dermatol. 19, 431–436 (2001)

    Article  CAS  Google Scholar 

  56. B. Bhushan, G. S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, J. Tribol. Trans. ASME 113, 452–457 (1991)

    Article  Google Scholar 

  57. M. L. Forcada, M. M. Jakas, A. Grasmarti: On liquid-film thickness measurements with the atomic-force microscope, J. Chem. Phys. 95, 706–708 (1991)

    Article  CAS  Google Scholar 

  58. P. Attard, S. J. Miklavcic: Effective spring constant of bubbles and droplets, Langmuir 17, 8217–8223 (2001)

    Article  CAS  Google Scholar 

  59. D. Bhatt, J. Newman, C. J. Radke: Equilibrium force isotherms of a deformable buble/drop interacting with a solid particle across a thin liquid film, Langmuir 17, 116–130 (2001)

    Article  CAS  Google Scholar 

  60. J. Brandup, E. H. Immergut, E. A. Grulke (Eds.): Polymer Handbook, 4th edn. (Wiley, New York 1999)

    Google Scholar 

  61. J. N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, London 1991)

    Google Scholar 

  62. N. H. Chen, T. Kuhl, R. Tadmor, Q. Lin, J. N. Israelachvili: Large deformations during the coalescence of fluid interfaces, Phys. Rev. Lett. 92, Art.–No. 024501 (2004)

    Google Scholar 

  63. D. DeVecchio, B. Bhushan: Localized surface elasticity measurements using an atomic force microscope, Rev. Sci. Instrum. 68, 4498–4505 (1997)

    Article  CAS  Google Scholar 

  64. J. E. Mark: Polymer Data Handbook (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  65. M. Benz, N. H. Chen, J. Israelachvili: Lubrication and wear properties of grafted polyelectrolytes, hyaluronan and hylan, measured in the surface forces apparatus, J. Biomed. Mater. Res. A 71A, 6–15 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bharat Bhushan Prof. , Carmen LaTorre M.Sc. or Guohua Wei Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Bhushan, B., LaTorre, C., Wei, G. (2007). Structural, Nanomechanical and Nanotribological Characterization of Human Hair Using Atomic Force Microscopy and Nanoindentation. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_40

Download citation

Publish with us

Policies and ethics