Skip to main content

Hormones and Cerebellar Development

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders
  • 179 Accesses

Abstract

Cerebellar development and plasticity involve various epigenetic processes that activate specific genes at different time points, including humoral influences from endocrine cells. Of the circulating hormones, a group of small lipophilic hormones including steroids (corticosteroids, progesterone, androgens, and estrogens) and thyroid hormones help mediate environmental influences on the cerebellum. Receptors for such lipophilic hormones are mainly located inside the cell nucleus (nuclear receptor, NR). They represent the largest family of ligand-regulated transcription factors. In the cerebellum, they are expressed in a specific temporal and spatial pattern. Of the lipophilic hormones, the impact of the thyroid hormone and gonadal steroids on cerebellar development has been studied extensively. Thyroid hormone deficiency during postnatal development results in abnormal morphogenesis and functional impairment. Estrogen and progesterone also play important roles in this process. In addition to the supply from circulation, several gonadal steroids are produced locally within the Purkinje cells (neurosteroids). This chapter discusses the effect of thyroid and steroid hormones on cerebellar development. Neurosteroids that are locally synthesized in the cerebellum are discussed in a different chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abel ED, Boers ME, Pazos-Moura C et al (1999) Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 104:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aden P, Goverud I, Liestøl K et al (2008) Low-potency glucocorticoid hydrocortisone has similar neurotoxic effects as high-potency glucocorticoid dexamethasone on neurons in the immature chicken cerebellum. Brain Res 1236:39–48

    Article  CAS  PubMed  Google Scholar 

  • Ahlbom E, Gogvadze V, Chen M et al (2000) Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Proc Natl Acad Sci U S A 97:14726–14730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlbom E, Prins GS, Ceccatelli S (2001) Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Res 892:255–262

    Article  CAS  PubMed  Google Scholar 

  • Amano I, Takatsuru Y, Khairinisa MA et al (2018) Effects of mild perinatal hypothyroidism on cognitive function of adult male offspring. Endocrinology 159:1910–1921

    Article  CAS  PubMed  Google Scholar 

  • Bakker J, Brock O (2010) Early oestrogens in shaping reproductive networks: evidence for a potential organisational role of oestradiol in female brain development. J Neuroendocrinol 22:728–735

    CAS  PubMed  Google Scholar 

  • Balázs R, Brooksbandk BWL et al (1971) Incorporation of [35S] sulfate into brain constituents during development and the effects of thyroid hormone on myelination. Brain Res 30:273–293

    Article  PubMed  Google Scholar 

  • Baldaçara L, Borgio JG, Lacerda AL et al (2008) Cerebellum and psychiatric disorders. Rev Bras Psiquiatr 30:281–289

    Article  PubMed  Google Scholar 

  • Bates JM, St Germain DL, Galton VA (1999) Expression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology 140:844–851

    Article  CAS  PubMed  Google Scholar 

  • Belcher SM (2008) Rapid signaling mechanisms of estrogens in the developing cerebellum. Brain Res Rev 57:481–492

    Article  CAS  PubMed  Google Scholar 

  • Belcher SM, Le HH, Spurling L et al (2005) Rapid estrogenic regulation of extracellular signal- regulated kinase 1/2 signaling in cerebellar granule cells involves a G protein- and protein kinase A-dependent mechanism and intracellular activation of protein phosphatase 2A. Endocrinology 146:5397–5406

    Article  CAS  PubMed  Google Scholar 

  • Bernal J (2005) The significance of thyroid hormone transporter in the brain. Endocrinology 46:1698–1700

    Article  CAS  Google Scholar 

  • Biamonte F, Assenza G, Marino R et al (2009) Interactions between neuroactive steroids and reelin haploinsufficiency in Purkinje cell survival. Neurobiol Dis 36:103–115

    Article  CAS  PubMed  Google Scholar 

  • Bohn MC, Lauder JM (1980) Cerebellar granule cell genesis in the hydrocortisone-treated rats. Dev Neurosci 3:81–89

    Article  CAS  PubMed  Google Scholar 

  • Bookout AL, Jeong Y, Downes M et al (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126:789–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley DJ, Towle HC, Young WS (1992) Spatial and temporal expression of α- and β-thyroid hormone receptor mRNAs, including the β2-subtype, in the developing mammalian nervous system. J Neurosci 12:2288–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo R, Obregón MJ, Ruiz de Oña C et al (1990) Congenital hypothyroidism, as studied in rats. J Clin Invest 86:889–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassande O (2003) Do unliganded thyroid hormone receptors have physiological functions? J Mol Endocrinol 31:9–20

