Conducting Polymer Nanocomposites as Gas Sensors

  • Mohammad Omaish AnsariEmail author
  • Sajid Ali Ansari
  • Moo Hwan Cho
  • Shahid Pervez Ansari
  • Mohamed Shaaban Abdel-wahab
  • Ahmed Alshahrie
Reference work entry
Part of the Polymers and Polymeric Composites: A Reference Series book series (POPOC)


The great concerns regarding environmental and living beings protection together with the widespread requirements for highly accurate process monitoring have highlighted the need for the development of new and sensitive sensors. Conducting polymers and their nanocomposites have been used widely as sensing materials owing to their special redox chemistry. The electrical properties can be controlled easily by doping and undoping processes resulting into the generation of conducting and nonconducting states, respectively. The electrical conductivity also depends on the type and amount of filler (nanosize filler in some cases) used which produces the positive or negative carriers responsible for the conduction. Any type of interaction of these polymers that affects the number and movement of charge carriers affects the conductivity and is the main principle behind the gas sensing characteristics. Advances in nanotechnology allows for the fabrication of various conducting polymer nanocomposites using different techniques. Conducting polymer nanocomposites have high surface area, small dimension, and show enhanced properties, making them suitable for various sensor devices. This chapter presents the different types of gas sensors based on the conducting polymer (polyaniline, polypyrrole, and polythiophene)-based nanocomposites, their progress, and future scope of ongoing research in this research area. The factors that affect the performance of the gas sensors and the chemistry of the sensing process are also addressed.


  1. 1.
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. (16), 578–580 (1977)Google Scholar
  2. 2.
    T. Yamamoto, Molecular assembly and properties of polythiophenes. NPG Asia Mater. 2, 54–60 (2010)CrossRefGoogle Scholar
  3. 3.
    H.C. Kang, K.E. Geckeler, Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: Effect of the preparation technique and polymer additive. Polymer 41, 6931–6934 (2000)CrossRefGoogle Scholar
  4. 4.
    A.L. Aldaba, Á. González-Vila, M. Debliquy, M.L. Amo, C. Caucheteur, D. Lahem, Polyaniline-coated tilted fiber Bragg gratings for pH sensing. Sensors Actuators B Chem. 254, 1087–1093 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Li, Z.-Y. Sui, Y.-N. Sun, P.-W. Xiao, X.-Y. Wang, B.-H. Han, Polyaniline-derived hierarchically porous nitrogen-doped carbons as gas adsorbents for carbon dioxide uptake. Microporous Mesoporous Mater. 257, 85–91 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Hong, F.S. Cannon, P. Hou, T. Byrne, C. Nieto-Delgado, Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: Effects of polypyrrole deposition protocols and activated carbon source. Chemosphere 184, 429–437 (2017)PubMedCrossRefGoogle Scholar
  7. 7.
    A. Ramaprasad, D. Latha, V. Rao, Synthesis and characterization of polypyrrole grafted chitin. J. Phys. Chem. Solids 104, 169–174 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Khan, G. Brunklaus, S. Ahmad, Probing the molecular orientation of chemically polymerized polythiophene-polyrotaxane via solid state NMR. Arab. J. Chem. 10, 708–714 (2017)CrossRefGoogle Scholar
  9. 9.
    M.R. Chandra, P.S.P. Reddy, T.S. Rao, S. Pammi, K.S. Kumar, K.V. Babu, C.K. Kumar, K. Hemalatha, Enhanced visible-light photocatalysis and gas sensor properties of polythiophene supported tin doped titanium nanocomposite. J. Phys. Chem. Solids 105, 99–105 (2017)CrossRefGoogle Scholar
  10. 10.
    N. Parveen, N. Mahato, M.O. Ansari, M.H. Cho, Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated temperature. Compos. Part B Eng. 87, 281–290 (2016)CrossRefGoogle Scholar
  11. 11.
    N. Parveen, M.O. Ansari, M.H. Cho, Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. J. Solid State Electrochem. 21, 57 (2016). Scholar
  12. 12.
    X. Wu, M. Lian, Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. J. Power Sources 362, 184–191 (2017)CrossRefGoogle Scholar
  13. 13.
    C. Kumar, G. Rawat, H. Kumar, Y. Kumar, R. Prakash, S. Jit, Flexible poly (3, 3′′′-dialkylquaterthiophene) based interdigitated metal-semiconductor-metal ammonia gas sensor. Sensors Actuators B Chem. 255, 203–209 (2018)CrossRefGoogle Scholar
  14. 14.
    L. Ai, Y. Liu, X. Zhang, X. Ouyang, Z. Ge, A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings. Synth. Met. 191, 41–46 (2014)CrossRefGoogle Scholar
  15. 15.
    Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)CrossRefGoogle Scholar
  16. 16.
    M.O. Ansari, F. Mohammad, Thermal stability of HCl-doped-polyaniline and TiO2 nanoparticles-based nanocomposites. J. Appl. Polym. Sci. 124, 4433–4442 (2012)Google Scholar
  17. 17.
    T. Anwer, M.O. Ansari, F. Mohammad, Morphology and thermal stability of electrically conducting nanocomposites prepared by sulfosalicylic acid micelles assisted polymerization of aniline in presence of ZrO2 nanoparticles. Polym.-Plast. Technol. Eng. 52, 472–477 (2013)CrossRefGoogle Scholar
  18. 18.
    R. Kumar, M.O. Ansari, M.A. Barakat, DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution. Chem. Eng. J. 228, 748–755 (2013)CrossRefGoogle Scholar
  19. 19.
    F.H. Lu, M.G. Mohamed, T.F. Liu, C.G. Chao, L. Daic, S.W. Kuo, A quenching method for the preparation of metal oxide–polythiophene composites having fiber structures. RSC Adv. 4, 64525–64534 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, X. Qing, Q. Zhou, Y. Zhang, Q. Liu, K. Liu, W. Wang, M. Li, Z. Lu, Y. Chen, The woven fiber organic electrochemical transistors based on polypyrrole nanowires/reduced graphene oxide composites for glucose sensing. Biosens. Bioelectron. 95, 138–145 (2017)PubMedCrossRefGoogle Scholar
  21. 21.
    S.-X. Zhou, X.-Y. Tao, J. Ma, C.-H. Qu, Y. Zhou, L.-T. Guo, P.-Z. Feng, Y.-B. Zhu, X.-Y. Wei, Facile synthesis of self-assembled polyaniline nanorods doped with sulphuric acid for high-performance supercapacitors. Vacuum 143, 63–70 (2017)CrossRefGoogle Scholar
  22. 22.
    E.I. Santiago, E.C. Pereira, L.O.S. Bulhões, Characterization of the redox processes in polyaniline using capacitance-potential curves. Synth. Met. 98, 87–93 (1998)CrossRefGoogle Scholar
  23. 23.
    V. Tabard-Cossa, M. Godin, P. Grütter, Redox-induced surface stress of polypyrrole-based actuators. J. Phys. Chem. B 109, 17531–17537 (2005)PubMedCrossRefGoogle Scholar
  24. 24.
    S. Haraguchi, Y. Tsuchiya, T. Shiraki, K. Sada, S. Shinkai, Control of polythiophene redox potentials based on supramolecular complexation with helical schizophyllan. Chem. Commun. (40), 6086–6088 (2009)Google Scholar
  25. 25.
    L. Yang, X. Huang, A. Gogoll, M. Strømme, M. Sjödin, Conducting redox polymer based anode materials for high power electrical energy storage. Electrochim. Acta 204, 270–275 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Nautiyal, M. Qiao, J.E. Cook, X. Zhang, T.-S. Huang, High performance polypyrrole coating for corrosion protection and biocidal applications. Appl. Surf. Sci. 427, 922–930 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Kumar, I. Rawal, A. Kaur, S. Annapoorni, Flexible room temperature ammonia sensor based on polyaniline. Sensors Actuators B Chem. 240, 408–416 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Joshi, S.A. Gangal, S.K. Gupta, Ammonia sensing properties of polypyrrole thin films at room temperature. Sensors Actuators B Chem. 156, 938–942 (2011)CrossRefGoogle Scholar
  29. 29.
    S.T. Navale, A.T. Mane, G.D. Khuspe, M.A. Chougule, V.B. Patil, Room temperature NO2 sensing properties of polythiophene films. Synth. Met. 195, 228–233 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Pandey, Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: A comprehensive review. J. Sci. Adv. Mater. Dev. 1, 431–453 (2016)Google Scholar
  31. 31.
    C.T.P. da Silva, V.L. Kupfer, G.R. da Silva, M. Pereira, A.W. Rinaldi, One-step electrochemical synthesis of polyaniline/metallic oxide nanoparticle (γ-Fe2O3) thin film. Int. J. Electrochem. Sci. 11, 5380–5394 (2016)CrossRefGoogle Scholar
  32. 32.
    A.A. Athawale, S. Bhagwat, P.P. Katre, Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensors Actuators B Chem. 114, 263–267 (2006)CrossRefGoogle Scholar
  33. 33.
    A. Choudhury, Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sensors Actuators B Chem. 138, 318–325 (2009)CrossRefGoogle Scholar
  34. 34.
    Z.-F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl. Mater. Interfaces 5, 2685–2691 (2013)PubMedCrossRefGoogle Scholar
  35. 35.
    S. Maeda, S. Armes, Polypyrrole-tin (IV) oxide colloidal nanocomposites. Synth. Met. 69, 499–500 (1995)CrossRefGoogle Scholar
  36. 36.
    R.A. Naikoo, S.U. Bhat, M.A. Mir, R. Tomar, Composites of various cation exchanged forms of mesoporous zeolite A with polypyrrole-thermal, spectroscopic and gas sensing studies. Microporous Mesoporous Mater. 243, 229–238 (2017)CrossRefGoogle Scholar
  37. 37.
    B.-K. Kim, Y.H. Kim, K. Won, H. Chang, Y. Choi, K. Kong, B.W. Rhyu, J. Kim, J.-O. Lee, Electrical properties of polyaniline nanofibre synthesized with biocatalyst. Nanotechnology 16, 1177–1181 (2005)CrossRefGoogle Scholar
  38. 38.
    K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha, Electronics of conjugated polymers (I): polyaniline. Int. J. Electrochem. Sci. 7, 11859–11875 (2012)Google Scholar
  39. 39.
    S. Etemad, A.J. Heeger, Polyacetylene, (CH)x: The prototype conducting polymer. Annu. Rev. Phys. Chem. 33, 443–469 (1982)CrossRefGoogle Scholar
  40. 40.
    J.M.G. Cowie, Chemistry and Physics of Modern Materials, II edn. (Blackie/Chapman and Hall, New York, 1973)Google Scholar
  41. 41.
    R. Kiebooms, R. Menon, K. Lee, in Handbook of Advance Electronic and Photonic Materials and Devices, ed. by H.S. Nalwa (Academic, San Diego, 2001)Google Scholar
  42. 42.
    W.-C. Chen, T.-C. Wen, Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J. Power Sources 117, 273–282 (2003)CrossRefGoogle Scholar
  43. 43.
    S. Koŝina, V. Skákalová, D. Janĉula, Electrochemical preparation of thick porous polypyrrole layers. Synth. Met. 53, 227–235 (1993)CrossRefGoogle Scholar
  44. 44.
    N. Parveen, M.O. Ansari, M.H. Cho, Route to high surface area, mesoporosity of polyaniline-titanium dioxide nanocomposites via one pot synthesis for energy storage applications. Ind. Eng. Chem. Res. 55, 116–124 (2016)CrossRefGoogle Scholar
  45. 45.
    H. Bai, G. Shi, Gas sensors based on conducting polymers. Sensors 7, 267–307 (2007)CrossRefGoogle Scholar
  46. 46.
    N. Kemp, G. Fianagan, A. Kaiser, H. Trodahl, B. Chapman, A. Partridge, R. Buckley, Temperature-dependent conductivity of conducting polymers exposed to gases. Synth. Met. 101, 434–435 (1999)CrossRefGoogle Scholar
  47. 47.
    S. Krutovertsev, O. Ivanova, S. Sorokin, Sensing properties of polyaniline films doped with Dawson heteropoly compounds. J. Anal. Chem. 56, 1057–1060 (2001)CrossRefGoogle Scholar
  48. 48.
    J.-H. Cho, J.-B. Yu, J.-S. Kim, S.-O. Sohn, D.-D. Lee, J.-S. Huh, Sensing behaviors of polypyrrole sensor under humidity condition. Sensors Actuators B Chem. 108, 389–392 (2005)CrossRefGoogle Scholar
  49. 49.
