Skip to main content

Mitochondrial Respiration


Oxidative phosphorylation; Substrate oxidation


Mitochondrial respiration is the set of metabolic reactions and processes requiring oxygen that takes place in mitochondria to convert the energy stored in macronutrients to adenosine triphosphate (ATP), the universal energy donor in the cell.

Basic Mechanisms

Approximately half a century ago, mitochondria, cellular organelles bounded by a highly folded inner and fairly smooth outer membrane were recognized as the cellular “power plants” providing the energy required for metabolism. The mechanism that underlies the energy-generating capacity of mitochondria was described by Mitchell in 1961 and awarded with the 1978 Nobel Prize in chemistry. Mitchell’s chemiosmotic theory describes how the oxidation of nutritional substrates is coupled to the synthesis of adenosine triphosphate (ATP), the compound in which cellular energy is conserved. In mitochondria, the macronutrient-derived reducing equivalents NADH and FADH2...

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-29807-6_136
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   949.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-29807-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
Mitochondrial Respiration. Fig. 1
Mitochondrial Respiration. Fig. 2


  1. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124

    CrossRef  CAS  PubMed  Google Scholar 

  2. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF, Shulman GI (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346

    CAS  PubMed  Google Scholar 

  3. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN, Lowell BB, Bassel-Duby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418:797–801

    CrossRef  CAS  PubMed  Google Scholar 

  4. Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353

    CrossRef  CAS  PubMed  Google Scholar 

  5. Phielix E, Meex R, Moonen-Kornips E, Hesselink MK, Schrauwen P (2011) Exercise training increases mitochondrial content and ex vivo mitochondrial function similarly in patients with type 2 diabetes and in control individuals. Diabetologia 53:1714–1721

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Patrick Schrauwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hoeks, J., Hesselink, M., Schrauwen, P. (2012). Mitochondrial Respiration. In: Mooren, F.C. (eds) Encyclopedia of Exercise Medicine in Health and Disease. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36065-0

  • Online ISBN: 978-3-540-29807-6

  • eBook Packages: MedicineReference Module Medicine