Skip to main content

Wetland Ecosystems and Marine Sustainability

  • Reference work entry
  • First Online:
Life Below Water

Part of the book series: Encyclopedia of the UN Sustainable Development Goals ((ENUNSDG))

  • 83 Accesses

Synonyms

Alluvial plain; Floodplain; Mangrove swamp; Riparian corridor; Salt marsh; Seagrass meadow; Tidal freshwater wetland

Definitions

The sustainability of marine ecosystems is partially dependent upon riverine systems that are hydrologically connected with adjacent wetlands. This lateral connectivity provides a protective buffer for the river and improves the river’s ability to sequester and transform nutrients along its path; this is known as the river’s processing length. Well-connected river systems moderate the nutrient load on downstream ecosystems. Channelized and impounded rivers may deliver excess nutrients and contaminants to offshore ecosystems, potentially promoting eutrophication, oxygen minimum zones (OMZs), and harmful algal blooms (HABs).

Riverine wetlands provide important habitat for diadromous species that migrate between freshwater and saltwater. Estuarine and marine wetlands include mangrove swamps, salt marshes, and seagrass meadows. These ecosystems provide nu...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This encyclopedia includes no entries for X, Y and Z.

References

  • Adame MF, Lovelock CE (2011) Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663(1):23–50

    Article  CAS  Google Scholar 

  • Allison G (2004) The influence of species diversity and stress intensity on community resistance and resilience. Ecol Monogr 74(1):117–134

    Article  Google Scholar 

  • Barbier EB (2019) The value of coastal wetland ecosystem services. In: Perillo G, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal wetlands: an integrated ecosystem approach, 2nd edn. Elsevier, Amsterdam, pp 947–964

    Chapter  Google Scholar 

  • Barendregt A, Swarth CW (2013) Tidal freshwater wetlands: variation and changes. Estuar Coasts 36(3):445–456

    Article  CAS  Google Scholar 

  • Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344(6179):1242552

    Article  CAS  Google Scholar 

  • Best J (2019) Anthropogenic stresses on the world’s big rivers. Nat Geosci 12(1):7–21

    Article  CAS  Google Scholar 

  • Beusen AH, Bouwman AF, Van Beek LP et al (2016) Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441–2451

    Article  CAS  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A et al (2018) Declining oxygen in the global ocean and coastal waters. Science 359(6371):eaam7240

    Article  CAS  Google Scholar 

  • Bricker SB, Longstaff B, Dennison W et al (2007) Effects of nutrient enrichment in the Nation’s estuaries: a decade of change, NOAA Coastal Ocean program decision analysis series. National Centers for Coastal Ocean Science, Silver Spring

    Google Scholar 

  • Carpenter SR, Stanley EH, Vander Zanden MJ (2011) State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour 36:75–99

    Article  Google Scholar 

  • Chmura GL, Burdick DM, Moore GE (2012) Recovering salt marsh ecosystem services through tidal restoration. In: Roman CT, Burdick DM (eds) Tidal marsh restoration: a synthesis of science and management. Island Press, Washington, DC, pp 233–251

    Chapter  Google Scholar 

  • Costa-Dias S, Sousa R, Lobón-Cerviá J et al (2009) The decline of diadromous fish in Western Europe inland waters: main causes and consequences. In: McManus NF, Bellinghouse DS (eds) Fisheries: management, economics and perspectives. Nova Science Publishers, New York, pp 67–92

    Google Scholar 

  • Costanza R, d’Arge R, De Groot R et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387(6630):253–260

    Article  CAS  Google Scholar 

  • Covino T (2017) Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology 277:133–144

    Article  Google Scholar 

  • Cowardin LM, Carter V, Golet FC et al (1979) Classification of wetlands and Deepwater habitats of the United States, Federal Government Series; FWS/OBS, vol 79/31. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, pp 1–142

    Book  Google Scholar 

  • Cullen-Unsworth L, Unsworth R (2013) Seagrass meadows, ecosystem services, and sustainability. Environ Sci Policy Sustain Dev 55(3):14–28

    Article  Google Scholar 

  • de Bettencourt AMM, Neves RJJ, Lança MJ et al (1995) Uncertainties in import/export studies and the outwelling theory: an analysis with the support of hydrodynamic modelling. Oceanogr Lit Rev 9(42):734–735

    Google Scholar 

  • Duarte CM, Dennison WC, Orth RJ et al (2008) The charisma of coastal ecosystems: addressing the imbalance. Estuar Coasts 31(2):233–238

    Article  Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE et al (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968

    Article  CAS  Google Scholar 

  • Duarte B, Vaz N, Valentim JM et al (2017) Revisiting the outwelling hypothesis: modelling salt marsh detrital metal exports under extreme climatic events. Mar Chem 191:24–33

    Article  CAS  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev Camb Philos Soc 81:163–338

    Article  Google Scholar 

  • Fisher SG, Grimm NB, Martí E et al (1998) Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems 1(1):19–34

    Article  CAS  Google Scholar 

  • Fu FX, Tatters AO, Hutchins DA (2012) Global change and the future of harmful algal blooms in the ocean. Mar Ecol Prog Ser 470:207–233

    Article  CAS  Google Scholar 

  • Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 1:117–141

    Article  Google Scholar 

  • Gillis LG, Jones CG, Ziegler AD et al (2017) Opportunities for protecting and restoring tropical coastal ecosystems by utilizing a physical connectivity approach. Front Mar Sci 4:374

    Article  Google Scholar 

  • Gilly WF, Beman JM, Litvin SY et al (2013) Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu Rev Mar Sci 5:393–420

    Article  Google Scholar 

  • Hallegraeff GM (2003) Harmful algal blooms: a global overview. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae, 2nd edn. UNESCO Publishing, Landais, pp 1–22

    Google Scholar 

  • Herlihy AT, Paulsen SG, Kentula ME et al (2019) Assessing the relative and attributable risk of stressors to wetland condition across the conterminous United States. Environ Monit Assess 191(1):320

    Article  CAS  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Holmer M (2019) Productivity and biogeochemical cycling in seagrass ecosystems. In: Perillo G, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal wetlands: an integrated ecosystem approach, 2nd edn. Elsevier, Amsterdam, pp 443–477

    Chapter  Google Scholar 

  • Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29(2):253–268

    Article  Google Scholar 

  • Hopkinson CS, Wolanski E, Cahoon DR et al (2019) Coastal wetlands: a synthesis. In: Perillo G, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal wetlands: an integrated ecosystem approach, 2nd edn. Elsevier, Amsterdam, pp 1–75

    Google Scholar 

  • Howarth R, Chan F, DJ C et al (2011) Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and marine ecosystems. Frontiers is Ecology and the Environment 9(1):18–26

    Article  Google Scholar 

  • Huxham M, Dencer-Brown A, Diele K et al (2017) Mangroves and people: local ecosystem services in a changing climate. In: Rivera-Monroy VH, Lee SY, Kristensen E, Twilley RR (eds) Mangrove ecosystems: a global biogeographic perspective. Springer, Cham, pp 245–274

    Chapter  Google Scholar 

  • Kathiresan K (2012) Importance of mangrove ecosystem. International Journal of Marine Science 2(10):70–89

    Google Scholar 

  • Kjerfve B, Macintosh DJ (1997) Climate change impacts on mangrove ecosystems. In: Kjerfve B, Lacerda LD, Diop S (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, pp 1–7

    Google Scholar 

  • Kuenzer C, Bluemel A, Gebhardt S et al (2011) Remote sensing of mangrove ecosystems: a review. Remote Sens 3(5):878–928

    Article  Google Scholar 

  • Lee SY (1995) Mangrove outwelling: a review. Hydrobiologia 295(1–3):203–212

    Article  Google Scholar 

  • Lewontin RC (1969) The meaning of stability. Brookhaven Symp Biol 22:13–23

    CAS  Google Scholar 

  • Limburg KE, Waldman JR (2009) Dramatic declines in North Atlantic diadromous fishes. Bioscience 59(11):955–965

    Article  Google Scholar 

  • Liquete C, Piroddi C, Drakou EG et al (2013) Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS One 8(7):e67737

    Article  CAS  Google Scholar 

  • Mazumder D, Saintilan N, Williams RJ (2009) Zooplankton inputs and outputs in the saltmarsh at Towra Point, Australia. Wetlands Ecology & Management 17:225–230

    Article  Google Scholar 

  • MEA (2005) Millennium ecosystem assessment: ecosystems and human well-being. Island Press, Washington, DC

    Google Scholar 

  • Megonigal JP, Neubauer SC (2019) Biogeochemistry of tidal freshwater wetlands. In: Perillo G, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal wetlands: an integrated ecosystem approach, 2nd edn. Elsevier, Amsterdam, pp 641–683

    Chapter  Google Scholar 

  • Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean: a global synthesis. Cambridge University Press, Cambridge, pp 13–69

    Book  Google Scholar 

  • Mitsch WJ, Gosselink JG (2015) Wetlands, 5th edn. Wiley, New York, pp 111–258

    Google Scholar 

  • Morais P, Daverat F (eds) (2016) An introduction to fish migration. CRC Press, Boca Raton, pp 3–19

    Book  Google Scholar 

  • Naiman RJ, Décamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier, Amsterdam, pp 19–48

    Book  Google Scholar 

  • Najibi N, Devineni N (2018) Recent trends in the frequency and duration of global floods. Earth Syst Dynam 9:757–783

    Article  Google Scholar 

  • Neubauer SC, Craft CB (2009) Global change and tidal freshwater wetlands: scenarios and impacts. In: Barendregt A, Whigham DF, Baldwin AH (eds) Tidal freshwater wetlands. Backhuys Publishers, Leiden, pp 253–266

    Google Scholar 

  • Newcomer Johnson TA, Kaushal SS, Mayer PM et al (2016) Nutrient retention in restored streams and rivers: a global review and synthesis. Water 8(4):116–144

    Article  CAS  Google Scholar 

  • Odum EP (1980) The status of three ecosystem-level hypotheses regarding salt marsh estuaries: tidal subsidy, outwelling, and detritus-based food chains. In: Kennedy VS (ed) Estuarine Perspectives. Academic Press, New York, pp 485–495

    Chapter  Google Scholar 

  • Odum EP (1985) Trends expected in stressed ecosystems. Bioscience 35(7):419–422

    Article  Google Scholar 

  • Odum WE, Smith TJ, Hoover JK et al (1984) The ecology of tidal freshwater marshes of the United States east coast; a community profile, FWS/OBS-83-17. US Fish and Wildlife Service, Washington, DC, pp 1–177

    Google Scholar 

  • Oelsner GP, Stets EG (2019) Recent trends in nutrient and sediment loading to coastal areas of the conterminous US: insights and global context. Sci Total Environ 654:1225–1240

    Article  CAS  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L et al (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5(4):e10095

    Article  CAS  Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA et al (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Ramsar Convention (2018) Scaling up wetland conservation, wise use and restoration to achieve the Sustainable Development Goals. A Report of the Ramsar Convention on Wetlands, July 2018

    Google Scholar 

  • Renzi JJ, He Q, Silliman BR (2019) Harnessing positive species interactions to enhance coastal wetland restoration. Front Ecol Evol 7(131):1–14

    Google Scholar 

  • Riis T, Kelly-Quinn M, Aguiar FC et al (2020) Global overview of ecosystem services provided by riparian vegetation. Bioscience 70(6):501–514

    Article  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA et al (2001) Catastrophic shifts in ecosystems. Nature 413(6856):591–596

    Article  CAS  Google Scholar 

  • Schneider C, Flörke M, Stefano LD, Petersen-Perlman JD (2017) Hydrological threats to riparian wetlands of international importance–a global quantitative and qualitative analysis. Hydrol Earth Syst Sci 21(6):2799–2815

    Article  Google Scholar 

  • Seifollahi-Aghmiuni S, Nockrach M, Kalantari Z (2019) The potential of wetlands in achieving the sustainable development goals of the 2030 Agenda. Water 11(3):609–623

    Article  Google Scholar 

  • Seitzinger SP, Mayorga E, Bouwman AF et al (2010) Global river nutrient export: a scenario analysis of past and future trends. Glob Biogeochem Cycles 24(4):GB0A08

    Google Scholar 

  • Sharples J, Middelburg J, Fennel K, Jickells T (2017) What proportion of riverine nutrients reaches the open ocean? Glob Biogeochem Cycles 31(1):39–58

    Article  CAS  Google Scholar 

  • Solé L, Ariza E (2019) A wider view of assessments of ecosystem services in coastal areas. Ecol Soc 24(2):24–43

    Article  Google Scholar 

  • Spencer T, Schuerch M, Nicholls RJ et al (2016) Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. Glob Planet Chang 139:15–30

    Article  Google Scholar 

  • Terrados J, Borum J (2004) Why are seagrasses important? Goods and services provided by seagrass meadows. In: Borum J, Duarte C, Krause-Jensen D, Greve T (eds) European seagrasses: an introduction to monitoring and management. Monitoring and Managing of European Seagrasses Project, pp 8–10

    Google Scholar 

  • Tiner R (2017) Wetland indicators. CRC Press, Boca Raton, pp 1–62

    Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Article  Google Scholar 

  • Turner RK, Georgiou S, Fisher B (2008) Valuing ecosystem services: the case of multi-functional wetlands. Routledge, New York, pp 1–240

    Google Scholar 

  • Van de Koppel J, van der Heide T, Altieri AH et al (2015) Long-distance interactions regulate the structure and resilience of coastal ecosystems. Annu Rev Mar Sci 7:139–158

    Article  Google Scholar 

  • Van Looy K, Tormos T, Souchon Y et al (2017) Analyzing riparian zone ecosystem services bundles to instruct river management. Int J Biodivers Sci Ecosyst Serv Manag 13(1):330–341

    Article  Google Scholar 

  • Footnote

    This encyclopedia includes no entries for X, Y and Z.

    Visser JM, Midway S, Baltz DM et al (2019) Ecosystem structure of tidal saline marshes. In: Perillo G, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal wetlands: an integrated ecosystem approach, 2nd edn. Elsevier, Amsterdam, pp 519–538

    Chapter  Google Scholar 

  • Webster JR, Patten BC (1979) Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol Monogr 49(1):51–72

    Article  CAS  Google Scholar 

  • Whigham DF, Baldwin AH, Barendregt A (2019) Tidal freshwater wetlands. In: Perillo G, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal wetlands: an integrated ecosystem approach, 2nd edn. Elsevier, Amsterdam, pp 619–640

    Chapter  Google Scholar 

  • Whitfield AK (2017) The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev Fish Biol Fish 27(1):75–110

    Article  Google Scholar 

  • Wurtsbaugh WA, Paerl HW, Dodds WK (2019) Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdiscip Rev Water 6(5):e1373

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas J. Spieles .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Spieles, D.J. (2022). Wetland Ecosystems and Marine Sustainability. In: Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T. (eds) Life Below Water. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-98536-7_124

Download citation

Publish with us

Policies and ethics