Skip to main content

Monocytes and Macrophages in the Aged Lung and Heart

  • Reference work entry
  • First Online:
  • 68 Accesses

Abstract

Phagocytic mononuclear cells respond to tissue injury and infection with the upregulation of cell surface markers, the production of inflammatory and anti-microbial mediators, and through their early mobilization. These cells initiate and resolve inflammation as well as participate in tissue remodeling and repair. Within various tissues, including the heart and lung, cross-talk between epithelial and endothelial cells and macrophage/monocytes is critical for both maintaining the resting, steady-state, and in coordinating response to insult. Macrophages and monocytes display high functional plasticity, altering their phenotype and activity in response to changing conditions within their microenvironment.

A feature of advancing age is elevated basal levels of proinflammatory cytokines and other indicators of chronic inflammation, a phenomenon termed “inflamm-aging.” The accumulation of senescent cells within the tissues is the likely source of these inflammatory markers, as senescence, a state of irreversible inhibition of cell proliferation, results in alteration of the cellular secretory profile as well. This altered microenvironmental state affects the functionality of tissue resident macrophages and monocytes, skewing their responses to injury or infection. Cell-inherent age-associated alterations in functional potential are superimposed on these changes within the tissue milieu. Here we discuss the phagocytic mononuclear cell populations of two tissues, the heart and lungs, their origin, phenotypes, and function during the steady state and following insult and how advancing age impacts their function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aggarwal NR, King LS, D'Alessio FR (2014) Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 306:L709–L725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alber A, Howie SE, Wallace WA et al (2012) The role of macrophages in healing the wounded lung. Int J Exp Pathol 93:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoshiba K, Nagai A (2007) Chronic lung inflammation in aging mice. FEBS Lett 581:3512–3516

    Article  CAS  PubMed  Google Scholar 

  • Auffray C, Fogg DK, Narni-Mancinelli E et al (2009) CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 206:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain CC, Bravo-Blas A, Scott CL et al (2014) Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bain CC, Scott CL, Uronen-Hansson H et al (2013) Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 6:498–510

    Article  CAS  PubMed  Google Scholar 

  • Beurel E, Michalek SM, Jope RS (2010) Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol 31:24–31

    Article  CAS  PubMed  Google Scholar 

  • Biernacka A, Frangogiannis NG (2011) Aging and cardiac fibrosis. Aging Dis 2:158–173

    PubMed  PubMed Central  Google Scholar 

  • Boyd AR, Orihuela CJ (2011) Dysregulated inflammation as a risk factor for pneumonia in the elderly. Aging Dis 2:487–500

    PubMed  PubMed Central  Google Scholar 

  • Boyd AR, Shivshankar P, Jiang S et al (2012) Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Exp Gerontol 47:507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bujak M, Kweon HJ, Chatila K et al (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384–1392

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai D, Xaymardan M, Holm JM et al (2003) Age-associated impairment in TNF-alpha cardioprotection from myocardial infarction. Am J Physiol Heart Circ Physiol 285:H463–H469

    Article  CAS  PubMed  Google Scholar 

  • Calhoun C, Shivshankar P, Saker M et al (2016) Senescent cells contribute to the physiological remodeling of aged lungs. J Gerontol A Biol Sci Med Sci 71:153–160

    Article  CAS  PubMed  Google Scholar 

  • Canan CH, Gokhale NS, Carruthers B et al (2014) Characterization of lung inflammation and its impact on macrophage function in aging. J Leukoc Biol 96:473–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen W, Frangogiannis NG (2010) The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Fail Rev 15:415–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiao YA, Ramirez TA, Zamilpa R et al (2012) Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc Res 96:444–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilosi M, Carloni A, Rossi A et al (2013) Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 162:156–173

    Article  CAS  PubMed  Google Scholar 

  • Domingo-Gonzalez R, Moore BB (2013) Defective pulmonary innate immune responses post-stem cell transplantation; review and results from one model system. Front Immunol 4:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ducharme A, Frantz S, Aikawa M et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta P, Courties G, Wei Y et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epelman S, Lavine KJ, Beaudin AE et al (2014a) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epelman S, Lavine KJ, Randolph GJ (2014b) Origin and functions of tissue macrophages. Immunity 41:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epelman S, Liu PP, Mann DL (2015) Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 15:117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fallah MP, Chelvarajan RL, Garvy BA et al (2011) Role of phosphoinositide 3-kinase-Akt signaling pathway in the age-related cytokine dysregulation in splenic macrophages stimulated via TLR-2 or TLR-4 receptors. Mech Ageing Dev 132:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2006) The mechanistic basis of infarct healing. Antioxid Redox Signal 8:1907–1939

    Article  CAS  PubMed  Google Scholar 

  • Frangogiannis NG, Ren G, Dewald O et al (2005) Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111:2935–2942

    Article  CAS  PubMed  Google Scholar 

  • Frantz S, Hofmann U, Fraccarollo D et al (2013) Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J 27:871–881

