Skip to main content

Material Aspects of Micro- and Nanoelectromechanical Systems

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

  • 10k Accesses

Abstract

One of the more significant technological achievements during the last 20 years has been the development of MEMS and its new offshoot, NEMS. These developments were made possible by significant advancements in the materials and processing technologies used in the fabrication of MEMS and NEMS devices. While initial developments capitalized on a mature Si infrastructure built for the integrated circuit (IC) industry, recent advances have come about using materials and processes not associated with IC fabrication, a trend that is likely to continue as new application areas emerge.

A well-rounded understanding of MEMS and NEMS technology requires a basic knowledge of the materials used to construct the devices, since material properties often govern device performance and dictate fabrication approaches. An understanding of the materials used in MEMS and NEMS involves an understanding of material systems, since such devices are rarely constructed of a single material but rather a collection of materials working in conjunction with each other to provide critical functions. It is from this perspective that the following chapter is constructed. A preview of the materials selected for inclusion in this chapter is presented in Table 10.1. It should be clear from this table that this chapter is not a summary of all materials used in MEMS and NEMS, as such a work would itself constitute a text of significant size. It does, however, present a selection of some of the more important material systems, and especially those that illustrate the importance of viewing MEMS and NEMS in terms of material systems.

Table 10.1 Distinguishing characteristics and application examples of selected materials for MEMS and NEMS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

CMOS:

complementary metal oxide semiconductor

CVD:

chemical vapor deposition

DC:

direct current

DRIE:

deep reactive ion etching

FET:

field effect transistor

HF:

hydrofluoric acid

IC:

integrated circuit

LPCVD:

low-pressure chemical vapor deposition

MEMS:

microelectromechanical system

NEMS:

nanoelectromechanical system

PECVD:

plasma enhanced chemical vapor deposition

PMMA:

polymethylmethacrylate

PZT:

lead zirconium titanate

RF:

radio-frequency

RIE:

reactive ion etching

SEM:

scanning electron microscopy

SOG:

spin-on glass

SOI:

silicon-on-insulator

References

  1. C. S. Smith: Piezoresistive effect in germanium and silicon, Phys. Rev. 94, 1–10 (1954)

    Google Scholar 

  2. A. N. Cleland, M. L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)

    CAS  Google Scholar 

  3. D. W. Carr, H. G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15, 2760–2763 (1997)

    CAS  Google Scholar 

  4. T. Kamins: Polycrystalline Silicon for Integrated Circuits and Displays, 2 edn. (Kluwer, Boston 1988)

    Google Scholar 

  5. L. Cao, T. S. Kin, S. C. Mantell, D. Polla: Simulation and fabrication of piezoresistive membrane type MEMS strain sensors, Sens. Actuators 80, 273–279 (2000)

    Google Scholar 

  6. H. Guckel, T. Randazzo, D. W. Burns: A simple technique for the determination of mechanical strain in thin films with application to polysilicon, J. Appl. Phys. 57, 1671–1675 (1983)

    Google Scholar 

  7. R. T. Howe, R. S. Muller: Stress in polysilicon and amorphous silicon thin films, J. Appl. Phys. 54, 4674–4675 (1983)

    CAS  Google Scholar 

  8. X. Zhang, T. Y. Zhang, M. Wong, Y. Zohar: Rapid thermal annealing of polysilicon thin films, J. Microelectromech. Syst. 7, 356–364 (1998)

    CAS  Google Scholar 

  9. J. Yang, H. Kahn, A.-Q. He, S. M. Phillips, A. H. Heuer: A new technique for producing large-area as-deposited zero-stress LPCVD polysilicon films: The Multipoly Process, J. Microelectromech. Syst. 9, 485–494 (2000)

    CAS  Google Scholar 

  10. P. Gennissen, M. Bartek, P. J. French, P. M. Sarro: Bipolar-compatible epitaxial poly for smart sensors: stress minimization and applications, Sens. Actuators A62, 636–645 (1997)

    CAS  Google Scholar 

  11. P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J. R. Morante, F. Ericson, J. A. Schweitz: Thick polycrystalline silicon for surface-micromechanical applications: deposition, structuring, and mechanical characterization, Sens. Actuators A54, 674–678 (1996)

    CAS  Google Scholar 

  12. S. Greek, F. Ericson, S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young's modulus and fracture strength evaluated with microstructures, J. Micromech. Microeng. 9, 245–251 (1999)

    CAS  Google Scholar 

  13. K. Funk, H. Emmerich, A. Schilp, M. Offenberg, R. Neul, F. Larmer: A surface micromachined silicon gyroscope using a thick polysilicon layer, Proceedings of the 12nd International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 1999) pp. 57–60

    Google Scholar 

  14. T. Abe, M. L. Reed: Low Strain Sputtered Polysilicon for Micromechanical Structures, Proceedings of the 9th International Workshop on Microelectromechanical Systems (IEEE, Piscataway NJ 1996) pp. 258–262

    Google Scholar 

  15. K. Honer, G. T. A. Kovacs: Integration of sputtered silicon microstructures with pre-fabricated CMOS circuitry, Sens. Actuators A 91, 392–403 (2001)

    Google Scholar 

  16. J. Gaspar, T. Adrega, V. Chu, J. P. Conde: Thin-Film Paddle Microresonators with High Quality Factors Fabricated at Temperatures Below 110 °C, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 125–128

    Google Scholar 

  17. R. Anderson, R. S. Muller, C. W. Tobias: Porous polycrystalline silicon: a new material for MEMS, J. Microelectromech. Syst. 3, 10–18 (1994)

    CAS  Google Scholar 

  18. W. Lang, P. Steiner, H. Sandmaier: Porous silicon: a novel material for microsystems, Sens. Actuators A51, 31–36 (1995)

    CAS  Google Scholar 

  19. R. He, C. J. Kim: On-Chip Hermetic Packaging Enabled by Post-Deposition Electrochemical Etching of Polysilicon, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 544–547

    Google Scholar 

  20. S. K. Ghandhi: VLSI Fabrication Principles – Silicon and Gallium Arsenide (Wiley, New York 1983)

    Google Scholar 

  21. W. A. Pilskin: Comparison of properties of dielectric films deposited by various methods, J. Vac. Sci. Technol. 21, 1064–1081 (1977)

    Google Scholar 

  22. J. S. Danel, F. Michel, G. Delapierre: Micromachining of quartz and its application to an acceleration sensor, Sens. Actuators A21-A23, 971–977 (1990)

    Google Scholar 

  23. A. Yasseen, J. D. Cawley, M. Mehregany: Thick glass film technology for polysilicon surface micromachining, J. Microelectromech. Syst. 8, 172–179 (1999)

    CAS  Google Scholar 

  24. R. Liu, M. J. Vasile, D. J. Beebe: The fabrication of nonplanar spin-on glass microstructures, J. Microelectromech. Syst. 8, 146–151 (1999)

    CAS  Google Scholar 

  25. B. Folkmer, P. Steiner, W. Lang: Silicon nitride membrane sensors with monocrystalline transducers, Sens. Actuators A51, 71–75 (1995)

    CAS  Google Scholar 

  26. M. Sekimoto, H. Yoshihara, T. Ohkubo: Silicon nitride single-layer x-ray mask, J. Vacuum Sci. Technol. 21, 1017–1021 (1982)

    CAS  Google Scholar 

  27. D. J. Monk, D. S. Soane, R. T. Howe: Enhanced Removal of Sacrificial Layers for Silicon Surface Micromachining, Technical Digest – The 7th International Conference on Solid State Sensors and Actuators (Institute of Electrical Engineers of Japan, Tokyo 1993) pp. 280–283

    Google Scholar 

  28. P. J. French, P. M. Sarro, R. Mallee, E. J. M. Fakkeldij, R. F. Wolffenbuttel: Optimization of a low-stress silicon nitride process for surface micromachining applications, Sens. Actuators A58, 149–157 (1997)

    CAS  Google Scholar 

  29. B. Li, B. Xiong, L. Jiang, Y. Zohar, M. Wong: Germanium as a versatile material for low-temperature micromachining, J. Microelectromech. Syst. 8, 366–372 (1999)

    CAS  Google Scholar 

  30. A. Franke, D. Bilic, D. T. Chang, P. T. Jones, T. J. King, R. T. Howe, C. G. Johnson: Post-CMOS Integration Of Germanium Microstructures, Proceedings of the 12nd International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 1999) pp. 630–637

    Google Scholar 

  31. A. E. Franke, Y. Jiao, M. T. Wu, T. J. King, R. T. Howe: Post-CMOS Modular Integration of Poly-SiGe Microstructures Using Poly-Ge Sacraficial Layers, Technical Digest – Solid State Sensor and Actuator Workshop (Transducers Research Foundation, Hilton Head 2000) pp. 18–21

    Google Scholar 

  32. S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, R. Mertens: Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications, J. Microelectromech. Syst. 7, 365–372 (1998)

    CAS  Google Scholar 

  33. J. M. Heck, C. G. Keller, A. E. Franke, L. Muller, T.-J. King, R. T. Howe: High Aspect Ratio Polysilicon-Germanium Microstructures, Proceedings of the 10th International Conference on Solid State Sensors and Actuators (Institute of Electrical Engineers of Japan, Tokyo 1999) pp. 328–334

    Google Scholar 

  34. P. Van Gerwen, T. Slater, J. B. Chevrier, K. Baert, R. Mertens: Thin-film boron-doped polycrystalline silicon70%-germanium30% for thermopiles, Sens. Actuators A 53, 325–329 (1996)

    Google Scholar 

  35. D. Hyman, J. Lam, B. Warneke, A. Schmitz, T. Y. Hsu, J. Brown, J. Schaffner, A. Walson, R. Y. Loo, M. Mehregany, J. Lee: Surface micromachined RF MEMS switches on GaAs substrates, Int. J. Radio Frequency Microwave Commun. Eng. 9, 348–361 (1999)

    Google Scholar 

  36. C. Chang, P. Chang: Innovative micromachined microwave switch with very low insertion loss, Sens. Actuators 79, 71–75 (2000)

    Google Scholar 

  37. M. F. Aimi, M. P. Rao, N. C. MacDonald, A. S. Zuruzi, D. P. Bothman: High-aspect-ratio bulk micromachining of Ti, Nat. Mater. 3, 103–105 (2004)

    CAS  Google Scholar 

  38. C. L. Shih, B. K. Lai, H. Kahn, S. M. Phillips, A. H. Heuer: A robust co-sputtering fabrication procedure for TiNi shape memory alloys for MEMS, J. Microelectromech. Syst. 10, 69–79 (2001)

    CAS  Google Scholar 

  39. G. Hahm, H. Kahn, S. M. Phillips, A. H. Heuer: Fully Microfabricated Silicon Spring Biased Shape Memory Actuated Microvalve, Technical Digest- Solid State Sensor and Actuator Workshop (Transducers Research Foundation, Hilton Head Island 2000) pp. 230–233

    Google Scholar 

  40. S. D. Leith, D. T. Schwartz: High-rate through-mold electrodeposition of thick (> 200  micron) NiFe MEMS components with uniform composition, J. Microelectromech. Syst. 8, 384–392 (1999)

    CAS  Google Scholar 

  41. N. Rajan, M. Mehregany, C. A. Zorman, S. Stefanescu, T. Kicher: Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines, J. Microelectromech. Syst. 8, 251–257 (1999)

    CAS  Google Scholar 

  42. T. Pornsin-Sirirak, Y. C. Tai, H. Nassef, C. M. Ho: Titanium-alloy MEMS wing technology for a microaerial vehicle application, Sens. Actuators A 89, 95–103 (2001)

    Google Scholar 

  43. C. R. Stoldt, C. Carraro, W. R. Ashurst, D. Gao, R. T. Howe, R. Maboudian: A low temperature CVD process for silicon carbide MEMS, Sens. Actuators A 97-98, 410–415 (2002)

    Google Scholar 

  44. M. Eickhoff, H. Moller, G. Kroetz, J. von Berg, R. Ziermann: A high temperature pressure sensor prepared by selective deposition of cubic silicon carbide on SOI substrates, Sens. Actuators 74, 56–59 (1999)

    Google Scholar 

  45. Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, C. A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001)

    CAS  Google Scholar 

  46. D. Young, J. Du, C. A. Zorman, W. H. Ko: High-temperature single crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004)

    CAS  Google Scholar 

  47. C. A. Zorman, S. Rajgolpal, X. A. Fu, R. Jezeski, J. Melzak, M. Mehregany: Deposition of polycrystalline 3C-SiC films on 100 mm-diameter (100) Si wafers in a large-volume LPCVD furnace, Electrochem. Solid State Lett. 5, G99–G101 (2002)

    CAS  Google Scholar 

  48. I. Behrens, E. Peiner, A. S. Bakin, A. Schlachetzski: Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapor deposition, J. Micromech. Microeng. 12, 380–384 (2002)

    CAS  Google Scholar 

  49. C. A. Zorman, S. Roy, C. H. Wu, A. J. Fleischman, M. Mehregany: Characterization of polycrystalline silicon carbide films grown by atmospheric pressure chemical vapor deposition on polycrystalline silicon, J. Mater. Res. 13, 406–412 (1996)

    Google Scholar 

  50. C. H. Wu, C. H. Zorman, M. Mehregany: Growth of polycrystalline SiC films on SiO2 and Si3N4 by APCVD, Thin Solid Films 355-356, 179–183 (1999)

    Google Scholar 

  51. P. Sarro: Silicon carbide as a new MEMS technologyctuators, Sens. Actuators A 82, 210–218 (2000)

    Google Scholar 

  52. N. Ledermann, J. Baborowski, P. Muralt, N. Xantopoulos, J. M. Tellenbach: Sputtered silicon carbide thin films as protective coatings for MEMS applications, Surface Coatings Technol. 125, 246–250 (2000)

    CAS  Google Scholar 

  53. X. A. Fu, R. Jezeski, C. A. Zorman, M. Mehregany: Use of deposition pressure to control the residual stress in polycrystalline SiC films, Appl. Phys. Lett. 84, 341–343 (2004)

    CAS  Google Scholar 

  54. J. Trevino, X. A. Fu, M. Mehregany, C. Zorman: Low-Stress, Heavily-Doped Polycrystalline Silicon Carbide for MEMS Applications, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Piscataway NJ 2005) pp. 451–454

    Google Scholar 

  55. R. S. Okojie, A. A. Ned, A. D. Kurtz: Operation of a 6H-SiC pressure sensor at 500 °C, Sens. Actuators A 66, 200–204 (1998)

    Google Scholar 

  56. K. Lohner, K. S. Chen, A. A. Ayon, M. S. Spearing: Microfabricated silicon carbide microengine structures, Mater. Res. Soci. Symp. Proc. 546, 85–90 (1999)

    CAS  Google Scholar 

  57. K. O. Min, S. Tanaka, M. Esashi: Micro/Nano Glass Press Molding Using Silicon Carbide Molds Fabricated by Silicon Lost Molding, Proceedings of the 18th International Conference on Microelectromechanical Systems (IEEE, Miami 2005) pp. 475–478

    Google Scholar 

  58. X. Song, S. Rajgolpal, J. M. Melzak, C. A. Zorman, M. Mehregany: Development of a multilayer SiC surface micromachining process with capabilities and design rules comparable with conventional polysilicon surface micromachining, Mater. Sci. Forum 389-393, 755–758 (2001)

    Google Scholar 

  59. S. Tanaka, S. Sugimoto, J.-F. Li, R. Watanabe, M. Esashi: Silicon carbide micro-reaction-sintering using micromachined silicon molds, J. Microelectromech. Syst. 10, 55–61 (2001)

    CAS  Google Scholar 

  60. L. A. Liew, W. Zhang, V. M. Bright, A. Linan, M. L. Dunn, R. Raj: Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique, Sens. Actuators A 89, 64–70 (2001)

    Google Scholar 

  61. A. J. Fleischman, S. Roy, C. A. Zorman, M. Mehregany: Polycrystalline Silicon Carbide for Surface Micromachining, Proceedings of the 9th International Workshop on Microelectromechanical Systems (IEEE, San Diego 1996) pp. 234–238

    Google Scholar 

  62. A. J. Fleischman, X. Wei, C. A. Zorman, M. Mehregany: Surface micromachining of polycrystalline SiC deposited on SiO2 by APCVD, Mater. Sci. Forum 264-268, 885–888 (1998)

    Google Scholar 

  63. G. Beheim, C. S. Salupo: Deep RIE process for silicon carbide power electronics and MEMS, Mater. Res. Soc. Symp. Proc. 622, T8.8.1–T8.8.6. (2000)

    Google Scholar 

  64. A. Yasseen, C. H. Wu, C. A. Zorman, M. Mehregany: Fabrication and testing of surface micromachined polycrystalline SiC micromotors, Electron. Device Lett. 21, 164–166 (2000)

    CAS  Google Scholar 

  65. D. Gao, M. B. Wijesundara, C. Carraro, R. T. Howe, R. Maboudian: Recent progress toward and manufacturable polycrystalline SiC surface micromachining technology, IEEE Sens. J. 4, 441–448 (2004)

    CAS  Google Scholar 

  66. T. Shibata, Y. Kitamoto, K. Unno, E. Makino: Micromachining of diamond film for MEMS applications, J. Microelectromech. Syst. 9, 47–51 (2000)

    CAS  Google Scholar 

  67. H. Bjorkman, P. Rangsten, P. Hollman, K. Hjort: Diamond replicas from microstructured silicon masters, Sens. Actuators 73, 24–29 (1999)

    Google Scholar 

  68. P. Rangsten, H. Bjorkman, K. Hjort: Microfluidic Components in Diamond, Proceedings of the 10th International Conference on Solid State Sensors and Actuators (IEEE, Sendai 1999) pp. 190–193

    Google Scholar 

  69. H. Bjorkman, P. Rangsten, K. Hjort: Diamond microstructures for optical microelectromechanical systems, Sens. Actuators 78, 41–47 (1999)

    Google Scholar 

  70. M. Aslam, D. Schulz: Technology of Diamond Microelectromechanical Systems, Proceedings of the 8th International Conference on Solid State Sensors and Actuators (IEEE, Stockholm 1995) pp. 222–224

    Google Scholar 

  71. R. Ramesham: Fabrication of diamond microstructures for microelectromechanical systems (MEMS) by a surface micromachining process, Thin Solid Films 340, 1–6 (1999)

    CAS  Google Scholar 

  72. X. Yang, J. M. Yang, Y. C. Tai, C. M. Ho: Micromachined membrane particle filters, Sens. Actuators 73, 184–191 (1999)

    Google Scholar 

  73. X. D. Wang, G. D. Hong, J. Zhang, B. L. Lin, H. Q. Gong, W. Y. Wang: Precise patterning of diamond films for MEMS application, J. Mater. Process. Technol. 127, 230–233 (2002)

    CAS  Google Scholar 

  74. A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemire, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, M. Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond Related Mater. 10, 1952–1961 (2001)

    CAS  Google Scholar 

  75. X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, J. A. Carlisle: Low temperature growth of ultrananocrystalline diamond, J. Appl. Phys. 96, 2232–2239 (2004)

    CAS  Google Scholar 

  76. T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, D. M. Follstaedt, D. L. Medlin, P. B. Mirkarimi: Thick stress-free amorphous-tetrahedral carbon films with hardness near that of diamond, Appl. Phys. Lett. 71, 3820–3822 (1997)

    CAS  Google Scholar 

  77. J. P. Sullivan, T. A. Friedmann, K. Hjort: Diamond and amorphous carbon MEMS, MRS Bull. 26, 309–311 (2001)

    CAS  Google Scholar 

  78. J. R. Webster, C. W. Dyck, J. P. Sullivan, T. A. Friedmann, A. J. Carton: Performance of amorphous diamond RF MEMS capacitive switch, Electron. Lett. 40, 43–44 (2004)

    CAS  Google Scholar 

  79. K. Hjort, J. Soderkvist, J.-A. Schweitz: Galium arsenide as a mechanical material, J. Micromech. Microeng. 4, 1–13 (1994)

    CAS  Google Scholar 

  80. K. Hjort: Sacrificial etching Of III–V compounds for micromechanical devices, J. Micromech. Microeng. 6, 370–365 (1996)

    CAS  Google Scholar 

  81. K. Fobelets, R. Vounckx, G. Borghs: A GaAs pressure sensor based on resonant tunnelling diodes, J. Micromech. Microeng. 4, 123–128 (1994)

    CAS  Google Scholar 

  82. A. Dehe, K. Fricke, H. L. Hartnagel: Infrared thermopile sensor based on AlGaAs-GaAs micromachining, Sens. Actuators A46-A47, 432–436 (1995)

    Google Scholar 

  83. A. Dehe, J. Peerlings, J. Pfeiffer, R. Riemenschneider, A. Vogt, K. Streubel, H. Kunzel, P. Meissner, H. L. Hartnagel: III–V compound semiconductor micromachined actuators for long resonator tunable Fabry-Perot detectors, Sens. Actuators A68, 365–371 (1998)

    CAS  Google Scholar 

  84. T. Lalinsky, S. Hascik, Mozolova, E. Burian, M. Drzik: The improved performance of GaAs micromachined power sensor microsystem, Sens. Actuators 76, 241–246 (1999)

    Google Scholar 

  85. T. Lalinsky, E. Burian, M. Drzik, S. Hascik, Z. Mozolova, J. Kuzmik, Z. Hatzopoulos: Performance of GaAs micromachined microactuator, Sens. Actuators 85, 365–370 (2000)

    Google Scholar 

  86. H. X. Tang, X. M. H. Huang, M. L. Roukes, M. Bichler, W. Wegscheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)

    CAS  Google Scholar 

  87. T. S. Tighe, J. M. Worlock, M. L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructure, Appl. Phys. Lett. 70, 2687–2689 (1997)

    CAS  Google Scholar 

  88. J. Miao, B. L. Weiss, H. L. Hartnagel: Micromachining of three-dimensional GaAs membrane structures using high-energy nitrogen implantation, J. Micromech. Microeng. 13, 35–39 (2003)

    CAS  Google Scholar 

  89. C. Seassal, J. L. Leclercq, P. Viktorovitch: Fabrication of inp-based freestanding microstructures by selective surface micromachining, J. Micromech. Microeng. 6, 261–265 (1996)

    Google Scholar 

  90. J. Leclerq, R. P. Ribas, J. M. Karam, P. Viktorovitch: III–V micromachined devices for microsystems, Microelectron. J. 29, 613–619 (1998)

    Google Scholar 

  91. H. Yamaguchi, R. Dreyfus, S. Miyashita, Y. Hirayama: Fabrication and elastic properties of InAs freestanding structures based on InAs/GaAs(111) a heteroepitaxial systems, Phys. E 13, 1163–1167 (2002)

    CAS  Google Scholar 

  92. C. Lee, T. Itoh, T. Suga: Micromachined piezoelectric force sensors based on PZT thin films, IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control 43, 553–559 (1996)

    Google Scholar 

  93. B. Xu, L. E. Cross, J. J. Bernstein: Ferroelectric and antiferroelectric films for microelectromechanical systems applications, Thin Solid Films 377-378, 712–718 (2000)

    CAS  Google Scholar 

  94. S. P. Beeby, A. Blackburn, N. M. White: Processing of PZT piezoelectric thick films on silicon for microelectromechanical systems, J. Micromech. Microeng. 9, 218–229 (1999)

    CAS  Google Scholar 

  95. C. Shearwood, M. A. Harradine, T. S. Birch, J. C. Stevens: Applications of polyimide membranes to MEMS technology, Microelectron. Eng. 30, 547–550 (1996)

    CAS  Google Scholar 

  96. F. Jiang, G. B. Lee, Y. C. Tai, C. M. Ho: A flexible micromachine-based shear-stress sensor array and its application to separation-point detection, Sens. Actuators 79, 194–203 (2000)

    Google Scholar 

  97. D. Memmi, V. Foglietti, E. Cianci, G. Caliano, M. Pappalardo: Fabrication of capacitive micromechanical ultrasonic transducers by low-temperature process, Sens. Actuators A 99, 85–91 (2002)

    Google Scholar 

  98. A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French, P. M. Sarro: Polyimide sacrificial layer and novel materials for post-processing surface micromachining, J. Micromech. Microeng. 12, 385–389 (2002)

    CAS  Google Scholar 

  99. T. Stieglitz: Flexible biomedical microdevices with double-sided electrode arrangements for neural applications, Sens. Actuators A 90, 203–211 (2001)

    Google Scholar 

  100. T. Stieglitz, G. Matthias: Flexible BioMEMS with electrode arrangements on front and back side as key component in neural prostheses and biohybrid systems, Sens. Actuators B 83, 8–14 (2002)

    Google Scholar 

  101. H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, P. Renaud: High-aspect-ratio, ultrathick, negative-tone-near-UV photoresist and its applications in MEMS, Sens. Actuators A 64, 33–39 (1998)

    Google Scholar 

  102. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, P. Vettiger: SU-8: A low-cost negative resist for MEMS, J. Micromech. Microeng. 7, 121–124 (1997)

    CAS  Google Scholar 

  103. E. H. Conradie, D. F. Moore: SU-8 thick photoresist processing as a functional material for MEMS applications, J. Micromech. Microeng. 12, 368–374 (2002)

    CAS  Google Scholar 

  104. C. T. Pan, H. Yang, S. C. Shen, M. C. Chou, H. P. Chou: A low-temperature wafer bonding technique using patternable materials, J. Micromech. Microeng. 12, 611–615 (2002)

    CAS  Google Scholar 

  105. P. A. Stupar, A. P. Pisano: Silicon, Parylene, and Silicon/Parylene Micro-Needles for Strength and Toughness, Technical Digest of the 11st International Conference on Solid State Sensors and Actuators (Springer, Berlin 2001) pp. 1368–1389

    Google Scholar 

  106. J. M. Zara, S. W. Smith: Optical scanner using a MEMS actuator, Sens. Actuators A 102, 176–184 (2002)

    Google Scholar 

  107. H. S. Noh, P. J. Hesketh, G. C. Frye-Mason: Parylene gas chromatographic column for rapid thermal cycling, J. Microelectromech. Syst. 11, 718–725 (2002)

    CAS  Google Scholar 

  108. T. J. Yao, X. Yang, Y. C. Tai: BrF3 dry release technology for large freestanding parylene microstructures and electrostatic actuators, Sens. Actuators A 97-98, 771–775 (2002)

    Google Scholar 

  109. X. Wang, J. Engel, C. Liu: Liquid crystal polymer (LCP) for MEMS: processing and applications, J. Micromech. Microeng. 13, 628–633 (2003)

    CAS  Google Scholar 

  110. C. J. Lee, S. J. Oh, J. K. Song, S. J. Kim: Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material, Mater. Sci. Eng. C 4, 265–268 (2004)

    Google Scholar 

  111. F. F. Faheem, K. C. Gupta, Y. C. Lee: Flip-chip assembly and liquid crystal polymer encapsulation for variable MEMS capacitors, IEEE Trans. Microwave Theory Tech. 51, 2562–2567 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Zorman Prof. or Mehran Mehregany Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Zorman, C., Mehregany, M. (2007). Material Aspects of Micro- and Nanoelectromechanical Systems. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_10

Download citation

Publish with us

Policies and ethics