Skip to main content

Evolution of the Visual System in Fishes

Synonyms

Fishes; Visual systems

Definition

The evolution of the visual system can be defined as the series of changes in the structure and function of the eye and visual input to the brain that has occurred as a result of selection pressures over a relatively long time period. The visual system of fishes comprises the optical apparatus (cornea, iris and lens), the neural retina (converting an optical image into an electrical image) and the optic nerve (conveying visual information to the brain). Primitive fishes are either jawless (Agnatha) or jawed (Elasmobranchii and Osteichthyes) and are remarkably diverse, occupying a large range of aquatic environments.

Characteristics

The extant jawless fishes (hagfishes and lampreys) represent the earliest stage in vertebrate evolution. Lamprey-like animals are represented in fossil deposits dating back approximately 540 million years. The jawed fishes (cartilaginous and bony) evolved approximately 400 million years ago and occupy a diverse...

This is a preview of subscription content, log in via an institution.

References

  1. Nilsson D-E, Pelger S (1994) A pessimistic estimate of the time required for an eye to evolve. Proc R Soc Lond B 256:53–58

    Article  CAS  Google Scholar 

  2. Walls GL (1963) The vertebrate eye and its adaptive radiation. Hafner, New York

    Google Scholar 

  3. Collin SP, Collin HB (2001) The fish cornea: adaptations for different aquatic environments. In: Kapoor BG, Hara TJ Sensory biology of jawed fishes: new insights. Science Publishers, Enfield, USA, pp 57–96

    Google Scholar 

  4. Pettigrew JD, Collin SP, Ott M (1999) Convergence of specialised behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). Curr Biol 9:421–424

    Article  CAS  PubMed  Google Scholar 

  5. Kröger RHH, Campbell MCW, Fernald RD, Wagner H-J (1999) Multifocal lenses compensate for chromatic defocus in vertebrate eyes. J Comp Physiol A 184:361–369

    Article  PubMed  Google Scholar 

  6. Douglas RH, Collin SP, Corrigan J (2002) The eyes of suckermouth armoured catfish (Loricariidae, subfamily Hypostomus): pupil response, lenticular longitudinal spherical aberration and retinal topography. J Exp Biol 205:3425–3433

    Article  PubMed  Google Scholar 

  7. Ott M (2006) Visual accommodation in vertebrates: mechanisms, physiological response and stimuli. J Comp Physiol A 192:97–111

    Article  Google Scholar 

  8. Fritzsch B, Collin SP (1990) The distribution and dendritic fields of two populations of ganglion cells and the retinopetal fibers in the retina of the lamprey, Ichthyomyzon unicuspis. Vis Neurosci 4:533–545

    Article  CAS  PubMed  Google Scholar 

  9. Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AE (2003) Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol 13:R864–R865

    Article  CAS  PubMed  Google Scholar 

  10. Hart NS, Lisney TJ, Marshall NJ, Collin SP (2004) Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol 207:4587–4594

    Article  PubMed  Google Scholar 

  11. Bailes HJ, Robinson, SR, Trezise AEO, Collin SP (2006) Morphology, characterisation and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). J Comp Neurol 494:381–397

    Article  PubMed  Google Scholar 

  12. Sillman AJ, O’Leary CJ, Tarantino CD, Loew ER (1999) The photoreceptors and visual pigments of two species of Acipenseriformes, the shovelnose sturgeon (Scaphirhynchus platorynchus) and the paddlefish (Polyodon spathula). J Comp Physiol A 184:37–47

    Article  Google Scholar 

  13. Parry JWL, Carleton KL, Spady T, Carboo A, Hunt DM, Bowmaker J (2005) Mix and match colour vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids Curr Biol 15:1734–1739

    Article  CAS  PubMed  Google Scholar 

  14. Yokoyama S, Zhang H, Radlwimmer FB, Blow NS (1999) Adaptive evolution of color vision of the comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci USA 96:6279–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Siebeck UE, Marshall NJ (2001) Ocular media transmission of coral reef fish – can coral reef fish see ultraviolet? Vision Res 41:133–149

    Article  CAS  PubMed  Google Scholar 

  16. Wicht H, Northcutt RG (1990) Retinofugal and retinopetal projections in the Pacific hagfish, Eptatretus stouti. Brain Behav Evol 36:315–328

    Article  CAS  PubMed  Google Scholar 

  17. Collin SP, Northcutt RG (1995) The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi): IV. Bilateral projections and the binocular visual field. Brain Behav Evol 45:34–53

    Article  CAS  PubMed  Google Scholar 

  18. Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  19. Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK (1996) Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res 36:1217–1224

    Article  CAS  PubMed  Google Scholar 

  20. Nei M, Gojobori T (1986) Simple methods for estimating synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  21. Collin SP (1997) Specialisations of the teleost visual system: adaptive diversity from shallow-water to deep-sea. Acta Phys Scand 161, Suppl 638:5–24

    Google Scholar 

  22. Collin SP, Collin HB (1993) The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi): II. Cornea and lens. Brain Behav Evol 42:98–115

    Article  CAS  PubMed  Google Scholar 

  23. Collin SP, Potter IC, Braekevelt C (1999) The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to the characterisation and phylogeny of photoreceptor types. Brain Behav Evol 54:96–118

    Article  CAS  PubMed  Google Scholar 

  24. Duke-Elder S (1958) The eye in evolution, vol 1. System of ophthalmology. Henry Kimpton, London

    Google Scholar 

  25. Northcutt RG, Butler AB (1992) Retinofugal and retinopetal projections in the green sunfish, Lepomis cyanellus. Brain Behav Evol 37:333–354

    Article  Google Scholar 

  26. Sivak JG (1976) The accommodative significance of the “ramp” retina of the eye of the stingray. Vision Res 16:945–950

    Article  CAS  PubMed  Google Scholar 

  27. Lamb TD, Collin SP, Pugh EN Jr (2007) Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nature Reviews Neuroscience 8:960–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag GmbH Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Collin, S.P. (2009). Evolution of the Visual System in Fishes. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_3178

Download citation

Publish with us

Policies and ethics