    Article  CAS  PubMed  Google Scholar 

  • Freund A, Orjalo AV, Desprez PY et al (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier EL, Jakubzick C, Randolph GJ (2009) Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler Thromb Vasc Biol 29:1412–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier EL, Shay T, Miller J et al (2012) Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbings SL, Goyal R, Desch AN et al (2015) Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 126:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Guilliams M (2016) Tissue-resident macrophage ontogeny and homeostasis. Immunity 44:439–449

    Article  CAS  PubMed  Google Scholar 

  • Gosselin D, Link VM, Romanoski CE et al (2014) Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould KE, Taffet GE, Michael LH et al (2002) Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. Am J Physiol Heart Circ Physiol 282:H615–H621

    Article  CAS  PubMed  Google Scholar 

  • Guilliams M, De Kleer I, Henri S et al (2013) Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210:1977–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis G (2010) Too old to fight? Aging and its toll on innate immunity. Mol Oral Microbiol 25:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna RN, Carlin LM, Hubbeling HG et al (2011) The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 12:778–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harel-Adar T, Ben Mordechai T, Amsalem Y et al (2011) Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci U S A 108:1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto D, Chow A, Noizat C et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804

    Article  CAS  PubMed  Google Scholar 

  • Hearps AC, Martin GE, Angelovich TA et al (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875

    Article  CAS  PubMed  Google Scholar 

  • Heidt T, Courties G, Dutta P et al (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herold S, Mayer K, Lohmeyer J (2011) Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol 2:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hilgendorf I, Gerhardt LM, Tan TC et al (2014) Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res 114:1611–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinojosa CA, Akula Suresh Babu R, Rahman MM et al (2014) Elevated A20 contributes to age-dependent macrophage dysfunction in the lungs. Exp Gerontol 54:58–66

    Article  CAS  PubMed  Google Scholar 

  • Hinojosa E, Boyd AR, Orihuela CJ (2009) Age-associated inflammation and toll-like receptor dysfunction prime the lungs for pneumococcal pneumonia. J Infect Dis 200:546–554

    Article  CAS  PubMed  Google Scholar 

  • Hoeffel G, Chen J, Lavin Y et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoit BD, Gilpin EA, Henning H et al (1986) Myocardial infarction in young patients: an analysis by age subsets. Circulation 74:712–721

    Article  CAS  PubMed  Google Scholar 

  • Husberg C, Nygard S, Finsen AV et al (2008) Cytokine expression profiling of the myocardium reveals a role for CX3CL1 (fractalkine) in heart failure. J Mol Cell Cardiol 45:261–269

    Article  CAS  PubMed  Google Scholar 

  • Hussell T, Bell TJ (2014) Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14:81–93

    Article  CAS  PubMed  Google Scholar 

  • Ingersoll MA, Spanbroek R, Lottaz C et al (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115:e10–e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakubzick C, Gautier EL, Gibbings SL et al (2013) Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:599–610

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SJ, Ruckerl D, Cook PC et al (2011) Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaikita K, Hayasaki T, Okuma T et al (2004) Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol 165:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korf-Klingebiel M, Reboll MR, Klede S et al (2015) Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat Med 21:140–149

    Article  CAS  PubMed  Google Scholar 

  • Landsman L, Jung S (2007) Lung macrophages serve as obligatory intermediate between blood monocytes and alveolar macrophages. J Immunol 179:3488–3494

    Article  CAS  PubMed  Google Scholar 

  • Lavin Y, Winter D, Blecher-Gonen R et al (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavine KJ, Epelman S, Uchida K et al (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A 111:16029–16034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Varvel NH, Konerth ME et al (2010) CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. Am J Pathol 177:2549–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linge HM, Ochani K, Lin K et al (2015) Age-dependent alterations in the inflammatory response to pulmonary challenge. Immunol Res 63:209–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowery EM, Brubaker AL, Kuhlmann E et al (2013) The aging lung. Clin Interv Aging 8:1489–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lumeng CN (2016) Lung macrophage diversity and asthma. Ann Am Thorac Soc 13(Suppl 1):S31–S34

    PubMed  PubMed Central  Google Scholar 

  • Meyer KC, Rosenthal NS, Soergel P et al (1998) Neutrophils and low-grade inflammation in the seemingly normal aging human lung. Mech Ageing Dev 104:169–181

    Article  CAS  PubMed  Google Scholar 

  • Molawi K, Wolf Y, Kandalla PK et al (2014) Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med 211:2151–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nacu N, Luzina IG, Highsmith K et al (2008) Macrophages produce TGF-beta-induced (beta-ig-h3) following ingestion of apoptotic cells and regulate MMP14 levels and collagen turnover in fibroblasts. J Immunol 180:5036–5044

    Article  CAS  PubMed  Google Scholar 

  • Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nandan D, Camargo de Oliveira C, Moeenrezakhanlou A et al (2012) Myeloid cell IL-10 production in response to leishmania involves inactivation of glycogen synthase kinase-3beta downstream of phosphatidylinositol-3 kinase. J Immunol 188:367–378

    Article  CAS  PubMed  Google Scholar 

  • Nobili E, Salvado MD, Folkersen L et al (2012) Cysteinyl leukotriene signaling aggravates myocardial hypoxia in experimental atherosclerotic heart disease. PLoS One 7:e41786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel BV, Tatham KC, Wilson MR et al (2015) In vivo compartmental analysis of leukocytes in mouse lungs. Am J Physiol Lung Cell Mol Physiol 309:L639–L652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto AR, Godwin JW, Chandran A et al (2014) Age-related changes in tissue macrophages precede cardiac functional impairment. Aging (Albany NY) 6:399–413

    Article  Google Scholar 

  • Robb CT, Regan KH, Dorward DA et al (2016) Key mechanisms governing resolution of lung inflammation. Semin Immunopathol 38:425–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24:835–845

    Article  CAS  PubMed  Google Scholar 

  • Schultz JE, Witt SA, Nieman ML et al (1999) Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 104:709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  • Seidler S, Zimmermann HW, Bartneck M et al (2010) Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 11:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaykhiev R, Crystal RG (2013) Innate immunity and chronic obstructive pulmonary disease: a mini-review. Gerontology 59:481–489

    Article  CAS  PubMed  Google Scholar 

  • Shivshankar P, Boyd AR, Le Saux CJ et al (2011) Cellular senescence increases expression of bacterial ligands in the lungs and is positively correlated with increased susceptibility to pneumococcal pneumonia. Aging Cell 10:798–806

    Article  CAS  PubMed  Google Scholar 

  • Sikora E, Arendt T, Bennett M et al (2011) Impact of cellular senescence signature on ageing research. Ageing Res Rev 10:146–152

    Article  CAS  PubMed  Google Scholar 

  • Stout-Delgado HW, Vaughan SE, Shirali AC et al (2012) Impaired NLRP3 inflammasome function in elderly mice during influenza infection is rescued by treatment with nigericin. J Immunol 188:2815–2824

    Article  CAS  PubMed  Google Scholar 

  • Swirski FK, Robbins CS, Nahrendorf M (2016) Development and function of arterial and cardiac macrophages. Trends Immunol 37:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thom T, Haase N, Rosamond W et al (2006) Heart disease and stroke statistics–2006 update: a report from the American Heart Association statistics committee and stroke statistics subcommittee. Circulation 113:e85–151

    PubMed  Google Scholar 

  • Toapanta FR, Ross TM (2009) Impaired immune responses in the lungs of aged mice following influenza infection. Respir Res 10:112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Troidl C, Mollmann H, Nef H et al (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujioka H, Imanishi T, Ikejima H et al (2009) Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54:130–138

    Article  PubMed  Google Scholar 

  • van Amerongen MJ, Harmsen MC, van Rooijen N et al (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van der Laan AM, Ter Horst EN, Delewi R et al (2014) Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur Heart J 35:376–385

    Article  PubMed  CAS  Google Scholar 

  • Wan E, Yeap XY, Dehn S et al (2013) Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction. Circ Res 113:1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Brown J, Martin M (2011) Glycogen synthase kinase 3: a point of convergence for the host inflammatory response. Cytokine 53:130–140

    Article  CAS  PubMed  Google Scholar 

  • Weidenbusch M, Anders HJ (2012) Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. J Innate Immun 4:463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xaymardan M, Zheng J, Duignan I et al (2004) Senescent impairment in synergistic cytokine pathways that provide rapid cardioprotection in the rat heart. J Exp Med 199:797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J, Schmidt SV, Sander J et al (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabluchanskiy A, Ma Y, DeLeon-Pennell KY et al (2016) Myocardial infarction superimposed on aging: MMP-9 deletion promotes M2 macrophage polarization. J Gerontol A Biol Sci Med Sci 71:475–483

    Article  CAS  PubMed  Google Scholar 

  • Yan D, Wang X, Li D et al (2013) Macrophages overexpressing VEGF target to infarcted myocardium and improve neovascularization and cardiac function. Int J Cardiol 164:334–338

    Article  PubMed  Google Scholar 

  • Yona S, Kim KW, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Force T (2013) Focusing the spotlight on GSK-3 in aging. Aging (Albany NY) 5:388–389

    Article  Google Scholar 

  • Zhou J, Freeman TA, Ahmad F et al (2013) GSK-3alpha is a central regulator of age-related pathologies in mice. J Clin Invest 123:1821–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zigmond E, Jung S (2013) Intestinal macrophages: well educated exceptions from the rule. Trends Immunol 34:162–168

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis-Jean Linton .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thoman, M., Bray, W., Linton, PJ. (2019). Monocytes and Macrophages in the Aged Lung and Heart. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-99375-1_94

Download citation

Publish with us

Policies and ethics