    Article  CAS  PubMed  Google Scholar 

  • Daré E, Götz ME, Zhivotovsky B et al (2000) Antioxidants J811 and 17beta-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death. J Neurosci Res 62:557–565

    Article  PubMed  Google Scholar 

  • Darras VM (2008) Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone signaling in the developing brain. Cerebellum 7:26–37

    Article  CAS  PubMed  Google Scholar 

  • Dean SL, McCarthy MM (2008) Steroids, sex and the cerebellar cortex: implications for human disease. Cerebellum 7:38–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Wade M, Williams A et al (2005) Molecular insight into the effects of hypothyroidism on the developing cerebellum. Biochem Biophys Res Commun 330:1182–1193

    Article  CAS  PubMed  Google Scholar 

  • Dumitrescu AM, Liao XH, Best TB et al (2004) A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74:168–175

    Article  CAS  PubMed  Google Scholar 

  • Evanson NK, Herman JP, Sakai RR et al (2010) Nongenomic actions of adrenal steroids in the central nervous system. J Neuroendocrinol 22:846–861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Xu H, Warner M et al (2010) ERbeta in CNS: new roles in development and function. Prog Brain Res 181:233–250

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH (2001) Reelin mutations in mouse and man: from reeler mouse to schizophrenia, mood disorders, autism and lissencephaly. Mol Psychiatry 6:129–133

    Article  CAS  PubMed  Google Scholar 

  • Fauquier T, Romero E, Picou F et al (2011) Severe impairment of cerebellum development in mice expressing a dominant-negative mutation inactivating thyroid hormone receptor alpha1 isoform. Dev Biol 356:350–358

    Article  CAS  PubMed  Google Scholar 

  • Fauquier T, Chatonnet F, Picou F et al (2014) Purkinje cells and Bergmann glia are primary targets of the TRα1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 141:166–175

    Article  CAS  PubMed  Google Scholar 

  • Forger NG, Strahan JA, Castillo-Ruiz A (2016) Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 40:67–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest D, Erway LC, Ng L et al (1996) Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13:354–357

    Article  CAS  PubMed  Google Scholar 

  • Fraichard A, Chassande O, Plateroti M et al (1997) The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 16:4412–4420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frye CA (2001) The role of neurosteroids and non-genomic effects of progestins and androgens in mediating sexual receptivity of rodents. Brain Res Rev 37:201–222

    Article  CAS  PubMed  Google Scholar 

  • Gagne R, Green JR, Dong H et al (2013) Identification of thyroid hormone receptor binding sites in developing mouse cerebellum. BMC Genomics 14:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garabedian MJ, Harris CA, Jeanneteau F (2017) Glucocorticoid receptor action in metabolic and neuronal function. F1000Res 6:1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauthier K, Chassande O, Plateroti M et al (1999) Different functions for the thyroid hormone receptors TRα and TRβ in the control of thyroid hormone production and post-natal development. EMBO J 18:623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier K, Plateroti M, Harvey CB et al (2001) Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol 21:4748–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JM, Link BG (1988) Gender and the expression of schizophrenia. J Psychiatr Res 22:141–155

    Article  CAS  PubMed  Google Scholar 

  • Göthe S, Wang Z, Ng L et al (1999) Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 13:1329–1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottfried-Blackmore A, Croft G, McEwen BS et al (2007) Transcriptional activity of estrogen receptors ERα and ERβ in the EtC.1 cerebellar granule cell line. Brain Res 1186:41–47

    Article  CAS  PubMed  Google Scholar 

  • Guadaño-Ferraz A, Obregón MJ, St Germain DL et al (1997) The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A 94:10391–10396

    Article  PubMed  PubMed Central  Google Scholar 

  • Guadaño-Ferraz A, Benavides-Piccione R, Venero C et al (2003) Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8:30–38

    Article  PubMed  CAS  Google Scholar 

  • Hajós F, Patel AJ, Balázs R (1973) Effect of thyroid deficiency on the synaptic organization of the rat cerebellar cortex. Brain Res 50:387–401

    Article  PubMed  Google Scholar 

  • Hashimoto K, Curty FH, Borges PP et al (2001) An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci U S A 98:3998–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hazell GG, Yao ST, Roper JA et al (2009) Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 202:223–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J et al (2011a) Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced Purkinje cell dendrite arborization by polybrominated diphenyl ethers. Environ Health Perspect 119:168–175

    Article  CAS  PubMed  Google Scholar 

  • Ibhazehiebo K, Iwasaki T, Xu M et al (2011b) Brain-derived neurotrophic factor (BDNF) ameliorates the suppression of thyroid hormone-induced granule cell neurite extension by hexabromocyclododecane (HBCD). Neurosci Lett 493:1–7

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Nagai A (2006) Differential expression of the estrogen receptors alpha and beta during postnatal development of the rat cerebellum. Brain Res 1083:39–49

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Nagai A, Ikeda MA et al (2003) Sexually dimorphic and estrogen-dependent expression of estrogen receptor beta in the ventromedial hypothalamus during rat postnatal development. Endocrinology 144:5098–5104

    Article  CAS  PubMed  Google Scholar 

  • Jakab RL, Wong JK, Belcher SM (2001) Estrogen receptor-ß immunoreactivity in differentiating cells of the developing rat cerebellum. J Comp Neurol 430:396–409

    Article  CAS  PubMed  Google Scholar 

  • Kelly MJ, Qiu J (2010) Estrogen signaling in hypothalamic circuits controlling reproduction. Brain Res 1364:44–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kester MH, Martinez de Mena R, Obregon MJ et al (2004) Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab 89:3117–3128

    Article  CAS  PubMed  Google Scholar 

  • Khairinisa MA, Takatsuru Y, Amano I et al (2018) In utero and postnatal propylthiouracil-induced mild hypothyroidism impairs maternal behavior in mice. Front Endocrinol 9:228

    Article  Google Scholar 

  • Knickmeyer RC, Baron-Cohen S (2006) Fetal testosterone and sex differences in typical social development and in autism. J Child Neurol 21:825–845

    Article  PubMed  Google Scholar 

  • Koibuchi N (2009) Animal models to study thyroid hormone action in cerebellum. Cerebellum 8:89–97

    Article  CAS  PubMed  Google Scholar 

  • Koibuchi N, Yamaoka S, Chin WW (2001) Effects of altered thyroid status in neurotrophin gene expression during postnatal development of the mouse cerebellum. Thyroid 11:205–210

    Article  CAS  PubMed  Google Scholar 

  • Koibuchi N, Jingu H, Iwasaki T et al (2003) Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2:279–289

    Article  CAS  PubMed  Google Scholar 

  • Koopman P, Gubbay J, Vivian N et al (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121

    Article  CAS  PubMed  Google Scholar 

  • Kudwa AE, Michopoulos V, Gatewood JD et al (2006) Roles of estrogen receptors alpha and beta in differentiation of mouse sexual behavior. Neuroscience 138:921–928

    Article  CAS  PubMed  Google Scholar 

  • Lavaque E, Mayen A, Azcoitia I et al (2006) Sex differences, developmental changes, response to injury and cAMP regulation of the mRNA levels of steroidogenic acute regulatory protein, cytochrome p450scc, and aromatase in the olivocerebellar system. J Neurobiol 66:308–318

    Article  CAS  PubMed  Google Scholar 

  • Lawson A, Ahima RS, Krozowski Z et al (1992) Postnatal development of corticosteroid receptor immunoreactivity in the rat cerebellum and brain stem. Neuroendocrinology 55:695–707

    Article  CAS  PubMed  Google Scholar 

  • Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193

    CAS  PubMed  Google Scholar 

  • Lenz KM, McCarthy MM (2010) Organized for sex – steroid hormones and the developing hypothalamus. Eur J Neurosci 32:2096–2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Leonard JL (2007) Non-genomic actions of thyroid hormone in brain development. Steroids 73:1008–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leto K, Arancillo M, Becker EB et al (2016) Consensus paper: cerebellar development. Cerebellum 15:789–828

    Article  PubMed  Google Scholar 

  • Liu L, Kim H, Casta A et al (2014) Hairless is a histone H3K9 demethylase. FASEB J 28:1534–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llorente R, Gallardo ML, Berzal AL et al (2009) Early maternal deprivation in rats induces gender-dependent effects on developing hippocampal and cerebellar cells. Int J Dev Neurosci 27:233–2341

    Article  CAS  PubMed  Google Scholar 

  • Macchia PE, Takeuchi Y, Kawai T et al (2001) Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor alpha. Proc Natl Acad Sci U S A 98:349–354

    CAS  PubMed  Google Scholar 

  • Malaeb SN, Stonestreet BS (2014) Steroids and injury to the developing brain: net harm or net benefit? Clin Perinatol 41:191–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin LA, Goldowitz D, Mittleman G (2010) Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci 31:544–555

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez de Arrieta C, Koibuchi N, Chin WW (2000) Coactivator and corepressor gene expression in rat cerebellum during postnatal development and the effect of altered thyroid status. Endocrinology 141:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Messer A, Maskin P, Snodgrass GL (1984) Effects of triiodothyronine (T3) on the development of rat cerebellar cells in culture. Int J Dev Neurosci 2:277–285

    Article  CAS  PubMed  Google Scholar 

  • Miñano A, Cerbón MA, Xifró X (2007) 17beta-estradiol does not protect cerebellar granule cells from excitotoxicity or apoptosis. J Neurochem 102:354–364

    Article  PubMed  CAS  Google Scholar 

  • Morte B, Manzano J, Scanlan T et al (2002) Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci U S A 99:3985–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morte B, Manzano J, Scanlan TS et al (2004) Aberrant maturation of astrocytes in thyroid hormone receptor alpha 1 knockout mice reveals an interplay between thyroid hormone receptor isoforms. Endocrinology 145:1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Ng L, Hurley JB, Dierks B et al (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94–98

    Article  CAS  PubMed  Google Scholar 

  • Nguon K, Ladd B, Baxter MG et al (2005) Sexual dimorphism in cerebellar structure, function, and response to environmental perturbations. Prog Brain Res 148:199–212

    Article  Google Scholar 

  • Nicholson JL, Altman J (1972a) The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res 44:25–36

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JL, Altman J (1972b) Synaptogenesis in the rat cerebellum: effects of early hypo- and hyperthyroidism. Science 176:530–532

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JL, Altman J (1972c) The effects of early hypo- and hyperthyroidism on development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res 44:13–23

    Article  CAS  PubMed  Google Scholar 

  • Nishihara E (2008) An overview of nuclear receptor coregulators involved in cerebellar development. Cerebellum 7:48–59

    Article  CAS  PubMed  Google Scholar 

  • Nishihara E, Yoshida-Komiya H, Chan CS et al (2003) SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci 23:213–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi KK, Walls KC, Wozniak DF et al (2008) Acute neonatal glucocorticoid exposure produces selective and rapid cerebellar neural progenitor cell apoptotic death. Cell Death Differ 15:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE (2014) Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 10:582–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters RP, Hernandez A, Ng L et al (2013) Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1. Endocrinology 154:550–561

    Article  CAS  PubMed  Google Scholar 

  • Poguet AL, Legrand C, Feng X et al (2003) Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev Biol 254:188–199

    Article  CAS  PubMed  Google Scholar 

  • Potter GB, Zarach JM, Sisk JM, Thompson CC (2002) The thyroid hormone-regulated corepressor hairless associates with histone deacetylases in neonatal rat brain. Mol Endocrinol 16:2547–2560

    Article  CAS  PubMed  Google Scholar 

  • Prager EM, Johnson LR (2009) Stress at the synapse: signal transduction mechanisms of adrenal steroids at neuronal membranes. Sci Signal 2:re5

    Article  PubMed  Google Scholar 

  • Qin J, Suh JM, Kim BJ et al (2007) The expression pattern of nuclear receptors during cerebellar development. Dev Dyn 236:810–820

    Article  CAS  PubMed  Google Scholar 

  • Qiu C-H, Shimokawa N, Iwasaki T et al (2007) Alteration of cerebellar neurotrophin messenger ribonucleic acids and the lack of thyroid hormone receptor augmentation by staggerer- type retinoic acid receptor-related orphan receptor-α mutation. Endocrinology 148:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Qiu C-H, Miyazaki W, Iwasaki T et al (2009) Retinoic Acid receptor-related orphan receptor alpha-enhanced thyroid hormone receptor-mediated transcription requires its ligand binding domain which is not, by itself, sufficient: possible direct interaction of two receptors. Thyroid 19:893–898

    Article  CAS  PubMed  Google Scholar 

  • Rashid S, Lewis GF (2005) The mechanisms of differential glucocorticoid and mineralocorticoid action in the brain and peripheral tissues. Clin Biochem 38:401–409

    Article  CAS  PubMed  Google Scholar 

  • Raz L, Khan MM, Mahesh VB et al (2008) Rapid estrogen signaling in the brain. Neurosignals 16:140–153

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal- dependent programs of transcriptional response. Genes Dev 20:1405–1428

    Article  CAS  PubMed  Google Scholar 

  • Rugerio-Vargas C, Ramírez-Escoto M, DelaRosa-Rugerio C et al (2007) Prenatal corticosterone influences the trajectory of neuronal development, delaying or accelerating aspects of the Purkinje cell differentiation. Histol Histopathol 22:963–969

    CAS  PubMed  Google Scholar 

  • Sakamoto H, Mezaki Y, Shikimi H et al (2003) Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinology 144:4466–4477