    N. Kemp, A. Kaiser, H. Trodahl, B. Chapman, R. Buckley, A. Partridge, P. Foot, Effect of ammonia on the temperature-dependent conductivity and thermopower of polypyrrole. J. Polym. Sci. B Polym. Phys. 44, 1331–1338 (2006)CrossRefGoogle Scholar
  50. 50.
    D. Liu, J. Aguilar-Hernandez, K. Potje-Kamloth, H. Liess, A new carbon monoxide sensor using a polypyrrole film grown on an interdigital-capacitor substrate. Sensors Actuators B Chem. 41, 203–206 (1997)CrossRefGoogle Scholar
  51. 51.
    S. Christie, E. Scorsone, K. Persaud, F. Kvasnik, Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sensors Actuators B Chem. 90, 163–169 (2003)CrossRefGoogle Scholar
  52. 52.
    K. Hosono, I. Matsubara, N. Murayama, W. Shin, N. Izu, The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized polypyrrole films to volatile organic compounds. Thin Solid Films 484, 396–399 (2005)CrossRefGoogle Scholar
  53. 53.
    P. Fedorko, V. Skakalova, Low pressure effect in the electrical conductivity of doped polypyrrole. Synth. Met. 94, 279–283 (1998)CrossRefGoogle Scholar
  54. 54.
    S. Koul, R. Chandra, S.K. Dhawan, Conducting polyaniline composite: A reusable sensor material for aqueous ammonia. Sensors Actuators B Chem. 75, 151–159 (2001)CrossRefGoogle Scholar
  55. 55.
    M.M. Ayad, G. El-Hefnawey, N.L. Torad, A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance. J. Hazard. Mater. 168, 85–88 (2009)PubMedCrossRefGoogle Scholar
  56. 56.
    N.J. Pinto, I. Ramos, R. Rojas, P.-C. Wang, A.T. Johnson Jr., Electric response of isolated electrospun polyaniline nanofibers to vapors of aliphatic alcohols. Sensors Actuators B Chem. 129, 621–627 (2008)CrossRefGoogle Scholar
  57. 57.
    H.-K. Jun, Y.-S. Hoh, B.-S. Lee, S.-T. Lee, J.-O. Lim, D.-D. Lee, J.-S. Huh, Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sensors Actuators B Chem. 96, 576–581 (2003)CrossRefGoogle Scholar
  58. 58.
    F. Liao, M.F. Toney, V. Subramanian, Thickness changes in polythiophene gas sensors exposed to vapor. Sensors Actuators B Chem. 148, 74–80 (2010)CrossRefGoogle Scholar
  59. 59.
    H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sensors Actuators B Chem. 125, 644–650 (2007)CrossRefGoogle Scholar
  60. 60.
    H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Z. Ying, Influence of polymerization temperature on NH3 response of PANI/TiO2 thin film gas sensor. Sensors Actuators B Chem. 129, 319–326 (2008)CrossRefGoogle Scholar
  61. 61.
    X. Ma, M. Wang, G. Li, H. Chen, R. Bai, Preparation of polyaniline-TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Mater. Chem. Phys. 98, 241–247 (2006)CrossRefGoogle Scholar
  62. 62.
    A.T. Mane, S.T. Navale, S. Sen, D.K. Aswal, S.K. Gupta, V.B. Patil, Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature. Org. Electron. 16, 195–204 (2015)CrossRefGoogle Scholar
  63. 63.
    T. Sen, S. Mishra, N.G. Shimpi, Synthesis and sensing applications of polyaniline nanocomposites: A review. RSC Adv. 6, 42196–42222 (2016)CrossRefGoogle Scholar
  64. 64.
    P. Lobotka, P. Kunzo, E. Kovacova, I. Vavra, Z. Krizanova, V. Smatko, J. Stejskal, E.N. Konyushenko, M. Omastova, Z. Spitalsky, M. Micusik, I. Krupa, Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing. Thin Solid Films 519, 4123–4127 (2011)CrossRefGoogle Scholar
  65. 65.
    T. Sen, N.G. Shimpi, S. Mishra, Room temperature CO sensing by polyaniline/Co3O4 nanocomposite. J. Appl. Polym. Sci. (2016).
  66. 66.
    S.S. Joshi, C.D. Lokhande, S.-H. Han, A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/p-polyaniline junction. Sensors Actuators B Chem. 123, 240–245 (2007)CrossRefGoogle Scholar
  67. 67.
    T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sensors Actuators B Chem. 190, 120–126 (2014)CrossRefGoogle Scholar
  68. 68.
    M.V. Fuke, A. Vijayan, M. Kulkarni, R. Hawaldar, R.C. Aiyer, Evaluation of Co-polyaniline nanocomposite thin films as humidity sensor. Talanta 76, 1035–1040 (2008)PubMedCrossRefGoogle Scholar
  69. 69.
    S. Jain, S. Chakane, A.B.. Samui, V.N. Krishnamurthy, S.V. Bhoraskar, Humidity sensing with weak acid-doped polyaniline and its composites. Sensors Actuators B Chem. 96, 124–129 (2003)CrossRefGoogle Scholar
  70. 70.
    S.K. Shukla, V. Minakshi, A. Bharadavaja, A. Shekhar, A. Tiwari, Fabrication of electro-chemical humidity sensor based on zinc oxide/polyaniline nanocomposite. Adv. Mater. Lett. 3, 421–425 (2012)CrossRefGoogle Scholar
  71. 71.
    H. Tai, Y. Jiang, G. Xie, J. Yu, Preparation, characterization and comparative NH3-sensing characteristic studies of PANI/inorganic oxides nanocomposite thin films. J. Mater. Sci. Technol. 26, 605–613 (2010)CrossRefGoogle Scholar
  72. 72.
    J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 Gas sensor from polyaniline nanograin enchased TiO2 fibers. J. Phys. Chem. C 114, 9970–9974 (2010)CrossRefGoogle Scholar
  73. 73.
    D.S. Dhawale, R.R. Salunkhe, U.M. Patil, K.V. Gurav, A.M. More, C.D. Lokhande, Room temperature liquefied petroleum gas (LPG) sensor based on p-polyaniline/n-TiO2 heterojunction. Sensors Actuators B Chem. 134, 988–992 (2008)CrossRefGoogle Scholar
  74. 74.
    A.A. Athawale, S.V. Bhagwat, P.P. Katre, Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sensors Actuators B Chem. 114, 263–267 (2006)CrossRefGoogle Scholar
  75. 75.
    M. Song, F. Liu, X. Ma, Study of PANI Preparation and Properties in Gas Sensing, CA ‘14 Proceedings of the 2014 7th International Conference on Control and Automation, IEEE Computer Society Washington, DC, USA ©2014, pp. 37–44. ISBN: 978-1-4799-8206-6Google Scholar
  76. 76.
    L. Yang, C.S. Zhang, Effect of dopants on microstructure and properties of polyaniline and polypyrrole. Adv. Mater. Res. 328–330, 1576–1579 (2011)Google Scholar
  77. 77.
    Z. Pang, J. Fu, P. Lv, F. Huang, Q. Wei, Effect of CSA concentration on the ammonia sensing properties of CSA-Doped PA6/PANI composite nanofibers. Sensors 14, 21453–21465 (2014)PubMedCrossRefGoogle Scholar
  78. 78.
    S. Koul, R. Chandra, Mixed dopant conducting polyaniline reusable blend for the detection of aqueous ammonia. Sensors Actuators B Chem. 104, 57–67 (2005)CrossRefGoogle Scholar
  79. 79.
    A.A. Khan, M. Khalid, Synthesis of nano-sized ZnO and polyaniline-zinc oxide composite: Characterization, stability in terms of DC electrical conductivity retention and application in ammonia vapor detection. J. Appl. Polym. Sci. 3, 1601–1607 (2010)Google Scholar
  80. 80.
    V.V. Chabukswar, S. Pethkar, A.A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor. Sensors Actuators B Chem. 77, 657–663 (2011)CrossRefGoogle Scholar
  81. 81.
    P.P. Sengupta, P. Kar, B. Adhikari, Influence of dopant in the synthesis, characteristics and ammonia sensing behavior of processable polyaniline. Thin Solid Films 517, 3770–3775 (2009)CrossRefGoogle Scholar
  82. 82.
    A.L. Kukla, Y.M. Shirshov, S.A. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sensors Actuators B Chem. 37, 135–140 (1996)CrossRefGoogle Scholar
  83. 83.
    M.O. Ansari, F. Mohammad, Thermal stability, electrical conductivity and ammonia sensing studies on p-toluenesulfonic acid doped polyaniline:titanium dioxide (pTSA/Pani:TiO2) nanocomposites. Sensors Actuators B Chem. 157, 122–129 (2011)CrossRefGoogle Scholar
  84. 84.
    L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, S. Wu, The preparation and gas sensitivity study of polypyrrole/zinc oxide. Synth. Met. 156, 1078–1082 (2006)CrossRefGoogle Scholar
  85. 85.
    S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B Chem. 221, 1523–1534 (2015)CrossRefGoogle Scholar
  86. 86.
    L. Geng, Gas sensitivity study of polypyrrole/WO3 hybrid materials to H2S. Synth. Met. 160, 1708–1711 (2010)CrossRefGoogle Scholar
  87. 87.
    H. Malkeshi, M. Moghaddam, Ammonia gas-sensing based on polythiophene film prepared through electrophoretic deposition method. J. Polym. Res. 23, 108 (2016)CrossRefGoogle Scholar
  88. 88.
    J.J. Miasik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 1(82), 1117–1126 (1986)CrossRefGoogle Scholar
  89. 89.
    P. Topart, M. Josowicz, Transient effects in the interaction between polypyrrole and methanol vapor. J. Phys. Chem. 96, 8662–8666 (1992)CrossRefGoogle Scholar
  90. 90.
    D. Das, P. Choudhury, L.J. Borthakur, I.R. Kamrupi, U. Gogoi, S.K. Dolui, Methanol vapor sensor based on poly(styrene-co-butylacrylate)/polypyrrole-EG core–shell nanocomposites. Sensors Actuators B Chem. 199, 320–329 (2014)CrossRefGoogle Scholar
  91. 91.
    J.B. Chang, V. Liu, V. Subramanian, K. Sivula, C. Luscombe, A. Murphy, J. Liu, J.M.J. Fréchet, Printable polythiophene gas sensor array for low-cost electronic noses. J. Appl. Phys. 100, 014506 (2006)CrossRefGoogle Scholar
  92. 92.
    V.C. Gonçalves, B.M. Nunes, D.T. Balogh, C.A. Olivati, Detection of volatile organic compounds using a polythiophene derivative. Phys. Status Solidi A 207, 1756–1759 (2010)CrossRefGoogle Scholar
  93. 93.
    Y. Li, L. Hong, M. Yang, Crosslinked and quaternized poly(4-vinylpyridine)/polypyrrole composite as a potential candidate for the detection of low humidity. Talanta 75, 412–417 (2008)PubMedCrossRefGoogle Scholar
  94. 94.
    P.-G. Su, Y.-P. Chang, Low-humidity sensor based on a quartz-crystal microbalance coated with polypyrrole/Ag/TiO2 nanoparticles composite thin films. Sensors Actuators B Chem. 129, 915–920 (2008)CrossRefGoogle Scholar
  95. 95.
    A. Sun, Z. Li, T. Wei, Y. Li, P. Cui, Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sensors Actuators B Chem. 142, 197–203 (2009)CrossRefGoogle Scholar
  96. 96.
    W.M. Sears, The effect of humidity on the electrical conductivity of mesoporous polythiophene. Sensors Actuators B Chem. 130, 661–667 (2008)CrossRefGoogle Scholar
  97. 97.
    S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, K. Yase, Influence of moisture on device characteristics of polythiophene-based field-effect transistors. J. Appl. Phys. 95, 5088 (2004)CrossRefGoogle Scholar
  98. 98.
    A. Akbarinejad, A. Ghoorchian, M. Kamalabadi, N. Alizadeh, Electrospun soluble conductive polypyrrole nanoparticles for fabrication of highly selective n-butylamine gas sensor. Sensors Actuators B Chem. 236, 99–108 (2016)CrossRefGoogle Scholar
  99. 99.
    D.B. Kamblea, A.K. Sharma, J.B. Yadav, V.B. Patil, R.S. Devan, A.A. Jatratkar, M.A. Yewale, V.V. Ganbavle, S.D. Pawar, Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application. Sensors Actuators B Chem. 244, 522–530 (2017)CrossRefGoogle Scholar
  100. 100.
    V.C. Gonçalves, D.T. Balogh, Optical VOCs detection using poly(3-alkylthiophenes) with different side-chain lengths. Sensors Actuators B Chem. 142, 55–60 (2009)CrossRefGoogle Scholar
  101. 101.
    J. Cerón Solís, E. De la Rosa, E. Peña Cabrera, Absorption and refractive index changes of poly (3-octylthiophene) under NO2 gas exposure. Opt. Mater. 29, 167–172 (2006)CrossRefGoogle Scholar
  102. 102.
    J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors. Nat. Mater. 2, 19–24 (2003)PubMedCrossRefGoogle Scholar
  103. 103.
    V.C. Gonçalves, D.T. Balogh, Optical chemical sensors using polythiophene derivatives as active layer for detection of volatile organic compounds. Sensors Actuators B Chem. 162, 307–312 (2012)CrossRefGoogle Scholar
  104. 104.
    H. Yoon, Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3, 524–549 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    M.R. Cavallari, J.E. Izquierdo, G.S. Braga, E.A. Dirani, M.A. Pereira-da-Silva, E.F. Rodríguez, F.J. Fonseca, Enhanced sensitivity of gas sensor based on poly (3-hexylthiophene) thin-film transistors for disease diagnosis and environment monitoring. Sensors 15, 9592–9609 (2015)PubMedCrossRefGoogle Scholar
  106. 106.
    T.A. Skotheim, Handbook of Conducting Polymers (CRC Press, Boca Raton, 1997)Google Scholar
  107. 107.
    K.C. Persaud, Polymers for chemical sensing. Mater. Today 8, 38–44 (2005)CrossRefGoogle Scholar
  108. 108.
    P.C. Ewbank, R.S. Loewe, L. Zhai, J. Reddinger, G. Sauvé, R.D. McCullough, Regioregular poly (thiophene-3-alkanoic acid)s: Water soluble conducting polymers suitable for chromatic chemosensing in solution and solid state. Tetrahedron 60, 11269–11275 (2004)CrossRefGoogle Scholar
  109. 109.
    D. Aussawasathien, S. Sahasithiwat, L. Menbangpung, Electrospun camphorsulphonic acid doped poly (o-toluidine)-polystyrene composite fibers: Chemical vapour sensing. Synth. Met. 158, 259–263 (2008)CrossRefGoogle Scholar
  110. 110.
    D. Patil, K. Kolhe, H.S. Potdar, P. Patil, Investigation of poly(o-anisidine)-SnO2 nanocomposites for fabrication of low temperature operative liquefied petroleum gas sensor. J. Appl. Phys. 110, 124501 (2011). Scholar
  111. 111.
    P.M. Raotole, R.S. Khadayate, Deposition and characterization of poly(O-anisidine)/TiO2 nanocomposite for gas sensing application. Int. J. Polym. Sci. Eng. 1, 1–7 (2105)Google Scholar
  112. 112.
    L. Valentini, V. Bavastrello, E. Stura, I. Armentano, C. Nicolini, J.M. Kenny, Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine) nanocomposite material. Chem. Phys. Lett. 383, 617–622 (2004)CrossRefGoogle Scholar
  113. 113.
    G. Casalbore-Miceli, A. Zanelli, A.W. Rinaldi, N. Camaioni, M.J. Yang, Y. Li, E.M. Girotto, Electric properties of poyelectrolyte films in moist solvents. Sensors Actuators B Chem. 125, 120–125 (2007)CrossRefGoogle Scholar
  114. 114.
    F. Tanaka, T. Kawai, S. Kojima, K. Yoshino, Electrical and optical properties of poly(3-alkoxythiophene) and their application for gas sensor. Synth. Met. 102, 1358–l359 (1999)CrossRefGoogle Scholar
  115. 115.
    A.A. Athawale, M.V. Kulkarni, Polyaniline and its substituted derivatives as sensors for aliphatic alcohol. Sensors Actuators B Chem. 67, 173–177 (2000)CrossRefGoogle Scholar
  116. 116.
    S.P. Surwade, S.R. Agnihotra, V. Dua, S.K. Manohar, Nitrogen dioxide vapor detection using poly-o-toluidine. Sensors Actuators B Chem. 143, 454–457 (2009)CrossRefGoogle Scholar
  117. 117.
    X. Li, Y. Wang, X. Yang, J. Chen, H. Fu, T. Cheng, Y. Wang, Conducting polymers in environmental analysis. Trends Anal. Chem. 39, 163–179 (2012)CrossRefGoogle Scholar
  118. 118.
    P.N. Barret, S.K. Ling-Chung, Conducting polymers gas sensors part III: Results for four different polymers and five different vapours. Sensors Actuators 20, 287–292 (1989)CrossRefGoogle Scholar
  119. 119.
    B.P.J.D.L. Castelo, N.M. Ratcliff, P.S. Sivanand, The synthesis of novel 3-substitutedpyrrole monomers processing chiral side groups: A study of their chiral discrimination properties. Synth. Met. 139, 43–55 (2003)CrossRefGoogle Scholar
  120. 120.
    S. Paul, N.N. Chavan, S. Radhakrishnan, Polypyrrole functionalized with ferrocenyl derivative as a rapid carbon monoxide sensor. Synth. Met. 159, 415–418 (2009)CrossRefGoogle Scholar
  121. 121.
    K.H. Lee, M.L. Kennedy, M. Buchalova, D.R. Benson, Thermodynamics of carbon monoxide binding by helical hemoprotein models: The effect of a competing intermolecular ligand. Tetrahedron 56, 9725–9731 (2000)CrossRefGoogle Scholar
  122. 122.
    S. Paul, M. Joseph, Polypyrrole functionalized with FePcTSA for NO2 sensor application. Sensors Actuators B Chem. 140, 439–444 (2009)CrossRefGoogle Scholar
  123. 123.
    K. Thuwachaowsoan, D. Chotpattananont, A. Sirivat, R. Rujiravanit, J.W. Schwank, Electrical conductivity responses and interactions of poly(3-thiopheneacetic acid)/zeolites L, mordenite, beta and H2. Mater. Sci. Eng. B 140, 23–30 (2007)CrossRefGoogle Scholar
  124. 124.
    M. Krondak, G. Broncová, S. Anikin, A. Merz, V.M. Mirsky, Chemosensitive properties of poly-4, 4′-dialkoxy-2, 2′-bipyrroles. J. Solid State Electrochem. 10, 185–191 (2006)CrossRefGoogle Scholar
  125. 125.
    U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 614, 1–26 (2008)CrossRefGoogle Scholar
  126. 126.
    L. Torsi, A. Tafuri, N. Cioffi, M. Gallazzi, A. Sassella, L. Sabbatini, P. Zambonin, Regioregular polythiophene field-effect transistors employed as chemical sensors. Sensors Actuators B Chem. 93, 257–262 (2003)CrossRefGoogle Scholar
  127. 127.
    L. Torsi, M.C. Tanese, N. Cioffi, M.C. Gallazzi, L. Sabbatini, P.G. Zambonin, Alkoxy-substituted polyterthiophene thin-film-transistors as alcohol sensors. Sensors Actuators B Chem. 98, 204–207 (2004)CrossRefGoogle Scholar
  128. 128.
    M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang, S. Zhang, W. Huang, S. Wu, Gas sensing properties of SnO2 hollow spheres/polythiophene inorganic–organic hybrids. Sensors Actuators B Chem. 146, 8–13 (2010)CrossRefGoogle Scholar
  129. 129.
    S. Pirsa, N. Alizadeh, A selective DMSO gas sensor based on nanostructured conducting polypyrrole doped with sulfonate anion. Sensors Actuators B Chem. 168, 303–309 (2012)CrossRefGoogle Scholar
  130. 130.
    R.S. Dudhe, S. Tiwari, H.N. Raval, M.A. Khaderbad, R. Singh, J. Sinha, M. Yedukondalu, M. Ravikanth, A. Kumar, V.R. Rao, Explosive vapor sensor using poly (3-hexylthiophene) and Cu II tetraphenylporphyrin composite based organic field effect transistors. Appl. Phys. Lett. 93, 263306 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Omaish Ansari
    • 1
    • 2
    Email author
  • Sajid Ali Ansari
    • 3
  • Moo Hwan Cho
    • 2
  • Shahid Pervez Ansari
    • 4
  • Mohamed Shaaban Abdel-wahab
    • 1
    • 5
  • Ahmed Alshahrie
    • 1
    • 6
  1. 1.Center of NanotechnologyKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.School of Chemical EngineeringYeungnam UniversityGyeongbukSouth Korea
  3. 3.Department of Energy and Materials EngineeringDongguk UniversitySeoulRepublic of Korea
  4. 4.Department of Applied Chemistry, Faculty of Engineering and TechnologyAligarh Muslim UniversityAligarhIndia
  5. 5.Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced SciencesBeni-Suef UniversityBeni-SuefEgypt
  6. 6.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations