Abstract
Fluid is often transported in the form of droplets in nature. From the formation of clouds to the condensation of dew on leaves, droplets are formed spontaneously in air, on solids and in immiscible fluids. In biological systems, droplets with lipid bilayer membranes are used to transport subnanoliter amounts of reagents between organelles, between cells, and between organs, in processes that control our day-to-day metabolic activities. The precision of such systems is self-evident and proves that droplet-based systems provide intrinsically efficient ways to perform controlled transport, reactions and signaling.
This precision and efficiency can be utilized in many lab-on-a-chip applications by manipulating individual droplets using microfabricated force gradients. Complex segmented flow processes involving generating, fusing, splitting and sorting droplets have been developed to digitally control fluid volumes and concentrations to nanoliter levels. In this chapter, microfluidic techniques for manipulating droplets are reviewed and analyzed.
Keywords
- Droplet Size
- Microfluidic Device
- Droplet Generation
- Double Emulsion
- Barium Strontium Titanate
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.























Abbreviations
- DEP:
-
dielectrophoresis
- DNA:
-
deoxyribonucleic acid
- SEM:
-
scanning electron microscopy
References
M. G. Pollack, A. D. Shenderov, R. B. Fair: Electrowetting-based actuation of droplets for integrated microfluidics, Lab on a Chip 2, 96–101 (2002)
R. H. Farahi, A. Passian, T. L. Ferrell, T. Thundat: Microfluidic manipulation via Marangoni forces, Appl. Phys. Lett. 85(18), 4237–4239 (2004)
B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, N. L. Abbott: Electrochemical principles for active control of liquids on submillimeter scales, Science 283, 57–60 (1999)
K. Hosokawa, T. Fujii, I. Endo: Handling of picoliter liquid samples in a poly(dimethysiloxane)-based microfluidic device, Anal. Chem. 71, 4781–4785 (1999)
C. Quillet, B. Berge: Electrowetting: A recent outbreak, Curr. Opin. Colloid Sci. 6, 34–39 (2001)
H. Moon, S. K. Cho, R. L. Garrell, C. Kim: Low voltage electrowetting-on-dielectric, J. Appl. Phys. 92(7), 4080–4087 (2002)
J. Ding, K. Chakrabarty, R. B. Fair: Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays, 20(12), 1463–1468 (2001)
J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, J. A. Rogers: Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels, IEEE Photon. Technol. Lett. 15(1), 81–83 (2003)
J. Lee, C. Kim: Surface-tension-driven microactuation based on continuous electrowetting, J. Microelectromech. Syst. 9(2), 171–180 (2000)
J. Lee, H. Moon andJ. Fowler, T. Schoellhammer, C. Kim: Electrowetting and electrowetting-on-dielectric for microscale liquid handling, Sens. Actuat. A 95, 259–268 (2002)
J. Yoon, R. L Garrell: Preventing biomolecular adsorption in electrowetting-based biofluidic chips, Anal. Chem. 75(19), 5097–5102 (2003)
M. G. Pollack, R. B. Fair: Electrowetting-based actuation of liquid droplets for microfluidic applications, Appl. Phys. Lett. 77(11), 1725–1726 (2000)
P. Paik, V. K. Pamula, M. G. Pollack, R. B. Fair: Electrowetting-based droplet mixers for microfluidic systems, Lab on a Chip 3, 28–33 (2003)
P. Y. Chiou, H. Moon, H. Toshiyoshi, C. Kim, M. C. Wu: Light actuation of liquid by optoelectrowetting, Sens. Actuat. A 104, 222–228 (2003)
R. A. Hayes, B. J. Feenstra: Video-speed electronic paper based on electrowetting, Nature 425, 383–385 (2003)
S. K. Cho, H. Moon, J. Fowler, C. Kim: Splitting a liquid droplet for electrowetting-based microfluidics, ASME International Mechanical Engineering Congress and Exposition (ASME International, New York 2001)
S. K. Cho, H. Moon, C. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromech. Syst. 12(1), 70–80 (2003)
T. B. Jones, J. D. Fowler, Y. S. Chang, C. Kim: Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation, Langmuir 19, 7646–7651 (2003)
A. A. Darhuber, J. M. Davis, S. M. Troian, W. W. Reisner: Thermocapillary actuation of liquid flow on chemically patterned surfaces, Phys. Fluids 15(5), 1295–1304 (2003)
A. A. Darhuber, J. P. Valentino, S. M. Troian, S. Wagner: Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays, J. Microelectromech. Syst. 12(6), 873–879 (2003)
A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian: Microfluidic actuation by modulation of surface stresses, Appl. Phys. Lett. 82(4), 657–659 (2003)
A. A. Darhuber, J. Z. Chen, J. M. Davis, S. M. Troian: A study of mixing in thermocapillary flows on micropatterned surfaces, Phil. Trans. Roy. Soc. Lond. A 362, 1037–1058 (2003)
A. A. Darhuber, S. M. Troian: Dynamics of capillary spreading along hydrophilic microstripes, Phys. Rev. E. 64, 031603 (2001)
M. G. Lippmann: Relations entre les phénomènes électriques et capillaires, Anal. Chim. Phys. 5(11), 494–549 (1875)
J. Zeng, T. Korsmeyer: Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab on a Chip 4(4), 265–277 (2004)
P. Paik, V. K. Pamula, R. B. Fair: Rapid droplet mixers for digital microfluidic systems, Lab on a Chip 3, 253–259 (2003)
P. R. C. Gascoyne, J. V. Vykoukal, J. A. Schwartz, T. J. Anderson, D. M. Vykoukal, K. W. Current, C. McConaghy, F. F. Becker, C. Andrews: Dielectrophoresis-based programmable fluidic processors, Lab on a Chip 4(4), 299–309 (2004)
Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, A. P. Lee: Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab on a Chip 4(4), 292–298 (2004)
S. L. Anna, N. Bontoux, H. A. Stone: Formation of dispersions using “flow focusing” in microchannels, Appl. Phys. Lett. 82(3), 364–366 (2003)
Y. C. Tan, V. Cristini, A. P. Lee: Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sensors Actuat. B 114, 350–356 (2006)
T. Kawakatsu, G. Trägårdh, Ch. Trägårdh, M. Nakajima, N. Oda, T. Yonemoto: The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification, Colloids Surfaces 179, 29–37 (2001)
T. Nisisako, T. Tori, T. Higuchi: Droplet formation in a microchannel network, Lab on a Chip 2, 24–26 (2002)
Y. C. Tan, A. P. Lee: Nanojet controlled droplet emulsion in microfluidic channels, 7th International Conference on Micro Total Analysis Systems (Transducers Research Foundation, Lake Tahoe 2003)
B. J. Briscoe, C. J. Lawrence, W. G. P. Mietus: A review of immiscible fluid mixing, Adv. Colloid Interf. Sci. 81(1), 1–17 (1999)
T. Thorsen, R. W. Roberts, F. H. Arnold, S. R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(18), 4163–4166 (2001)
V. Cristini, Y. C. Tan: Theory and numerical simulation of droplet dynamics in complex flows – a review, Lab on a Chip 4(4), 257–264 (2004)
J. D. Tice, H. Song, A. D. Lyon, R. F. Ismagilov: Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir 19(22), 9127–9133 (2003)
J. D. Tice, A. D. Lyon, R. F. Ismagilov: Effects of viscosity on droplet formation and mixing in microfluidic channels, Anal. Chim. Acta 507, 73–77 (2003)
R. Dreyfus, P. Tabeling, H. Willaime: Ordered and disordered patterns in two-phase flows in microchannels, Phys. Rev. Lett. 90(14), 144505 (2003)
B. Zheng, J. D. Tice, R. F. Ismagilov: Formation of droplets of alternating composition in microfludic channels and applications to indexing of concentration in droplet-based assays, Anal. Chem. 76(17), 4977–4982 (2004)
S. Sugiura, M. Nakajima, M. Seki: Prediction of droplet diameter for microchannel emulsification, Langmuir 18, 3854–3859 (2002)
Q. Xu, M. Nakajima: The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device, Appl. Phys. Lett. 85(17), 3726–3728 (2004)
I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, H. Fujita: Silicon array of elongated through-holes for monodisperse emulsion droplets, AIChE J. 48(8), 1639–1644 (2002)
T. Kawakatsu, H. Komori, M. Nakajima, Y. Kikuchi, T. Yonemoto: Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate, J. Chem. Eng. Jpn. 32(2), 241–244 (1999)
T. Kawakatsu, G. Trägårdh, C. Trägårdh: Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification, Colloids Surfaces 189, 257–264 (2001)
S. Okushima, T. Nisisako, T. Torii, T. Higuchi: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir 20, 9905–9908 (2004)
A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz: Monodisperse double emulsions generated from a microcapillary device, Science 308, 537–541 (2005)
K. Handique, M. A. Burns: Mathematical modeling of drop mixing in a slit-type microchannel, J. Micromech. Microeng. 11(5), 548–554 (2001)
T. Nisisako, T. Torii, T. Higuchi: Novel microreactors for functional polymer beads, Chem. Eng. J. 101, 23–29 (2004)
H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, R. F. Ismagilov: Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett. 83(22), 4664–4666 (2003)
H. Song, J. D. Tice, R. F. Ismagilov: A microfluidic system for controlling reaction networks in time, Angew. Chem. Int. Ed. 42(7), 768–772 (2003)
J. M. Kohler, Th. Henkel, A. Grodrian, Th. Kirner, M. Roth, K. Martin, J. Metze: Digital reaction technology by micro segmented flow – components, concepts and applications, Chem. Eng. J. 101(1-3), 201–216 (2004)
L. H. Hung, W. Y. Tseng, K. Choi, Y. C. Tan, K. J. Shea, A. P. Lee: Controlled droplet fusion in microfluidic devices, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004)
D. R. Link, S. L. Anna, D. A. Weitz, H. A. Stone: Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92(5), 054503 (2004)
Y. C. Tan, A. P. Lee: Microfluidic filtering and sorting of satellite droplets as the basis of a monodispersed micron and submicron emulsification system, Lab on a Chip 10, 1178–1183 (2005)
Y. C. Tan, A. P. Lee: Droplet sorting by size in microfluidic channels, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004)
T. Nisisako, T. Torii, T. Higuchi: Separation of satellite droplets using branch microchannel configuration, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004)
S. Sugiura, M. Nakajima, H. Itou, M. Seki: Synthesis of polymeric microspheres with narrow size distributions employing microchannel emulsification, Macromol. Rapid Commun. 22(10), 773–778 (2001)
G. Yi, S. Jeon, T. Thorsen, V. N. Manoharan, S. R. Quake, D. J. Pine, S. Yang: Generation of uniform photonic balls by template-assisted colloidal crystallization, Synthetic Met. 139, 803–806 (2003)
G. Yi, T. Thorsen, V. N. Manoharan, M. Hwang, S. Jeon, D. J. Pine, S. R. Quake, S. Yang: Generation of uniform colloidal assemblies in soft microfluidic devices, Adv. Mater. 15(15), 1300–1304 (2003)
G. Yi, V. N. Manoharan, S. Klein, K. R. Brzezinska, D. J. Pine, F. F. Lange, S. Yang: Monodisperse micrometer-scale spherical assemblies of polymer particles, Adv. Mater. 14(16), 1137–1140 (2002)
V. Srinivasan, V. K. Pamula, R. B. Fair: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip 4(4), 310–315 (2004)
B. Zheng, J. D. Tice, R. F. Ismagilov: Formation of arrayed droplets by soft lithography and two-phase fluid flow, and application in protein crystallization, Adv. Mater. 16(15), 1365–1368 (2004)
J. R. Millman, K. H. Bhatt, B. G. Prevo, O. D. Velev: Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors, Nature 4, 98–102 (2005)
M. He, J. S. Edgar, G. D. Jeffries, R. M. Lorenz, J. P. Shelby, D. T. Chiu: Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Anal. Chem. 77, 1539–1544 (2005)
J. S. Fisher, A. E. Lee: Cell encapsulation on a microfluidic platform, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004) p. 67
V. Srinivasan, V. K. Pamula, R. B. Fair: Droplet-based microfluidic lab-on-a-chip for glucose detection, Anal. Chim. Acta 507, 145–150 (2004)
I. Shestopalov, J. D. Tice, R. F. Ismagilov: Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab on a Chip 4, 316–321 (2004)
Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth: Planar chip device for PCR and hybridization with surface acoustic wave pump, Lab on a Chip 5, 308–317 (2004)
M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnson, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, D. T. Burke: Microfabricated structures for integrated DNA analysis, Proc. Natl. Acad. Sci. USA 93, 5556–5561 (1996)
B. Zheng, L. S. Roach, R. F. Ismagilov: Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, J. Am. Chem. Soc. 125, 11170–11171 (2003)
B. Zheng, J. D. Tice, L. S. Roach, R. F. Ismagilov: A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction, Angew. Chem. Int. Ed. 43, 2508–2511 (2004)
D. Dendukuri, K. Tsoi, T. A. Hatton, P. S. Doyle: Controlled synthesis of nonspherical microparticles using microfluidics, Langmuir 21, 2113–2116 (2005)
A. Terray, J. Oakey, D. W. M. Marr: Microfluidic control using colloidal devices, Science 296(7), 1841–1844 (2005)
B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers: Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics, Appl. Phys. Lett. 83(24), 4912–4914 (2003)
F. Cattaneo, K. Baldwin, S. Yang, T. Krupenkine, S. Ramachandran, J. A. Rogers: Digitally tunable microfluidic optical fiber devices, J. Microelectromech. Syst. 12(6), 907–912 (2003)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag
About this entry
Cite this entry
Tan, M., Lee, A. (2007). Micro/Nanodroplets in Microfluidic Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-29857-1_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29855-7
Online ISBN: 978-3-540-29857-1
eBook Packages: Chemistry and Materials ScienceReference Module Physical and Materials Science