Skip to main content

Evolution of the Brain: At the Reptile-Bird Transition

  • Reference work entry
  • First Online:
Encyclopedia of Neuroscience

Definition

Enlargement and elaboration of many brain features occurred independently in the diapsid line leading to modern reptiles and birds and separately in the synapsid line leading to modern mammals. Within the diapsid line, birds, which arose from the archosaur line that includes crocodiles, show the most elaboration of a number of their brain structures. They have the greatest number of distinct thalamic nuclei, particularly for the visual and somatomotor systems, correspondingly expanded areas of the telencephalic pallium for sensory, motor, and associative areas; elaborated cerebellar and basal ganglia circuitry for motor control; and the “astrocytic” glial system. All of these features are also present in mammalian brains, independently gained.

Characteristics

Evolutionary Relations

The amniotes form three major groups: Anapsida, Synapsida, and Diapsida. Mammals are synapsids, whereas birds are diapsids, as well as the extant reptiles. Turtles were regarded formerly as...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Butler AB, Hodos W (2005) Vertebrate neuroanatomy. Evolution and adaption, 2nd edn. Wiley, New York

    Book  Google Scholar 

  2. Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (1997) The central nervous system of vertebrates. Springer, Heidelberg

    Google Scholar 

  3. Northcutt RG (1981) Evolution of the telencephalon in nonmammals. Annu Rev Neurosci 4:301–350

    Article  CAS  PubMed  Google Scholar 

  4. Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JLR (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, Tbr-1. J Comp Neurol 424:409–438

    Article  CAS  PubMed  Google Scholar 

  5. Ulinski PS (1983) The dorsal ventricular ridge: a treatise on forebrain organization in reptiles and birds. Wiley, New York

    Google Scholar 

  6. Székely AD (1999) The avian hippocampal formation: subdivisions and connectivity. Behav Brain Res 98:219–225

    Article  PubMed  Google Scholar 

  7. Atoji Y, Wild JM (2006) Anatomy of the avian hippocampal formation. Rev Neurosci 17:3–15

    Article  PubMed  Google Scholar 

  8. Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65

    Article  CAS  PubMed  Google Scholar 

  9. Smeets WJA, Marín O, González A (2000) Evolution of the basal ganglia: new perspectives through a comparative approach. J Anat 196:501–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wild JM, Williams MN (2000) Rostral Wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. J Comp Neurol 416:429–450

    Article  CAS  PubMed  Google Scholar 

  11. Wild JM, Farabaugh SM (1996) Organization of afferent and efferent projections of the nucleus basalis prosencephali in a passerine, Taeniopygia guttata. J Comp Neurol 365:306–328

    Article  CAS  PubMed  Google Scholar 

  12. Butler AB, Cotterill RMJ (2006) Mammalian and avian neuroanatomy and the question of consciousness in birds. Biol Bull 211:106–127

    Article  PubMed  Google Scholar 

  13. Butler AB, Manger PR, Lindahl IB, Århem P (2005) Evolution of the neural basis of consciousness: a bird-mammal comparison. Bioessays 27:923–936

    Article  PubMed  Google Scholar 

  14. Güntürkün O (1997) Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent in pigeons: functional similarities to the mammalian prefrontal cortex? J Hirnforsch 38:133–143

    PubMed  Google Scholar 

  15. Kálmán M (2002) GFAP expression withdraws – a trend of glial evolution? Brain Res Bull 57:509–511

    Article  PubMed  Google Scholar 

  16. Kálmán M, Pritz MB (2001) Glial fibrillary acidic protein-immunopositive structures in the brain of a crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. J Comp Neur 431:460–480

    Article  PubMed  Google Scholar 

  17. Romero-Alemann MM, Monzon-Mayor M, Yanes C, Lang D (2004) Radial glial cells, proliferating periventricular cells and microglia might contribute to successful structural repair in the cerebral cortex of the lizard Gallotia galloti. Exp Neurol 188:74–85

    Article  Google Scholar 

  18. Hasan SJ, Keirstead HS, Muir GD, Steeves JD (1993) Axonal regeneration contributes to repair of injured brainstem-spinal neurons in embryonic chick. J Neurosci 13:492–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alvarez-Buylla A (1990) Mechanism of neurogenesis in adult avian brain. Experientia 46:948–955

    Article  CAS  PubMed  Google Scholar 

  20. Font E, Desfillis E, Perez-Canellas MM, Garcia-Verdugo JM (2001) Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav Evol 58:276–295

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag GmbH Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kalman, M. (2009). Evolution of the Brain: At the Reptile-Bird Transition. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_3149

Download citation

Publish with us

Policies and ethics