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Ukena K, Kawata M et al (2008) Expression, localization and possible actions of 25-Dx, a membrane-associated putative progesterone-binding protein, in the developing Purkinje cell of the cerebellum: a new insight into the biosynthesis, metabolism and multiple actions of progesterone as a neurosteroid. Cerebellum 7:18–25

    Article  CAS  PubMed  Google Scholar 

  • Saltó C, Kindblom JM, Johansson C et al (2001) Ablation of TRα2 and a concomitant overexpression of alpha1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol Endocrinol 15:2115–2128

    PubMed  Google Scholar 

  • Sandhofer C, Schwartz HL, Mariash CN et al (1998) Beta receptor isoforms are not essential for thyroid hormone-dependent acceleration of PCP-2 and myelin basic protein gene expression in the developing brains of neonatal mice. Mol Cell Endocrinol 137:109–115

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Abe T (2008) Thyroid hormone transporters in the brain. Cerebellum 7:75–83

    Article  CAS  PubMed  Google Scholar 

  • Thompson CC, Bottcher M (1997) The product of a thyroid hormone-responsive gene interacts with thyroid hormone receptors. Proc Natl Acad Sci U S A 94:8527–8532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajkovic M, Visser TJ, Mittag J et al (2007) Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 117:627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsui K (2006) Biosynthesis and organizing action of neurosteroids in the developing Purkinje cell. Cerebellum 5:89–96

    Article  CAS  PubMed  Google Scholar 

  • Tu HM, Legradi G, Bartha T et al (1999) Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrionology 140:784–790

    Article  CAS  Google Scholar 

  • Vasudevan N, Pfaff DW (2008) Non-genomic actions of estrogens and their interaction with genomic actions in the brain. Front Neuroendocrinol 29:238–257

    Article  CAS  PubMed  Google Scholar 

  • Velazquez PN, Romano MC (1987) Corticosterone therapy during gestation: effects on the development of rat cerebellum. Int J Dev Neurosci 5:189–194

    Article  CAS  PubMed  Google Scholar 

  • Vella KR, Hollenberg AN (2017) The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol 458:127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viveros MP, Llorente R, López-Gallardo M et al (2009) Sex-dependent alterations in response to maternal deprivation in rats. Psychoneuroendocrinology 34(Suppl 1):S217–S226

    Article  CAS  PubMed  Google Scholar 

  • Walker CD, Kanand JS, Plotsky PM (2001) Development of the hypothalamic–pituitary–adrenal axis and the stress response. In: McEwen BS (ed) Handbook of physiology: coping with the environment. Oxford University Press, New York

    Google Scholar 

  • Wilber AA, Wellman CL (2009) Neonatal maternal separation alters the development of glucocorticoid receptor expression in the interpositus nucleus of the cerebellum. Int J Dev Neurosci 27:649–654

    Article  CAS  PubMed  Google Scholar 

  • Wilson ME, Westberry JM (2009) Regulation of oestrogen receptor gene expression: new insights and novel mechanisms. J Neuroendocrinol 21:238–242

    Article  CAS  PubMed  Google Scholar 

  • Wright CL, Schwarz JS, Dean SL et al (2010) Cellular mechanisms of estradiol-mediated sexual differentiation of the brain. Trends Endocrinol Metab 21:553–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamate S, Nishigori H, Kishimoto S et al (2010) Effects of glucocorticoid on brain acetylcholinesterase of developing chick embryos. J Obstet Gynaecol Res 36:11–18

    Article  CAS  PubMed  Google Scholar 

  • Yousefi B, Jingu H, Ohta M et al (2005) Postnatal changes of steroid receptor coactivator-1 immunoreactivity in rat cerebellar cortex. Thyroid 15:314–319

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Iwasaki T, Xu M et al (2015) Aberrant cerebellar development of transgenic mice expressing dominant-negative thyroid hormone receptor in cerebellar Purkinje cells. Endocrinology 156:1565–1576

    Article  CAS  PubMed  Google Scholar 

  • Zhang JM, Konkle AT, Zup SL et al (2008) Impact of sex and hormones on new cells in the developing rat hippocampus: a novel source of sex dimorphism? Eur J Neurosci 27:791–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou FC, Resendiz M, Lo CL et al (2016) Cell-wide DNA de-methylation and re-methylation of Purkinje neurons in the developing cerebellum. PLoS One 11:e0162063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuloaga DG, Puts DA, Jordan CL et al (2008) The role of androgen receptors in the masculinization of brain and behavior: what we’ve learned from the testicular feminization mutation. Horm Behav 53:613–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Koibuchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Koibuchi, N., Ikeda, Y. (2020). Hormones and Cerebellar Development. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_16-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_16-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics