Definition
Reptiles and birds (sauropsids) depend heavily on the sense of vision to detect danger, find food, defend territory, and select a mate, and vision is of course essential for birds to fly in the air. Sauropsids have well-developed eyes, midbrains, and forebrains for visual processing. Among sauropsids, many avian species have excellent visual abilities, including color vision, visual acuity, motion perception, and visual memory.
Characteristics
Reptilian Eye
Features: As in other vertebrates including birds, the eyes of reptiles consist of an outer, fibrous and tough layer of sclera, a vascular layer called the choroid, and an inner, thin pigment epithelium that is applied to the outer surface of the neural retina. The choroid supplies oxygen and nutrition to the retina of many reptiles, but in lizards and to a lesser extent in snakes, an additional cone-shaped structure is present that supplements this function [1]. This structure is called the conus papillaris [2] and is...
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Bellairs A (1970) The Life of Reptiles, vol. 2. Universe Books, New York
Braekevelt CR (1989) Fine structure of the conus papillaris in the bobtail goanna (Tiliqua rugosa). Histol Histopathol 4:287–293
Nalbach HO, Wolf-Oberhollenzer F, Remy M (1993) Exploring the image. In: Zeigler HP, Bischof H-J (eds) Vision, brain and behavior in birds. MIT Press, Cambridge, MA, pp 25–46
Waldvogel JA (1990) The bird’s eye view. Am Sci 78:342–353
Walls GL (1942) The vertebrate eye. Cranbrook Institute of Science, Bloomfield Hills, MI
Ulinski PS (1977) Tectal efferents in the banded water snake, Natrix sipedon. J Comp Neurol 173:251–274
Fite KV, Rosenfield-Wessels S (1975) A comparative study of deep avian foveas. Brain Behav Evol 12:97–115
Martin G, Rojas LM, Ramirez Y, McNeil R (2004) The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwissenschaften 91:26–29
Butler AB, Northcutt RG (1971) Retinal projections in Iguana iguana and Anolis carolinensis. Brain Res 26:1–13
Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, Hoboken, NJ
Médina M, Repérant J, Ward R, Miceli D (2004) Centrifugal visual system of Crocodilus niloticus: a hodological, histochemical, and immunocytochemical study. J Comp Neurol 468:65–85
Ulinski PS (1983) Dorsal ventricular ridge: a treatise on forebrain organization in reptiles and birds. Wiley, New York
Kenigfest N, Martínez-Marcos A, Belekhova M, Font C, Lanuza E, Desfilis E, Martínez-García F (1997) A lacertilian dorsal retinorecipient thalamus: a re-investigation in the old-world lizard Podarcis hispanica. Brain Behav Evol 50:313–334
Berson DM, Hartline PH (1988) A tecto-rotundo-telencephalic pathway in the rattlesnake: evidence for a forebrain representation of the infrared sense. J Neurosci 8:1,074–1,088
Dacey DM, Ulinski PS (1983) Nucleus rotundus in a snake, Thamnophis sirtalis: an analysis of a nonretinotopic projection. J Comp Neurol 216:175–191
Repérant J, Miceli D, Rio JP, Weidner C (1987) The primary optic system in a microphthalmic snake (Calabaria reinhardti). Brain Res 408:233–238
Repérant J, Peyrichoux J, Weidner C, Miceli D, Rio JP (1980) The centrifugal visual system in Vipera aspis. An experimental study using retrograde axonal transport of HRP and [3H] adenosine. Brain Res 183:435–441
Northcutt RG, Butler AB (1974) Retinal projections in the northern water snake Natrix sipedon sipedon (L.). J Morphol 142:117–136
Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Sturkie’s avian physiology (5th edn). Academic Press, New York, pp 1–19
Shimizu T (2001) Evolution of the forebrain in tetrapods. In: Roth G, Wulliman, MF (eds) Brain evolution and cognition. Wiley/Spektrum, New York, pp 135–184
Uchiyama H (1989) Centrifugal pathways to the retina: influence of the optic tectum. Vis Neurosci 3:183–206
Avian Brain Nomenclature Consortium: Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB (2005) Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159
Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, and Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414
Pettigrew JD, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl (Tyto alba). Science 193:675–678
Hodos W (1993) Visual capabilities of birds. In: Zeigler HP, Bischof H-J (eds) Vision, brain and behavior in birds. MIT Press, Cambridge, MA, pp 63–76
Goldsmith TH (2006) What birds see. Sci Am 295:68–75
Bennett ATD, Cuthill IC, Partridge JC, Maier EJ (1996) Ultraviolet vision and mate choice in zebra finches. Nature 380:433–435
Gaffney MF, Hodos W (2003) The visual acuity and refractive state of the American kestrel (Falco sparverius). Vis Res 43:2,053–2,059
Hodos W, Miller RF, Fite KV, Porciatti V, Holden AL, Lee JY, Djamgoz MBA (1991) Life-span changes in the visual acuity and retina in birds. In: Bagnoli P, Hodos W (eds) The changing visual system. Plenum Press, New York, pp 137–148
Hodos W, Potocki A, Ghim MM, Gaffney M (2003) Temporal modulation of spatial contrast vision in pigeons (Columba livia). Vis Res 43:761–767.
Cook RG (2001) Avian Visual Cognition. [Online] http://www.pigeon.psy.tufts.edu/avc/
Pepperberg IM (1999) The alex studies: cognitive and communicative abilities of grey parrots. Harvard University Press, Cambridge, MA
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag GmbH Berlin Heidelberg
About this entry
Cite this entry
Shimizu, T., Patton, T.B., Szafranski, G., Butler, A.B. (2009). Evolution of the Visual System in Reptiles and Birds. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_3179
Download citation
DOI: https://doi.org/10.1007/978-3-540-29678-2_3179
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23735-8
Online ISBN: 978-3-540-29678-2
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences