Design of Biomedical Polymers

  • Matthew ParrottEmail author
  • Stuart DunnEmail author
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


The utilization of polymers for biomedical applications (“biomedical polymers”) has led to significant advancements in medicine. Biomedical polymers have made a profound impact on human health and improved the quality of life for many patients. Current and evolving biomedical challenges posed by disease, environmental triggers, and physiological processes demand the development of biomedical polymers with specific properties and function. To address these challenges, the design of biomedical polymers has become of paramount importance. Designing polymers with specific structures opens the door to tailored properties and function. In this chapter, we cover the design of biomedical polymers for a variety of applications. We show that key polymer structures and properties are crucial to desired functionality for a given application. The biomedical applications we cover include (1) drug delivery, (2) imaging and tracking biomedical polymers in vivo, (3) scaffolds for tissue engineering, (4) medical devices, (5) surgery and wound repair, and (6) biosensors. By looking at the polymer structure-property-function relationships provided herein, we hope that this will enable improved designs of biomedical polymers to realize enhanced performance and efficacy in transforming human health.





3,9-bis (ethylidene 2,4,8,10-tetraoxaspiro [5,5] undecane) and 1,6-hexanediol


Dynamic polyconjugates


Enhanced permeability and retention




Hyaluronic acid


Human mesenchymal stem cells




Half maximal inhibitory concentration




Matrix metalloproteinase 2








Poly(aspartic acid)


Poly(beta-amino ester)


Poly(butyl and amino vinyl ether)s


Phosphate buffered saline






Poly(ethylene glycol)




Poly(ethylene oxide)


Poly(glycolic acid)


Poly(glutamic acid)


Poly(lactic acid)




Poly(lactic-co-glycolic acid)






Particle Replication In Non-wetting Templates


Poly(sebacic anhydride)


Small interfering RNA


Ultrahigh molecular weight poly(ethylene)


  1. 1.
    F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5, 505–515 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    F. Alexis, Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polym. Int. 54, 36–46 (2005)CrossRefGoogle Scholar
  3. 3.
    E. Allémann, J.C. Leroux, R. Gurny, E. Doelker, In vitro extended-release properties of drug-loaded poly(d,l-lactic acid) nanoparticles produced by a salting-out procedure. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 10, 1732–1737 (1993)Google Scholar
  4. 4.
    H. Gupta, M. Aqil, R.K. Khar, A. Ali, A. Bhatnagar, G. Mittal, Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed. Nanotechnol. Biol. Med. 6, 324–333 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Avgoustakis, A. Beletsi, Z. Panagi, P. Klepetsanis, A.G. Karydas, D.S. Ithakissios, PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J. Control. Release 79, 123–135 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    M.J. Kipper, E. Shen, A. Determan, B. Narasimhan, Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials 23, 4405–4412 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    J.C. Jeong, J. Lee, K. Cho, Effects of crystalline microstructure on drug release behavior of poly(ε-caprolactone) microspheres. J. Control. Release 92, 249–258 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    J. Heller, B.K. Fritziner, S.Y. Ng, D.W.H. Penhale, In vitro and in vivo release of levonorgestrel from poly(ortho esters). J. Control. Release 1, 225–232 (1985)CrossRefGoogle Scholar
  9. 9.
    M. Richards, B.I. Dahiyat, D.M. Arm, P.R. Brown, K.W. Leong, Evaluation of polyphosphates and polyphosphonates as degradable biomaterials. J. Biomed. Mater. Res. 25, 1151–1167 (1991)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    K.W. Leong, B.C. Brott, R. Langer, Bioerodible polyanhydrides as drug-carrier matrices. I: characterization, degradation, and release characteristics. J. Biomed. Mater. Res. 19, 941–955 (1985)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    E.M. Bachelder, T.T. Beaudette, K.E. Broaders, J. Dashe, J.M.J. Fréchet, Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J. Am. Chem. Soc. 130, 10494–10495 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    M.D. Krebs, O. Jeon, E. Alsberg, Localized and sustained delivery of silencing RNA from macroscopic biopolymer hydrogels. J. Am. Chem. Soc. 131, 9204–9206 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    B. Lasa-Saracibar, A. Estella-Hermoso de Mendoza, M. Guada, C. Dios-Vieitez, M.J. Blanco-Prieto, Lipid nanoparticles for cancer therapy: state of the art and future prospects. Expert Opin. Drug Deliv. 9, 1245–1261 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    S. Mizrahy, S.R. Raz, M. Hasgaard, H. Liu, N. Soffer-Tsur, K. Cohen, R. Dvash, D. Landsman-Milo, M.G.E.G. Bremer, S.M. Moghimi, D. Peer, Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J. Control. Release 156, 231–238 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)CrossRefGoogle Scholar
  16. 16.
    J.P. Bali, H. Cousse, E. Neuzil, Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Semin. Arthritis Rheum. 31, 58–68 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    J.M. Gatell, P. D, J.K. Rockstroh, C. Katlama, P. Yeni, A. Lazzarin, B. Clotet, J. Zhao, J. Chen, D.M. Ryan, R.R. Rhodes, J.A. Killar, L.R. Gilde, K.M. Strohmaier, A.R. Meibohm, M.D. Miller, D.J. Hazuda, M.L. Nessly, M.J. Dinubile, R.D. Isaacs, B. Nguyen, H. Teppler, B. Study, Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med. 354, 795–808 (2006)CrossRefGoogle Scholar
  18. 18.
    A.D. Sezer, E. Cevher, Fucoidan: a versatile biopolymer for biomedical applications, in Active Implants and Scaffolds for Tissue Regeneration, ed. by M. Zilberman (Springer, Berlin Heidelberg, 2011), pp. 377−406Google Scholar
  19. 19.
    A.D. Sezer, J. Akbuğa, Fucosphere-new microsphere carriers for peptide and protein delivery: preparation and in vitro characterization. J. Microencapsul. 23, 513–522 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    A.D. Sezer, J. Akbuğa, Comparison on in vitro characterization of fucospheres and chitosan microspheres encapsulated plasmid DNA (pGM-CSF): formulation design and release characteristics. AAPS PharmSciTech. 10, 1193–1199 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    M. Ohsaki, T. Okuda, A. Wada, T. Hirayama, T. Niidome, H. Aoyagi, In vitro gene transfection using dendritic poly(l-lysine). Bioconjug. Chem. 13, 510–517 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    J.J. Nie, X.B. Dou, H. Hu, B. Yu, D.F. Chen, R.X. Wang, F. J, Xu: poly(aspartic acid)-based degradable assemblies for highly efficient gene delivery. ACS Appl. Mater. Interfaces 7, 553–562 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    J.J. Green, E. Chiu, E.S. Leshchiner, J. Shi, R. Langer, D.G. Anderson, Electrostatic ligand coatings of nanoparticles enable ligand-specific gene delivery to human primary cells. Nano Lett. 7, 874–879 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    T.J. Harris, J.J. Green, P.W. Fung, R. Langer, D.G. Anderson, S.N. Bhatia, Tissue-specific gene delivery via nanoparticle coating. Biomaterials 31, 998–1006 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    J. Xu, J.C. Luft, X. Yi, S. Tian, G. Owens, J. Wang, A. Johnson, P. Berglund, J. Smith, M.E. Napier, J.M. DeSimone, RNA replicon delivery via lipid-complexed PRINT protein particles. Mol. Pharm. 10, 3366–3374 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook, 4th ed. John Wiley and Sons, New York, 1999Google Scholar
  27. 27.
    D.E. Owens, N.A. Peppas, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    J.L. Perry, K.G. Reuter, M.P. Kai, K.P. Herlihy, S.W. Jones, J.C. Luft, M. Napier, J.E. Bear, J.M. Desimone, PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12, 5304–5310 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    A. Pitto-Barry, N.P.E. Barry, Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 5, 3291–3297 (2014)CrossRefGoogle Scholar
  30. 30.
    G. Niu, F. Du, L. Song, H. Zhang, J. Yang, H. Cao, Y. Zheng, Z. Yang, G. Wang, H. Yang, S. Zhu, Synthesis and characterization of reactive poloxamer 407s for biomedical applications. J. Control. Release 138, 49–56 (2009)PubMedCrossRefGoogle Scholar
  31. 31.
    N. Adams, U.S. Schubert, Poly(2-oxazolines) in biological and biomedical application contexts. Adv. Drug Deliv. Rev. 59, 1504–1520 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    T.X. Viegas, M.D. Bentley, J.M. Harris, Z. Fang, K. Yoon, B. Dizman, R. Weimer, A. Mero, G. Pasut, F.M. Veronese, Polyoxazoline: chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 22, 976–986 (2011)PubMedCrossRefGoogle Scholar
  33. 33.
    R. Duncan, P. Kopecková-Rejmanová, J. Strohalm, I. Hume, H.C. Cable, J. Pohl, J.B. Lloyd, J. Kopecek, Anticancer agents coupled to N-(2-hydroxypropyl)methacrylamide copolymers. I. Evaluation of daunomycin and puromycin conjugates in vitro. Br. J. Cancer 55, 165–174 (1987)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    K.R. Weyts, E.J. Goethals, New synthesis of linear polyethylenimine. Polym. Bull. 19, 13–19 (1988)CrossRefGoogle Scholar
  35. 35.
    K. Kunath, A. von Harpe, D. Fischer, H. Petersen, U. Bickel, K. Voigt, T. Kissel, Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release 89, 113–125 (2003)PubMedCrossRefGoogle Scholar
  36. 36.
    S. Li, A. Burstein, Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J. Bone Joint Surg. Am. 76, 1080–1090 (1994)PubMedCrossRefGoogle Scholar
  37. 37.
    J.A. Champion, S. Mitragotri, Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 26, 244–249 (2009)PubMedCrossRefGoogle Scholar
  38. 38.
    J.A. Champion, S. Mitragotri, Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 103, 4930–4934 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    E.D. Pressly, R. Rossin, A. Hagooly, K. Fukukawa, B.W. Messmore, M.J. Welch, K.L. Wooley, M.S. Lamm, R.A. Hule, D.J. Pochan, C.J. Hawker, Structural effects on the biodistribution and positron emission nanoparticles comprised of amphiphilic block graft copolymers. Biomacromolecules 8, 3126–3134 (2007)PubMedCrossRefGoogle Scholar
  40. 40.
    G. Borchard, G. Borchard, J. Kreuter, J. Kreuter, The role of serum complement on the organ distribution of intravenously administers poly(methyl methacrylate) nanoparticles: effects of pre-coating with plasma and serum complement. Pharm. Res. 13, 1055–1058 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    D. Ma, S. Tian, J. Baryza, J.C. Luft, J.M. DeSimone, Reductively responsive hydrogel nanoparticles with uniform size, shape, and tunable composition for systemic sirna delivery in vivo. Mol. Pharm. 12, 3518–3526 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    D.H. Wakefield, J.J. Klein, J.A. Wolff, D.B. Rozema, Membrane activity and transfection ability of amphipathic polycations as a function of alkyl group size. Bioconjug. Chem. 16, 1204–1208 (2005)PubMedCrossRefGoogle Scholar
  43. 43.
    D.B. Rozema, D.L. Lewis, D.H. Wakefield, S.C. Wong, J.J. Klein, P.L. Roesch, S.L. Bertin, T.W. Reppen, Q. Chu, A.V. Blokhin, J.E. Hagstrom, J.A. Wolff, Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 104, 12982–12987 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    X. Zhu, Y. Zhou, D. Yan, Influence of branching architecture on polymer properties. J. Polym. Sci. Part B Polym. Phys. 49, 1277–1286 (2011)CrossRefGoogle Scholar
  45. 45.
    X. Dong, C.A. Mattingly, M. Tseng, M. Cho, V.R. Adams, R.J. Mumper, Development of new lipid-based paclitaxel nanoparticles using sequential simplex optimization. Eur. J. Pharm. Biopharm. 72, 9–17 (2009)PubMedCrossRefGoogle Scholar
  46. 46.
    S.R. Benhabbour, J.C. Luft, D. Kim, A. Jain, S. Wadhwa, M.C. Parrott, R. Liu, J.M. DeSimone, R.J. Mumper, In vitro and in vivo assessment of targeting lipid-based nanoparticles to the epidermal growth factor-receptor (EGFR) using a novel Heptameric ZEGFR domain. J. Control. Release 158, 63–71 (2012)PubMedCrossRefGoogle Scholar
  47. 47.
    S.S. Dunn, D.R. Beckford, S.R. Benhabbour, M.C. Parrott, Rapid microwave-assisted synthesis of sub-30 nm lipid nanoparticles. J. Colloid Interface Sci. 488, 240–245 (2017)PubMedCrossRefGoogle Scholar
  48. 48.
    W. Mehnert, K. Mäder, Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 47, 165–196 (2001)PubMedCrossRefGoogle Scholar
  49. 49.
    M. Kursa, G.F. Walker, V. Roessler, M. Ogris, W. Roedl, R. Kircheis, E. Wagner, Novel shielded transferrin-polyethylene glycol-polyethylenimine/DNA complexes for systemic tumor-targeted gene transfer. Bioconjug. Chem. 14, 222–231 (2003)PubMedCrossRefGoogle Scholar
  50. 50.
    S. Xiong, X. Zhao, B.C. Heng, K.W. Ng, J.S.C. Loo, Cellular uptake of poly-(d,l-lactide-co-glycolide) (PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Biotechnol. J. 6, 501–508 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    C.E. Astete, C.M. Sabliov, Synthesis and characterization of PLGA nanoparticles. J. Biomater. Sci. Polym. Ed. 17, 247–289 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    J.-W. Yoo, S. Mitragotri, Polymer particles that switch shape in response to a stimulus. Proc. Natl. Acad. Sci. 107, 11205–11210 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    J.L. Perry, K.P. Herlihy, M.E. Napier, J.M. DeSimone, PRINT: a novel platform toward shape and size specific nanoparticle theranostics. Acc. Chem. Res. 44, 990–998 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    D.A. Canelas, K.P. Herlihy, J.M. DeSimone, Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 391–404 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U. S. A. 105, 11613–11618 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    E.M. Enlow, J.C. Luft, M.E. Napier, J.M. DeSimone, Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings. Nano Lett. 11, 808–813 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    American Cancer Society, Cancer Facts & Figures 2015 (American Cancer Society, Atlanta, 2015)Google Scholar
  58. 58.
    K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    A.Z. Wang, R. Langer, O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    L. Brannon-Peppas, J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 64, 206–212 (2012)CrossRefGoogle Scholar
  61. 61.
    Y.H. Bae, K. Park, Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 153, 198–205 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    J. Cheng, K.T. Khin, G.S. Jensen, A. Liu, M.E. Davis, Synthesis of linear, beta-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem. 14, 1007–1017 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    J. Cheng, K.T. Khin, M.E. Davis, Antitumor activity of beta-cyclodextrin polymer-camptothecin conjugates. Mol. Pharm. 1, 183–193 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    R. Satchi-Fainaro, M. Puder, J.W. Davies, H.T. Tran, D.A. Sampson, A.K. Greene, G. Corfas, J. Folkman, Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med. 10, 255–261 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    M. Oishi, Y. Nagasaki, K. Itaka, N. Nishiyama, K. Kataoka, Lactosylated poly(ethylene glycol)-siRNA conjugate through acid-labile beta-thiopropionate linkage to construct pH-sensitive polyion complex micelles achieving enhanced gene silencing in hepatoma cells. J. Am. Chem. Soc. 127, 1624–1625 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    S.H. Kim, J.H. Jeong, S.H. Lee, S.W. Kim, T.G. Park, PEG conjugated VEGF siRNA for anti-angiogenic gene therapy. J. Control. Release 116, 123–129 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Y.A.N. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2, 249–255 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    D.A. Christian, S. Cai, O.B. Garbuzenko, T. Harada, L. Allison, T. Minko, D.E. Discher, Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol. Pharm. 6, 1343–1352 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    N. Nishiyama, S. Okazaki, H. Cabral, M. Miyamoto, Y. Kato, Y. Sugiyama, K. Nishio, Y. Matsumura, K. Kataoka, Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 63, 8977–8983 (2003)PubMedPubMedCentralGoogle Scholar
  70. 70.
    H. Cabral, Y. Matsumoto, K. Mizuno, Q. Chen, M. Murakami, M. Kimura, Y. Terada, M.R. Kano, K. Miyazono, M. Uesaka, N. Nishiyama, K. Kataoka, Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Y. Miura, T. Takenaka, K. Toh, S. Wu, H. Nishihara, M.R. Kano, Y. Ino, T. Nomoto, Y. Matsumoto, H. Koyama, H. Cabral, N. Nishiyama, K. Kataoka, Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 7, 8583–8592 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    T.Y. Kim, D.W. Kim, J.Y. Chung, S.G. Shin, S.C. Kim, D.S. Heo, N.K. Kim, Y.J. Bang, Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 10, 3708–3716 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    J.W. Valle, A. Armstrong, C. Newman, V. Alakhov, G. Pietrzynski, J. Brewer, S. Campbell, P. Corrie, E.K. Rowinsky, M. Ranson, A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Investig. New Drugs 29, 1029–1037 (2011)CrossRefGoogle Scholar
  74. 74.
    D.Y. Alakhova, Y. Zhao, S. Li, A.V. Kabanov, Effect of doxorubicin/pluronic SP1049C on tumorigenicity, aggressiveness, DNA methylation and stem cell markers in murine leukemia. PLoS One 8, e72238 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    T. Nakanishi, S. Fukushima, K. Okamoto, M. Suzuki, Y. Matsumura, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74, 295–302 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Y. Matsumura, T. Hamaguchi, T. Ura, K. Muro, Y. Yamada, Y. Shimada, K. Shirao, T. Okusaka, H. Ueno, M. Ikeda, N. Watanabe, Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91, 1775–1781 (2004)PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    R. Luxenhofer, Y. Han, A. Schulz, J. Tong, Z. He, A.V. Kabanov, R. Jordan, Poly (2-oxazoline)s as polymer therapeutics. Macromol. Rapid Commun. 33, 1613–1631 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Z. He, A. Schulz, X. Wan, J. Seitz, H. Bludau, D.Y. Alakhova, D.B. Darr, C.M. Perou, R. Jordan, I. Ojima, A.V. Kabanov, R. Luxenhofer, Poly (2-oxazoline) based micelles with high capacity for 3rd generation taxoids: preparation , in vitro and in vivo evaluation. J. Control. Release 208, 67–75 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    S.V. Muginova, D.A. Myasnikova, A.E. Polyakov, T.N. Shekhovtsova, Crosslinked block ionomer complex. Mendeleev Commun. 23, 74–75 (2013)CrossRefGoogle Scholar
  80. 80.
    J. Dai, S. Lin, D. Cheng, S. Zou, X. Shuai, Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew. Chem. Int. Ed. 50, 9404–9408 (2011)CrossRefGoogle Scholar
  81. 81.
    T. Musacchio, O. Vaze, G. D’Souza, V.P. Torchilin, Effective stabilization and delivery of siRNA: reversible siRNA-phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug. Chem. 21, 1530–1536 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    L. Zhu, F. Perche, T. Wang, V.P. Torchilin, Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs. Biomaterials 35, 4213–4222 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    M.E. Fox, S. Guillaudeu, J.M.J. Fre, K. Jerger, N. Macaraeg, F.C. Szoka, Synthesis and in vivo antitumor efficacy of PEGylated poly(l-lysine) dendrimer-camptothecin conjugates. Mol. Pharm. 6, 1562–1572 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    C.C. Lee, E.R. Gillies, M.E. Fox, S.J. Guillaudeu, J.M.J. Fréchet, E.E. Dy, F.C. Szoka, A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. U. S. A. 103, 16649–16654 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    J.F.G.A. Jansen, E.W. de Brander-van der Berg, E.M.M. Meijer, Encapsulation of guest molecules into a dendritic box. Science 266, 1226–1229 (1994)PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    C.J. Hawker, K.L. Wooley, J.M.J. Fréchet, Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J. Chem. Soc. Perkin Trans. 1(1), 1287–1297 (1993)CrossRefGoogle Scholar
  87. 87.
    T. Okuda, A. Sugiyama, T. Niidome, H. Aoyagi, Characters of dendritic poly(l-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials 25, 537–544 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    M.C. Parrott, M. Finniss, J.C. Luft, A. Pandya, A. Gullapalli, M.E. Napier, J.M. DeSimone, Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J. Am. Chem. Soc. 134, 7978–7982 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    M.C. Parrott, J.C. Luft, J.D. Byrne, J.H. Fain, M.E. Napier, J.M. DeSimone, Tunable bifunctional silyl ether cross-linkers for the design of acid-sensitive biomaterials. J. Am. Chem. Soc. 132, 17928–17932 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    S.S. Dunn, J.D. Byrne, J.L. Perry, K. Chen, J.M. Desimone, Generating better medicines for cancer. ACS Macro Lett. 2, 393–397 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    X. Dong, C.A. Mattingly, M.T. Tseng, M.J. Cho, Y. Liu, V.R. Adams, R.J. Mumper, Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res. 69, 3918–3926 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    L. Feng, R.J. Mumper, A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett. 334, 157–175 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    S.S. Dunn, S. Tian, S. Blake, J. Wang, A.L. Galloway, A. Murphy, P.D. Pohlhaus, J.P. Rolland, M.E. Napier, J.M. Desimone, Reductively responsive siRNA-conjugated hydrogel nanoparticles for gene silencing. J. Am. Chem. Soc. 134, 7423–7430 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    K.A. Woodrow, Y. Cu, C.J. Booth, J.K. Saucier-Sawyer, M.J. Wood, W.M. Saltzman, Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater. 8, 526–533 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    P. Kolhar, N. Doshi, S. Mitragotri, Polymer nanoneedle-mediated intracellular drug delivery. Small 7, 2094–2100 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    W. Hasan, K. Chu, A. Gullapalli, S.S. Dunn, E.M. Enlow, J.C. Luft, S. Tian, M.E. Napier, P.D. Pohlhaus, J.P. Rolland, J.M. DeSimone, Delivery of multiple siRNAs using ipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 12, 287–292 (2012)Google Scholar
  97. 97.
    S. Dhar, F.X. Gu, R. Langer, O.C. Farokhzad, S.J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 105, 17356–17361 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    J.J. Green, R. Langer, D.G. Anderson, A. Combinatorial Polymer, Library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41, 749–759 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    D. Siegwart, K. Whitehead, Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc. Natl. Acad. Sci. 108, 12996–13001 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    S.H. Pun, M.E. Davis, Development of a nonviral gene delivery vehicle for systemic application. Bioconjug. Chem. 13, 630–639 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    S. Mishra, J.D. Heidel, P. Webster, M.E. Davis, Imidazole groups on a linear, cyclodextrin-containing polycation produce enhanced gene delivery via multiple processes. J. Control. Release 116, 179–191 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    R. Duncan, Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv. Drug Deliv. Rev. 61, 1131–1148 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    P.A. Vasey, S.B. Kaye, R. Morrison, C. Twelves, P. Wilson, R. Duncan, A.H. Thomson, L.S. Murray, T.E. Hilditch, T. Murray, S. Burtles, D. Fraier, E. Frigerio, Phase I clinical and pharmacokinetic study of PK1 [N-(2-Hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents–drug-polymer conjugates. Clin. Cancer Res. 5, 83–94 (1999)PubMedPubMedCentralGoogle Scholar
  105. 105.
    L.W. Seymour, D.R. Ferry, D.J. Kerr, D. Rea, M. Whitlock, R. Poyner, C. Boivin, S. Hesslewood, C. Twelves, R. Blackie, A. Schatzlein, D. Jodrell, D. Bissett, H. Calvert, M. Lind, A. Robbins, S. Burtles, R. Duncan, J. Cassidy, Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34, 1629–1636 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    H. Kobayashi, M.W. Brechbiel, Nano-sized MRI contrast agents with dendrimer cores. Adv. Drug Deliv. Rev. 57, 2271–2286 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    H. Kobayashi, S. Kawamoto, S.K. Jo, H.L. Bryant, M.W. Brechbiel, R.A. Star, Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug. Chem. 14, 388–394 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    M.C. Parrott, S. Rahima Benhabbour, C. Saab, J.A. Lemon, S. Parker, J.F. Valliant, A. Adronov, Synthesis, radiolabeling, and bio-imaging of high-generation polyester dendrimers. J. Am. Chem. Soc. 131, 2906–2916 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    E.R. Gillies, E. Dy, J.M.J. Fréchet, F.C. Szoka, Biological evaluation of polyester dendrimer: poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol. Pharm. 2, 129–138 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    X. Sun, R. Rossin, J.L. Turner, M.L. Becker, M.J. Joralemon, M.J. Welch, K.L. Wooley, An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6, 2541–2554 (2005)PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    J. Xu, G. Sun, R. Rossin, A. Hagooly, Z. Li, K.I. Fukukawa, B.W. Messmore, D.A. Moore, M.J. Welch, C.J. Hawker, K.L. Wooley, Labeling of polymer nanostructures for medical imaging: importance of cross-linking extent, spacer length, and charge density. Macromolecules 40, 2971–2973 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    D. Zhang, J. Chang, Electrospinning of three-dimensional nanofibrous tubes with controllable. Nano Lett. 8, 3283–3287 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    S. Panseri, C. Cunha, J. Lowery, U. Del Carro, F. Taraballi, S. Amadio, A. Vescovi, F. Gelain, Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 8, 1–12 (2008)CrossRefGoogle Scholar
  114. 114.
    X. Li, J. Xie, X. Yuan, Y. Xia, Coating electrospun poly (ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24, 14145–14150 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    N. Hild, O.D. Schneider, D. Mohn, N.A. Luechinger, F.M. Koehler, S. Hofmann, J.R. Vetsch, B.W. Thimm, R. Müller, W.J. Stark, Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells. Nanoscale 3, 401–409 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, S. Ramakrishna, Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. Part A 15, 3605–3619 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    S.I. Jeong, I.D. Jun, M.J. Choi, Y.C. Nho, Y.M. Lee, H. Shin, Development of electroactive and elastic nanofibers that contain polyaniline and poly(l-lactide-co-ε-caprolactone) for the control of cell adhesion. Macromol. Biosci. 8, 627–637 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    C.W. Hsiao, M.Y. Bai, Y. Chang, M.F. Chung, T.Y. Lee, C.T. Wu, B. Maiti, Z.X. Liao, R.K. Li, H.W. Sung, Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34, 1063–1072 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    S.K. Seidlits, C.T. Drinnan, R.R. Petersen, J.B. Shear, L.J. Suggs, C.E. Schmidt, Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater. 7, 2401–2409 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    A.K. Jha, X. Xu, R.L. Duncan, X. Jia, Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466–2478 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    H. Park, B. Choi, J. Hu, M. Lee, Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 9, 4779–4786 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    R. Gauvin, Y.C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33, 3824–3834 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    H. Lin, D. Zhang, P.G. Alexander, G. Yang, J. Tan, A.W.M. Cheng, R.S. Tuan, Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34, 331–339 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    B. Duan, E. Kapetanovic, L.A. Hockaday, J.T. Butcher, Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10, 1836–1846 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    B. Duan, L.A. Hockaday, K.H. Kang, J.T. Butcher, 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 101A, 1255–1264 (2013)CrossRefGoogle Scholar
  126. 126.
    T. Shinoka, D. Shum-Tim, P.X. Ma, R.E. Tanel, N. Isogai, R. Langer, J.P. Vacanti, J.E. Mayer, J.H. Kennedy, E.D. Verrier, L.K. Von Segesser, Creation of viable pulmonary artery autografts through tissue engineering. J. Thorac. Cardiovasc. Surg. 115, 536–546 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    S. de Valence, J.C. Tille, D. Mugnai, W. Mrowczynski, R. Gurny, M. Möller, B.H. Walpoth, Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials 33, 38–47 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    L.A. Pruitt, Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene. Biomaterials 26, 905–915 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin, Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20, 1659–1688 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    P. Bracco, E. Oral, Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin. Orthop. Relat. Res. 469, 2286–2293 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    R.A.A. Muzzarelli, Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 76, 167–182 (2009)CrossRefGoogle Scholar
  132. 132.
    R.A.A. Muzzarelli, P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini, M. Mattioli Belmonte, F. Giantomassi, F. Orlandi, C. Muzzarelli, Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr. Polym. 70, 274–284 (2007)CrossRefGoogle Scholar
  133. 133.
    K. Murakami, H. Aoki, S. Nakamura, S.I. Nakamura, M. Takikawa, M. Hanzawa, S. Kishimoto, H. Hattori, Y. Tanaka, T. Kiyosawa, Y. Sato, M. Ishihara, Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 31, 83–90 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Y.H. Lee, J.J. Chang, M.C. Yang, C.T. Chien, W.F. Lai, Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydr. Polym. 88, 809–819 (2012)CrossRefGoogle Scholar
  135. 135.
    K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23, 3661–3671 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    T.W. Wang, J.S. Sun, H.C. Wu, Y.H. Tsuang, W.H. Wang, F.H. Lin, The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27, 5689–5697 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    B. Liu, G.C. Bazan, Interpolyelectrolyte complexes of conjugated copolymers and DNA: platforms for multicolor biosensors. J. Am. Chem. Soc. 126, 1942–1943 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    K.Y. Pu, B. Liu, A multicolor cationic conjugated polymer for naked-eye detection and quantification of heparin. Macromolecules 41, 6636–6640 (2008)CrossRefGoogle Scholar
  139. 139.
    J.H. Wosnick, C.M. Mello, T.M. Swager, Synthesis and application of poly (phenylene ethynylene)s for bioconjugation: a conjugated polymer-based fluorogenic probe for proteases. J. Am. Chem. Soc. 127, 3400–3405 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    C. Fan, K.W. Plaxco, A.J. Heeger, High-efficiency fluorescence quenching of conjugated polymers by proteins. J. Am. Chem. Soc. 124, 5642–5643 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Y. Tang, F. Feng, F. He, S. Wang, Y. Li, D. Zhu, Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative. J. Am. Chem. Soc. 128, 14972–14976 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    H.A. Ho, M. Leclerc, Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc. 126, 1384–1387 (2004)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical Research Imaging CenterUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Lineberger Comprehensive Cancer CenterChapel HillUSA

Personalised recommendations