Skip to main content

Composites and Nanocomposites

  • Reference work entry
  • First Online:
Functional Polymers

Abstract

In general, a composite is usually made up of two or more materials having two or more phases with heterogeneous characters, where at least one is in a microscopic scale. In addition, a composite can be classified as a nanocomposite when at least one of the reinforcement dimensions is in the nanometer range (from 10 to 200 nm). Both composites and nanocomposites have many promising mechanical, thermal, electrical, optical, and other interesting properties that make them a field of current active research interest both in academia and industry. This chapter selectively covers both fundamental and applied research involved mostly with polymer-based composites and nanocomposites along with a brief discussion on the future research directions for further improvements on high-performance composites and nanocomposites for a variety of conventional and high-tech applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University Press, 1996), pp. 2–92

    Google Scholar 

  2. (a) J. Luo, I.M. Danmiel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63, 1607–1616 (2004); (b) P. Meneghetti, S. Qutubuddin, Synthesis, thermal properties and application of polymer-clay nanocomposites. Thermoch. Act. 442, 74–77 (2006); (c) S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003); M. Bhattacharya, Polymer Nanocomposites – A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers by Materials, 9(4), 262 (2016); https://doi.org/10.3390/ma9040262; http://creativecommons.org/licenses/by/4.0/

    Article  PubMed Central  CAS  Google Scholar 

  3. P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2003), pp. 1–117

    Book  Google Scholar 

  4. C. Zeng, L.J. Lee, Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules 34, 4098–4103 (2001)

    Article  CAS  Google Scholar 

  5. R.S. Fertig, M.R. Garnich, Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite. Compos. Sci. Technol. 64, 2577–2258 (2004)

    Article  CAS  Google Scholar 

  6. W.E. Teo, S. Ramakrishna, Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos. Sci. Technol. 69, 1804–1817 (2009)

    Article  CAS  Google Scholar 

  7. Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)

    Article  CAS  Google Scholar 

  8. C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 36, 333–368 (2006)

    Article  CAS  Google Scholar 

  9. K.M. Sawicka, P. Gouma, Electrospun composite nanofibers for functional applications. J. Nanopart. Res. 8, 769–781 (2006)

    Article  CAS  Google Scholar 

  10. J.H. He, Y.Q. Wan, J.Y. Yu, Application of vibration technology to polymer electrospinning. Int. J. Nonlinear Sci. Numer. Simul. 5, 253–262 (2004)

    CAS  Google Scholar 

  11. S. Homaeigohar, M. Elbahri, Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes. J. Colloid Interface Sci. 372, 6–15 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin – Nanotube composite. Science 265(5176), 1212–1214 (1994)

    Article  CAS  PubMed  Google Scholar 

  13. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  CAS  Google Scholar 

  14. G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19), 4749–4757 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric Nanocomposites for automotive applications. Adv. Mater. 12(3), 1835 (2000)

    Article  CAS  Google Scholar 

  16. P. Svoboda, C. Zeng, H. Wang, L. Lee, D. Tomasko, Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J. Appl. Polym. Sci 85(7), 1562–1570 (2002)

    Article  CAS  Google Scholar 

  17. P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2003), pp. 11–121

    Book  Google Scholar 

  18. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites – A review. Mater. Sci. Eng. A 393, 1–11 (2005)

    Article  CAS  Google Scholar 

  19. M. Berta, C. Lindsay, G. Pans, G. Camino, Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)

    Article  CAS  Google Scholar 

  20. (a) J. Cho, M. Joshi, C. Sun, Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 66(13), 1941–1952 (2006); (b) C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)

    Google Scholar 

  21. (a) R. Singh, M. Zhang, D. Chan, Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction. J. Mater. Sci. 37(4), 781–788 (2002); (b) P. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc, New York, 1997), pp. 6–10

    Google Scholar 

  22. (a) L. Lopez, B. Song, H. Hahn, The effect of particle size in alumina nanocomposites, in Proceedings of the 14th International Conference on Composite Materials (ICCM-14), July 14–18, (San Diego, 2003); (b) C. Suryanarayana, F.H. Froes, The structure and mechanical properties of metallic nanocrystals. Metall. Trans. A. 23, 1071–1081 (1992)

    Google Scholar 

  23. (a) H. Zhang, L.C. Tang, Z. Zhang, K. Friedrich, S. Sprenger, Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer 49(17), 3816–3825 (2008); (b) A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, S. Gong, Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos. Sci. Technol. 68, 768–776 (2008)

    Google Scholar 

  24. (a) C. Cho, C. Sun, A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites. Comput. Mater. Sci. 41(1), 54–62 (2007); (b) M.A. Osman, J.E.P. Rupp, U.W. Suter, Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46, 8202–8209 (2005)

    Google Scholar 

  25. (a) A. Adnan, C. Sun, H. Mahfuz, A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos. Sci. Technol. 67(3), 348–356 (2007); (b) J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)

    Google Scholar 

  26. (a) D.P.N. Vlasveld, H.E.N. Bersee, S.J. Picken, Nanocomposite matrix for increased fibre composite strength. Polymer 46(23), 0269–10278 (2005); (b) J.H. Chang, Y.U. An, D. Cho, E.P. Giannelis, Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)

    Google Scholar 

  27. (a) M.F. Uddin, C. Sun, Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7), 1637–1643 (2008); (b) T. Gupakumar, D. Page, Compounding of Nanocomposites by Thermokinetic mixing. J. Appl. Polym. Sci. 96(5), 1557–1563 (2005)

    Google Scholar 

  28. (a) T. Naganuma, Y. Kagawa, Effect of particle size on the optically transparent nano meter-order glass particle-dispersed epoxy matrix composites. Compos. Sci. Technol. 62(9), 1187–1189 (2002); (b) E. Lee, D. Mielewski, R. Baird, Exfoliation and dispersion enhancement in polypropylene Nanocomposites by in-situ melt phase Ultrasonication. Polym. Eng. Sci 44(9), 1773–1782 (2004)

    Google Scholar 

  29. (a) S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003); (b) Y. Wang, F. Chen, K. Wu, Twin-screw extrusion compounding of polypropylene/Organoclay Nanocomposites modified by Maleated polypropylenes. J. Appl. Polym. Sci. 93(1), 100–112 (2004)

    Google Scholar 

  30. (a) F. Gao, Clay/polymer composites: The story. Mater. Today 7(11), 50–55 (2004); (b) S.C. Tjong, Y.Z. Meng, A.S. Hay, Novel preparation and properties of polypropylene-vermiculite Nanocomposites. Chem. Mater. 14(1), 44–51 (2002)

    Google Scholar 

  31. (a) M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mat. Sci. Eng. R. Rep. 28(1), 1–63 (2000); (b) M. Kato, M. Matsushita, K. Fukumori, Development of an e-production method for a polypropylene-clay nanocomposite. Polym. Eng. Sci. 44(7), 1205–1211 (2004)

    Google Scholar 

  32. (a) A. Okada, A. Usuki, The chemistry of polymer-clay hybrids. Mat. Sci. Eng. C. 3(2), 109–115 (1995); (b) T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 9929 (2001)

    Google Scholar 

  33. (a) J.L. Tsai, M.D. Wu, Organoclay effect on mechanical responses of glass/epoxy nanocomposites. J. Compos. Mater. 42(6), 553–568 (2008); (b) E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites, review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)

    Google Scholar 

  34. (a) D. Gong, C. Grimes, O. K. Varghese, W. Hu, R. Singh, Z. Chen, et. al. Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16(12):3331–3334 (2001); (b) P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, R. Mulhaupt, Poly(propylene)/Organoclay Nanocomposite formulation: Influence of Compatibilizer functionality and Organoclay modification. Macromol. Mater. Eng. 275, 8–17 (2000)

    Google Scholar 

  35. (a) Z. Wang, R.P. Gao, J. Gole, J. Stout, Silica nanotubes and nanofiber arrays. Adv. Mater. 12(24), 1938–1940 (2001); (b) M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, M.N. Bureau, J. Denault, Polyolefin Nanocomposites: Formulation and development. Polym. Eng. Sci. 44(7), 1212–1219 (2004)

    Google Scholar 

  36. T. Taguchi, N. Igawa, H. Yamamoto, S. Jitsukawa, Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 88(2), 459–461 (2005)

    Article  CAS  Google Scholar 

  37. (a) S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991); (b) M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001)

    Google Scholar 

  38. (a) H. Rajoria, N. Jalili, Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos. Sci. Technol. 65(14), 2079–2093 (2005); (b) M. Alexander, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28, 1–63 (2000)

    Google Scholar 

  39. (a) N. Tai, M. Yeh, J. Liu, Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the Reiforcement. Carbon 42, 2735–2737 (2004); (b) E.P. Giannelis, R. Krishnamoorti, E. Manias, Polymer-silicate nanocomposites: Modelsystems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147 (1999)

    Google Scholar 

  40. (a) F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Compos. Sci. Technol. 65(15), 2300–2313 (2005); (b) P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview. J. Appl. Clay Sci. 15, 11–29 (1999)

    Google Scholar 

  41. (a) S.M. Reduwan Billah, Synthesis of photochromic dye doped cellulose composite based electrospun Nanofibres for high-tech applications, in Nanocellulose, Cellulose Nanofibers and Cellulose Nanocomposites: Synthesis and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 425–442. ISBN: 978-1-63483-885-6; (b) E. Thostenson, W. Li, D. Wang, Z. Ren, T. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002); (c) A.K. Mohanty, L.T. Drzal, M. Misra, Nano reinforcement of bio-based polymers-the hope and reality. Polym. Mater. Sci. Eng. 88, 60–61 (2003)

    Google Scholar 

  42. (a) S.M. Reduwan Billah, Synthesis of quantum dot doped electrospun cellulose and other polymer based-nanocomposites and their applications, in Nanocellulose, Cellulose Nanofibers and Cellulose Nanocomposites: Synthesis and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 387–424. ISBN: 978-1-63483-885-6; (b) R. Sager, P. Klein, D. Lagoudas, Q. Zhang, J. Liu, L. Dai, et al., Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69(7), 898–904 (2009); (c) R. Hiroi, S.S. Ray, M. Okamoto, Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromol. Rapid. Commun. 25, 1359 (2004)

    Google Scholar 

  43. (a) K.H. Hung, W.S. Kuo, T.H. Ko, S.S. Tzeng, C.F. Yan, Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers. Compos. A: Appl. Sci. Manuf. 40(8), 1299–1304 (2009); (b) C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825–8830 (2002); (c) S.M. Reduwan Billah, Environmental stimuli-responsive electrospun nanofibres and scaffolds for advanced textile applications, in Conference Proceeding of 2nd NED International Textile Conference, 17th–18th February, (Karachi, 2016), pp. 1–9

    Google Scholar 

  44. (a) S.M. Reduwan Billah, Chapter 8. Environmentally responsive smart cellulose composites, in Cellulose and Cellulose Derivatives: Synthesis, Modification and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 211–242, ISBN: 9781634831277 (hardback), 978-1-63483-150-5 (e-book); (b) V.P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, et al., Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5(6), 457–462 (2006); (c) P. PoÈtschke, A. Bhattacharyya, A. Janke, H. Goering, Melt-mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10, 389–404 (2003)

    Google Scholar 

  45. (a) E.J. Garcia, B.L. Wardle, A.J. Hart, Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39(6), 1065–1070 (2008); (b) R. Andrews, M.C. Wisenberger, Carbon nanotube polymer composites. Curr. Opinion. Solid State Mater. Sci. 8, 31–37 (2004)

    Google Scholar 

  46. (a) F. Lange, The interaction of a crack front with a second-phase dispersion. Phil. Mag. 22(179), 983–992 (1970); (b) E. Hackett, E. Manias, E.P. Giannelis, Molecular dynamics simulations of organically modified layered silicates. J. Chem. Phys. 108, 7410–7415 (1998)

    Google Scholar 

  47. (a) A. Kinloch, B. Johnsen, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms in novel nano-silica epoxy polymers, in Proceedings of the 5th Australasian Congress on Applied Mechanics: Engineers, (Australia), p. 441; (b) E. Hackett, E. Manias, E.P. Giannelis, Computer simulation studies of PEO/layered silicate nanocomposites. Chem. Mater. 12, 2161–2167 (2000)

    Google Scholar 

  48. (a) F.F. Lange, K.C. Radford, Fracture energy of an epoxy composite system. J. Mater. Sci. 6(9), 1197–1203 (1971); (b) D.L. Vanderhart, A. Asano, J.W. Gilman, NMR measurements related to clay dispersion quality and organic-modifier stability in nylon 6/clay nanocomposites. Macromolecules 34(12), 3819–3822

    Google Scholar 

  49. (a) K.T. Faber, A.G. Evans, Crack deflection processes – I. Theory. Acta Metall. 31(4), 565–576 (1983); (b) P. Kumar, D. Depan, N.S. Tomer, R.P. Singh, Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)

    Google Scholar 

  50. (a) H. Zhang, Z. Zhang, K. Friedrich, C. Eger, Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54(7), 1833–1842 (2006); (b) P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)

    Google Scholar 

  51. (a) B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2), 530–541 (2007); (b) G. William, P.V. Kamat, Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)

    Google Scholar 

  52. M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42, 4501–4507 (2001)

    Article  CAS  Google Scholar 

  53. N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6, 2732–2739 (2005)

    Article  CAS  PubMed  Google Scholar 

  54. S.M. Lai, W.C. Chen, X.S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1- the effect of compatibilizers on optical transmittance and mechanical properties. Compos. Part A 40, 754–765 (2009)

    Article  CAS  Google Scholar 

  55. R.N. Choi, C.I. Cheigh, S.Y. Lee, M.S. Chung, Preparation and properties of polypropylene/clay nanocomposites for food packaging. J. Food Sci. 76(8), 62–67 (2011)

    Article  CAS  Google Scholar 

  56. J.P.G. Villaluenge, M. Khayer, M.A. Lo’pez-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J. 43, 1132–1143 (2007)

    Article  CAS  Google Scholar 

  57. L. Zhu, M. Xanthos, Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J. Appl. Polym. Sci. 93, 1891–1899 (2004)

    Article  CAS  Google Scholar 

  58. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  CAS  Google Scholar 

  59. W. Chen, Q. Xu, R.Z. Yuan, Modification of poly(ethylene oxide) with polymethylmethacrylate in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett. 18, 711–713 (1999)

    Article  CAS  Google Scholar 

  60. H.R. Fischer, L.H. Gielgens, T.P.M. Koster, Nanocomposites from polymers and layered materials. Acta Polym. 50, 122–126 (1999)

    Article  CAS  Google Scholar 

  61. (a) E.A. Stefanescu, C. Daranga, C. Stefanescu, Insight into the broad field of polymer Nanocomposites: From carbon nanotubes to clay Nanoplatelets, via metal nanoparticles. Material 2, 2095–2153 (2009); (b) E. Loizou, P. Butler, L. Porcar, E. Kesselman, Y. Talmon, A. Dundigalla, G. Schmidt, Large scale structures in nanocomposite hydrogels. Macromolecules 38, 2047–2049 (2005)

    Google Scholar 

  62. E. Loizou, P. Butler, L. Porcar, G. Schmidt, Dynamic responses in nanocomposite hydrogels. Macromolecules 39, 1614–1619 (2006)

    Article  CAS  Google Scholar 

  63. G. Schmidt, A.I. Nakatani, P.D. Butler, A. Karim, C.C. Han, Shear orientation of viscoelastic polymer-clay solutions probed by flow birefringence and SANS. Macromolecules 33, 7219–7222 (2000)

    Article  CAS  Google Scholar 

  64. G. Schmidt, A.I. Nakatani, C.C. Han, Rheology and flow-birefringence from viscoelastic polymer-clay solutions. Rheol. Acta 41, 45–54 (2002)

    Article  CAS  Google Scholar 

  65. E.A. Stefanescu, A. Dundigalla, V. Ferreiro, E. Loizou, L. Porcar, I. Negulescu, J. Garno, G. Schmidt, Supramolecular structures in nanocomposite multilayered films. Phys. Chem. Chem. Phys. 8, 1739–1746 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. E.A. Stefanescu, W.H. Daly, I.I. Negulescu, Hybrid polymer/clay nanocomposites: Effect of clay size on the structure of multilayered films. Macromol. Mater. Eng. 293, 651–656 (2008)

    Article  CAS  Google Scholar 

  67. X. Dai, J. Xu, X. Guo, Y. Lu, D. Shen, N. Zhao, X. Luo, X. Zhang, Study on structure and orientation action of polyurethane nanocomposites. Macromolecules 37, 5615–5623 (2004)

    Article  CAS  Google Scholar 

  68. T. Chatterjee, C.A. Mitchell, V.G. Hadjiev, R. Krishnamoorti, Hierarchical polymer-nanotube composites. Adv. Mater. 19, 3850–3853 (2007)

    Article  CAS  Google Scholar 

  69. H. Jiang, K. Moon, Y. Li, C.P. Wong, Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 18, 2969–2973 (2006)

    Article  CAS  Google Scholar 

  70. P.Y. Keng, I. Shim, B.D. Korth, J.F. Douglas, J. Pyun, Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles. ACS Nano 1, 279–292 (2007)

    Article  CAS  PubMed  Google Scholar 

  71. H.Y. Kwong, Y.W. Wong, K.H. Wong, Temperature dependence of magnetoresistivity of cobalt-polytetrafluoroethylene granular composite films. J. Appl. Phys. 102, 114303 (2007)

    Article  CAS  Google Scholar 

  72. K. Pirkkalainen, K. Leppänen, U. Vainio, M.A. Webb, T. Elbra, T. Kohout, A. Nykänen, J. Ruokolainen, N. Kotelnikova, R. Serimaa, Nanocomposites of magnetic cobalt nanoparticles and cellulose. Eur. Phys. J. D. 49, 333–342 (2008)

    Article  CAS  Google Scholar 

  73. G.T. Mohanraj, P.K. Dey, T.K. Chaki, A. Chakraborty, D. Khastgir, Effect of temperature, pressure, and composition on DC resistivity and AC conductivity of conductive styrenebutadiene rubber-particulate metal alloy nanocomposites. Polym. Compos. 28, 696–704 (2007)

    Article  CAS  Google Scholar 

  74. M. Panda, V. Srinivas, A.K. Thakur, Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites. Appl. Phys. Lett. 93, 242908 (2008)

    Article  CAS  Google Scholar 

  75. O.P. Valmikanathan, O. Ostroverkhova, I.S. Mulla, K. Vijayamohanan, S.V. Atre, The effect of synthesis procedure on the structure and properties of palladium/polycarbonate nanocomposites. Polymer 49, 3413–3418 (2008)

    Article  CAS  Google Scholar 

  76. Z.Y. Tang, N.A. Kotov, One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005)

    Article  CAS  Google Scholar 

  77. S.L. Tripp, R.E. Dunin-Borkowski, A. Wei, Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. Int. Ed. 42, 5591–5593 (2003)

    Article  CAS  Google Scholar 

  78. D. Farrell, Y. Ding, S.A. Majetich, C. Sanchez-Hanke, C.C. Kao, Structural ordering effects in Fe nanoparticle two- and three-dimensional arrays. J. Appl. Phys. 95, 6636–6638 (2004)

    Article  CAS  Google Scholar 

  79. M. Hilgendorff, B. Tesche, M. Giersig, Creation of 3-D crystals from single cobalt nanoparticles in external magnetic fields. Aust. J. Chem. 54, 497–501 (2001)

    Article  CAS  Google Scholar 

  80. G. Carotenuto, B. Martorana, P. Perlo, L. Nicolais, A universal method for the synthesis of metal and metal sulfide clusters embedded in polymer matrices. J. Mater. Chem. 13, 2927–2930 (2003)

    Article  CAS  Google Scholar 

  81. M.V. Jose, B.W. Steinert, V. Thomas, D.R. Dean, M.R. Abdalla, G. Price, G.M. Janowski, Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48, 1096–1104 (2007)

    Article  CAS  Google Scholar 

  82. K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, D.N. Bikiaris, Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(E-caprolactone) nanocomposites. Compos. Sci. Technol. 67, 2165–2174 (2007)

    Article  CAS  Google Scholar 

  83. J.M. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J. Phys. Chem. C 111, 11186–11192 (2007)

    Article  CAS  Google Scholar 

  84. T.N. Abraham, R. Debdatta, S. Siengchin, J. Karger-Kocsis, Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites. J. Appl. Polym. Sci. 110, 2094–2101 (2008)

    Article  CAS  Google Scholar 

  85. A.K. Narh, L. Jallo, K.Y. Rhee, The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polym. Compos. 29, 809–817 (2008)

    Article  CAS  Google Scholar 

  86. Y.S. Song, Effect of surface treatment for carbon nanotubes on morphological and rheological properties of poly(ethylene oxide) nanocomposites. Polym. Eng. Sci. 46, 1350–1357 (2006)

    Article  CAS  Google Scholar 

  87. R.D. Averett, M.L. Realff, K.I. Jacob, The effects of fatigue and residual strain on the mechanical behavior of poly(ethylene terephthalate) unreinforced and nanocomposite fibers. Compos. A: Appl. Sci. Manuf. 40, 709–723 (2009)

    Article  CAS  Google Scholar 

  88. B.W. Steinert, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET-carbon nanotube composite films. Polymer 50, 898–904 (2009)

    Article  CAS  Google Scholar 

  89. A.C. Brosse, S. Tence-Girault, P.M. Piccione, L. Leibler, Effect of multi-walled carbon nanotubes on the lamellae morphology of polyamide-6. Polymer 49, 4680–4686 (2008)

    Article  CAS  Google Scholar 

  90. Y. Li, H. Shimizu, Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures. Macromolecules 41, 5339–5344 (2008)

    Article  CAS  Google Scholar 

  91. C.A. Mitchell, R. Krishnamoorti, Dispersion of single-walled carbon nanotubes in poly(epsiloncaprolactone). Macromolecules 40, 1538–1545 (2007)

    Article  CAS  Google Scholar 

  92. T. Chatterjee, R. Krishnamoorti, Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41, 5333–5338 (2008)

    Article  CAS  Google Scholar 

  93. T. Chatterjee, K. Yurekli, V.G. Hadjiev, R. Krishnamoorti, Single-walled carbon nanotube dispersions in poly(ethylene oxide). Adv. Funct. Mater. 15, 1832–1838 (2005)

    Article  CAS  Google Scholar 

  94. H.J. Yoo, Y.C. Jung, J.W. Cho, Effect of interaction between poly(ethylene terephthalate) and carbon nanotubes on the morphology and properties of their nanocomposites. J. Polym. Sci. B Polym. Phys. 46, 900–910 (2008)

    Article  CAS  Google Scholar 

  95. B.W. Ahn, Y.S. Chi, T.J. Kang, Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J. Appl. Polym. Sci. 110, 4055–4063 (2008)

    Article  CAS  Google Scholar 

  96. K. Wang, W.W. Li, C. Gao, Poly(epsilon-caprolactone)-functionalized carbon nanofibers by surface-initiated ring-opening polymerization. J. Appl. Polym. Sci. 105, 629–640 (2007)

    Article  CAS  Google Scholar 

  97. N. Wakamatsu, H. Takamori, T. Fujigaya, N. Nakashima, Self-organized single-walled carbon nanotube conducting thin films with honeycomb structures on flexible plastic films. Adv. Funct. Mater. 19, 311–316 (2009)

    Article  CAS  Google Scholar 

  98. H. Chen, Z. Liu, P. Cebe, Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer 50, 872–880 (2009)

    Article  CAS  Google Scholar 

  99. G.J. Hu, X.Y. Feng, S.M. Zhang, M.S. Yang, Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. J. Appl. Polym. Sci. 108, 4080–4089 (2008)

    Article  CAS  Google Scholar 

  100. A. Nyczyk, M. Hasik, W. Turek, A. Sniechota, Nanocomposites of polyaniline, its derivatives and platinum prepared using aqueous Pt sol. Synth. Met. 159, 561–567 (2009)

    Article  CAS  Google Scholar 

  101. G. Zotti, B. Vercelli, A. Berlin, Gold nanoparticle linking to polypyrrole and polythiophene: Monolayers and multilayers. Chem. Mater. 20, 6509–6516 (2008)

    Article  CAS  Google Scholar 

  102. S.W. Huang, K.G. Neoh, E.T. Kang, H.S. Han, K.L. Tan, Palladium-containing polyaniline and polypyrrole microparticles. J. Mater. Chem. 8, 1743–1748 (1998)

    Article  CAS  Google Scholar 

  103. J.L. Wilson, P. Poddar, N.A. Frey, H. Srikanth, K. Mohomed, J.P. Harmon, S. Kotha, J. Wachsmuth, Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J. Appl. Phys. 95, 1439 (2004)

    Article  CAS  Google Scholar 

  104. G. Yurkov, A. Fionov, Y. Koksharov, V. Koleso, S. Gubin, Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles. Inorg. Mater. 43, 834–844 (2007)

    Article  CAS  Google Scholar 

  105. A. Sarkar, S. Kapoor, G. Yashwant, H.G. Salunke, T. Mukherjee, Preparation and characterization of ultrafine co and Ni particles in a polymer matrix. J. Phys. Chem. B 109, 7203–7207 (2005)

    Article  CAS  PubMed  Google Scholar 

  106. Y. Sun, J. Sun, M. Liu, Q. Chen, Mechanical strength of carbon nanotube-nickel nanocomposites. Nanotechnology 18, 505704–505704 (2007)

    Article  CAS  Google Scholar 

  107. L. Balan, M. Jin, J.P. Malval, H. Chaumeil, A. Defoin, L. Vidal, Fabrication of silver nanoparticle-embedded polymer promoted by combined photochemical properties of a 2,7-diaminofluorene derivative dye. Macromolecules 41, 9359–9365 (2008)

    Article  CAS  Google Scholar 

  108. A. Dundigalla, S. Lin Gibson, V. Ferreiro, M.M. Malwitz, G. Schmidt, Unusual multi-layered structures in PEO/laponite nanocomposite films. Macromol. Rapid Commun. 26, 143–149 (2005)

    Article  CAS  Google Scholar 

  109. M.M. Elmahdy, K. Chrissopoulou, A. Afratis, G. Floudas, S.H. Anastasiadis, Effect of confinement on polymer segmental motion and ion mobility in PEO/layered silicate nanocomposites. Macromolecules 39, 5170–5173 (2006)

    Article  CAS  Google Scholar 

  110. H.I. Inyang, S. Bae, G. Mbamalu, S.-W. Park, Aqueous polymer effects on volumetric swelling of Na-montmorillonite. J. Mater. Civ. Eng. 19:1, 84–90 (2007)

    Article  CAS  Google Scholar 

  111. A. Loiseau, J.F. Tassin, Model nanocomposites based on laponite and poly(elhylene oxide): Preparation and rheology. Macromolecules 39, 9185–9191 (2006)

    Article  CAS  Google Scholar 

  112. W. Loyens, F.H.J. Maurer, P. Jannasch, Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes. Polymer 46, 7334–7345 (2005)

    Article  CAS  Google Scholar 

  113. W.L. Qiu, M. Pyda, E. Nowak-Pyda, A. Habenschuss, B. Wunderlich, Reversibility between glass and melting transitions of poly(oxyethylene). Macromolecules 38, 8454–8467 (2005)

    Article  CAS  Google Scholar 

  114. E.A. Stefanescu, P.J. Schexnailder, A. Dundigalla, I.I. Negulescu, G. Schmidt, Structure and thermal properties of multilayered Laponite/PEO nanocomposite films. Polymer 47, 7339–7348 (2006)

    Article  CAS  Google Scholar 

  115. E.A. Stefanescu, C. Stefanescu, W.H. Daly, G. Schmidt, I.I. Negulescu, Hybrid polymer-clay nanocomposites: A mechanical study on gels and multilayered films. Polymer 49, 3785–3794 (2008)

    Article  CAS  Google Scholar 

  116. C.B. Arias, A.A. Zaman, J. Talton, Rheological behavior and wear abrasion resistance of polyethylene oxide/laponie nanocomposites. J. Dispers. Sci. Technol. 28, 247–254 (2007)

    Article  CAS  Google Scholar 

  117. Y. Xu, B. Higgins, W.J. Brittain, Bottom-up synthesis of PS–CNF nanocomposites. Polymer 46, 799–810 (2005)

    Article  CAS  Google Scholar 

  118. C. Wang, C.-L. Huang, Y.-C. Chen, G.-L. Hwang, S.-J. Tsai, Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: Crystallization and morphological features. Polymer 49, 5564–5574 (2008)

    Article  CAS  Google Scholar 

  119. J. Shen, C. Zeng, L.J. Lee, Synthesis of polystyrene–carbon nanofibers nanocomposite foams. Polymer 46, 5218–5224 (2005)

    Article  CAS  Google Scholar 

  120. M. Mu, A.M. Walker, J.M. Torkelson, K.I. Winey, Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 49, 1332–1337 (2008)

    Article  CAS  Google Scholar 

  121. A. Chang, A. Kisliuk, S.M. Rhodes, W.J. Brittain, A.P. Sokolov, Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47, 7740–7746 (2006)

    Article  CAS  Google Scholar 

  122. M.R. Nyden, S.I. Stoliarov, Calculations of the energy of mixing carbon nanotubes with polymers. Polymer 49, 635–641 (2007)

    Article  CAS  Google Scholar 

  123. L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007)

    Article  CAS  Google Scholar 

  124. K. Putz, R. Krishnamoorti, P.F. Green, The role of interfacial interactions in the dynamic mechanical response of functionalized SWNTePS nanocomposites. Polymer 48, 3540–3545 (2007)

    Article  CAS  Google Scholar 

  125. B.H. Cipriano, A.K. Kota, A.L. Gershon, C.J. Laskowski, T. Kashiwagi, H.A. Bruck, S.R. Raghavan, Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49, 4846–4851 (2008)

    Article  CAS  Google Scholar 

  126. A.K. Kota, B.H. Cipriano, M.K. Duesterberg, A.L. Gershon, D. Powell, S.R. Raghavan, H.A. Bruck, Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40, 7400–7406 (2007)

    Article  CAS  Google Scholar 

  127. B.H. Cipiriano, T. Kashiwagi, S.R. Raghavan, Y. Yang, E.A. Grulke, K. Yamamoto, J.R. Shields, J.F. Douglas, Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48, 6086–6096 (2007)

    Article  CAS  Google Scholar 

  128. J. Cui, W.P. Wang, Y. You, C. Liu, P. Wang, Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 45, 8717–8721 (2004)

    Article  CAS  Google Scholar 

  129. G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, Y. You, Constructing polymer brushes on multiwalled carbon nanotubes by in situ reversible addition fragmentation chain transfer polymerization. Polymer 47, 5909–5918 (2006)

    Article  CAS  Google Scholar 

  130. X. Jinqi, W.B. Jeremy, A.B.. David, T. Tzu-Chia, E.M. Michael, L.W. Karen, Hierarchical inorganic-organic nanocomposites possessing amphiphilic and morphological complexities: Influence of nanofiller dispersion on mechanical performance. Adv. Funct. Mater. 18, 2733–2744 (2008)

    Article  CAS  Google Scholar 

  131. A.K. Mohanty, M. Misra, I.T. Drzal, Natural Fibers, Biopolymers and Biocomposites (CRC Press, Taylor & Francis, New York, 2005)

    Book  Google Scholar 

  132. X. Huang, A.N. Netravali, Characterization of nanoclay reinforced Phytogel- modified soy protein concentrate resin. Biomacromolecules 7, 2783–2789 (2006)

    Article  CAS  PubMed  Google Scholar 

  133. P. Iodha, A.N. Netravali, Characterization of Phytogel modified soy protein isolate resin and unidirectional flax yarn reinforced ‘green’ composites. Polym. Compos. 26, 647–659 (2005)

    Article  CAS  Google Scholar 

  134. D.N. Saheb, J.P. Jog, Natural fiber polymer composites: Review. Adv. Polym. Technol. 18(4), 351–363 (1999)

    Article  CAS  Google Scholar 

  135. W. Helbert, J.Y. Cavaille, A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behaviour. Polym. Compos. 17(4), 604–611 (1996)

    Article  CAS  Google Scholar 

  136. T. Nishino, K. Takano, K. Nakamae, Elastic-modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci. Polym. Phys. 33(11), 1647–1651 (1995)

    Article  CAS  Google Scholar 

  137. A.N. Nakagaito, H. Yano, Novel high- strength biocomposites based on micro- fibrillated cellulose having nano order unit web-like network structure. Appl. Phys. A Mater. 80(1), 155–159 (2003)

    Article  CAS  Google Scholar 

  138. I. Turner, C. Karatzas, in Natural Fibers, Plastics and Composites, ed. by F. T. Wallenberger, N. Weston, (Kluwer Academic Publishers, Boston, 2004), pp. 2–79

    Google Scholar 

  139. D.T. Grubb, I. Jelinski, Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30(10), 2860–2867 (1997)

    Article  CAS  Google Scholar 

  140. S. Salmon, S.M. Hudson, Crystal morphology, biosynthesis and physical assembly of cellulose, chitin and chitosan. J. Maccromol. Sci. C Polym. Rev. 37(2), 199–276 (1997)

    Google Scholar 

  141. A. Steinbuchel, Biopolymers – General Aspects and Special Applications, vol 10 (Wiley-VCH, Weinheim, 2003), pp. 2–342

    Google Scholar 

  142. I. Yu, K. Dean, I. Li, Polymer blends & composites from renewable resources. Prog. Polym. Sci. 31(6), 576–602 (2006)

    Article  CAS  Google Scholar 

  143. A.K. Rana, A. Mandal, B.C. Mitra, R. Jacobson, R. Rowell, A.N. Banerjee, Short jute fiber reinforced polypropylene composites. J. Appl. Polym. Sci. 69(2), 329–338 (1998)

    Article  CAS  Google Scholar 

  144. A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers. J. Prog. Polym. Sci. 24(2), 221–234 (1999)

    Article  CAS  Google Scholar 

  145. B.W. Brouwer, Natural fibre composites: Where can flax compete with glass? J. SAMPE J. 36(6), 18–23 (2000)

    CAS  Google Scholar 

  146. A. Stamboulis, C.A. Baille, T. Pejis, Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos. A Appl. Sci. Manuf. 32(8), 1105–11015 (2001)

    Article  Google Scholar 

  147. S. Chabba, A.N. Netravali, ‘Green’ composites Part 1: Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites. J. Mater. Sci. 40(23), 6263–6273 (2005)

    Article  CAS  Google Scholar 

  148. S. Chabba, A.N. Netravali, ‘Green’ Composites Part 2: Characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. J. Mater. Sci. 40(23), 6275–6282 (2005)

    Article  CAS  Google Scholar 

  149. N.K. Naik, R. Kuchibhotla, Analytical study of strength and failure behaviour of plain weave fabric composites made of twisted yarns. Compos. A: Appl. Sci. Manuf. 33(5), 697–708 (2002)

    Article  Google Scholar 

  150. N.K. Naik, in Numerical Analysis and Modeling of Composite Materials, ed. by J. W. Bull, (Blackie, London/New York, 1996), pp. 376–543

    Google Scholar 

  151. A.K. Mohanty, A.M. Khan, G. Hinrichsen, Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Compos. Sci. Technol. 60(7), 1115–1124 (2000)

    Article  CAS  Google Scholar 

  152. I.Y. Mwaikambo, E. Martuscelli, M. Avella, Kapok/cotton fabric-polypropylene composites. Polym. Test. 19(8), 905–918 (2000)

    Article  CAS  Google Scholar 

  153. M. Nardin, I.M. Ward, Influence of surface treatment on adhesion of polyethylene fiber. Mater. Sci. Technol. Scr. 3(10), 814–826 (1987)

    Article  CAS  Google Scholar 

  154. C.C. Chamis, in Interfaces in Polymer Matrix Composites, ed. by E. P. Piuddemann, (Academic Press, New York, 1974), pp. 2–63

    Google Scholar 

  155. L. Chen, C. Liu, K. Liu, C. Meng, C. Hu, J. Wang, S. Fan, High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5(3), 588–1593 (2011)

    Article  CAS  Google Scholar 

  156. D.K. Seo, T.J. Kang, D.W. Kim, Y.H. Kim, Twistable and bendable actuator: A CNT/polymer sandwich structure driven by thermal gradient. Nanotechnology 23(7), 075501 (2012)

    Article  PubMed  CAS  Google Scholar 

  157. S. Ahir, E. Terentjev, Fast relaxation of carbon nanotubes in polymer composite actuators. Phys. Rev. Let. 96(13), 133902 (2006)

    Article  CAS  Google Scholar 

  158. S. Lu, B. Panchapakesan, Photomechanical responses of carbon nanotube/polymer actuators. Nanotechnology 18(30), 305502 (2007)

    Article  CAS  Google Scholar 

  159. H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, S.-H. Lee, CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans. Biomed. Eng. 59(5), 1472–1479 (2012)

    Article  PubMed  Google Scholar 

  160. P.R. Prajith, R. Ganesan, S. Gobalakrishnan, Design of Electroencephalogram Sensor for long-term bio-signal measurement. Int. J. Lat. Tren. Eng. Tech. 2(3), 198–206 (2013)

    Google Scholar 

  161. K.A. Carrado, L.Q. Xu, In-situ synthesis of polymer-clay nanocomposites from silicate gels. Chem. Mater. 10, 1440–1445 (1998)

    Article  CAS  Google Scholar 

  162. J. Lee, T. Takekoshi, E. Giannelis, Fire retardant polyetherimide nanocomposites. Mater. Res. Soc. Symp. Proc. 457, 513–518 (1997)

    Article  CAS  Google Scholar 

  163. J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)

    Article  CAS  Google Scholar 

  164. F. Dietsche, R.M. Èlhaupt, Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym. Bull. 43, 395–402 (1999)

    Article  CAS  Google Scholar 

  165. J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric Nanocomposites for automotive applications. Adv. Mater. 12(3), 1835–1839 (2000)

    Article  CAS  Google Scholar 

  166. P. Svoboda, C. Zeng, H. Wang, L. Lee, D. Tomasko, Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J. Appl. Polym. Sci 85(7), 1562–1570 (2002)

    Article  CAS  Google Scholar 

  167. J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites – A review. Mater. Sci. Eng. A 393, 1–11 (2005)

    Article  CAS  Google Scholar 

  168. M. Berta, C. Lindsay, G. Pans, G. Camino, Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)

    Article  CAS  Google Scholar 

  169. C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)

    Article  CAS  Google Scholar 

  170. P. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc., New York, 1997), pp. 6–10

    Book  Google Scholar 

  171. C. Suryanarayana, F.H. Froes, The structure and mechanical properties of metallic nanocrystals. Metall. Trans. A. 23, 1071–1081 (1992)

    Article  Google Scholar 

  172. A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, S. Gong, Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos. Sci. Technol. 68, 768–776 (2008)

    Article  CAS  Google Scholar 

  173. M.A. Osman, J.E.P. Rupp, U.W. Suter, Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46, 8202–8209 (2005)

    Article  CAS  Google Scholar 

  174. J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)

    Article  CAS  Google Scholar 

  175. J.H. Chang, Y.U. An, D. Cho, E.P. Giannelis, Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)

    Article  CAS  Google Scholar 

  176. T. Gupakumar, D. Page, Compounding of Nanocomposites by Thermokinetic mixing. J. Appl. Polym. Sci. 96(5), 1557–1563 (2005)

    Article  CAS  Google Scholar 

  177. E. Lee, D. Mielewski, R. Baird, Exfoliation and dispersion enhancement in polypropylene Nanocomposites by in-situ melt phase Ultrasonication. Polym. Eng. Sci 44(9), 1773–1782 (2004)

    Article  CAS  Google Scholar 

  178. Y. Wang, F. Chen, K. Wu, Twin-screw extrusion compounding of polypropylene/Organoclay Nanocomposites modified by Maleated polypropylenes. J. Appl. Polym. Sci. 93(1), 100–112 (2004)

    Article  CAS  Google Scholar 

  179. S.C. Tjong, Y.Z. Meng, A.S. Hay, Novel preparation and properties of polypropylene-vermiculite Nanocomposites. Chem. Mater 14(1), 44–51 (2002)

    Article  CAS  Google Scholar 

  180. M. Kato, M. Matsushita, K. Fukumori, Development of an e-production method for a polypropylene-clay nanocomposite. Polym. Eng. Sci 44(7), 1205–1211 (2004)

    Article  CAS  Google Scholar 

  181. T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 9929 (2001)

    Article  CAS  Google Scholar 

  182. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites, review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)

    Article  CAS  Google Scholar 

  183. P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, R. Mulhaupt, Poly(propylene)/Organoclay Nanocomposite formulation: Influence of Compatibilizer functionality and Organoclay modification. Macromol. Mater. Eng. 275, 8–17 (2000)

    Article  CAS  Google Scholar 

  184. M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, M.N. Bureau, J. Denault, Polyolefin Nanocomposites: Formulation and development. Polym. Eng. Sci. 44(7), 1212–1219 (2004)

    Article  CAS  Google Scholar 

  185. R. Zhang, M. Baxendale, T. Peijs, Universal resistivity-strain dependence of carbon nanotube/polymer composites. Phys. Rev. B 76(19), 195433–195436 (2007)

    Article  CAS  Google Scholar 

  186. M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001)

    Article  CAS  Google Scholar 

  187. M. Alexander, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28, 1–63 (2000)

    Article  Google Scholar 

  188. E.P. Giannelis, R. Krishnamoorti, E. Manias, Polymer-silicate nanocomposites: Modelsystems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147 (1999)

    Article  CAS  Google Scholar 

  189. P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview. J. Appl. Clay Sci. 15, 11–29 (1999)

    Article  CAS  Google Scholar 

  190. (a) S. Sepehri, B.B. Garcia, G. Cao, Tuning dehydrogenation temperature of carbon–ammonia borane nanocomposites. J. Mater. Chem. 18(34), 4034–4037 (2008); (b) A.K. Mohanty, L.T. Drzal, M. Misra, Nano reinforcement of bio-based polymers-the hope and reality. Polym. Mat. Sci. Eng. 88, 60–61 (2003)

    Google Scholar 

  191. R. Hiroi, S.S. Ray, M. Okamoto, Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromol. Rap. Com. 25, 1359 (2004)

    Article  CAS  Google Scholar 

  192. C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825–8830 (2002)

    Article  CAS  Google Scholar 

  193. P. PoÈtschke, A. Bhattacharyya, A. Janke, H. Goering, Melt-mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10, 389–404 (2003)

    Article  Google Scholar 

  194. R. Andrews, M.C. Wisenberger, Carbon nanotube polymer composites. Curr. Opin. Sol. Stat. Mat. Sci. 8, 31–37 (2004)

    Article  CAS  Google Scholar 

  195. E. Hackett, E. Manias, E.P. Giannelis, Molecular dynamics simulations of organically modified layered silicates. J. Chem. Phys. 108, 7410–7415 (1998)

    Article  CAS  Google Scholar 

  196. E. Hackett, E. Manias, E.P. Giannelis, Computer simulation studies of PEO/layered silicate nanocomposites. Chem. Mater. 12, 2161–2167 (2000)

    Article  CAS  Google Scholar 

  197. D.L. Vanderhart, A. Asano, J.W. Gilman, NMR measurements related to clay dispersion quality and organic-modifier stability in nylon 6/clay nanocomposites. Macromolecules 34(12), 3819–3822 (2001)

    Article  CAS  Google Scholar 

  198. P. Kumar, D. Depan, N.S. Tomer, R.P. Singh, Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)

    Article  CAS  Google Scholar 

  199. P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)

    Article  CAS  Google Scholar 

  200. G. William, P.V. Kamat, Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)

    Article  CAS  Google Scholar 

  201. M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42, 4501–4507 (2001)

    Article  CAS  Google Scholar 

  202. N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6, 2732–2739 (2005)

    Article  CAS  PubMed  Google Scholar 

  203. S.M. Lai, W.C. Chen, X.S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1- the effect of compatibilizers on optical transmittance and mechanical properties. Compos. Part A 40, 754–765 (2009)

    Article  CAS  Google Scholar 

  204. R.N. Choi, C.I. Cheigh, S.Y. Lee, M.S. Chung, Preparation and properties of polypropylene/clay nanocomposites for food packaging. J. Food Sci. 76(8), 62–67 (2011)

    Article  CAS  Google Scholar 

  205. J.P.G. Villaluenge, M. Khayer, M.A. Lo’pez-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J. 43, 1132–1143 (2007)

    Article  CAS  Google Scholar 

  206. L. Zhu, M. Xanthos, Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J. Appl. Polym. Sci. 93, 1891–1899 (2004)

    Article  CAS  Google Scholar 

  207. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)

    Article  CAS  Google Scholar 

  208. W. Chen, Q. Xu, R.Z. Yuan, Modification of poly(ethylene oxide) with polymethylmethacrylate in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett. 18, 711–713 (1999)

    Article  CAS  Google Scholar 

  209. H.R. Fischer, L.H. Gielgens, T.P.M. Koster, Nanocomposites from polymers and layered materials. Acta Polym. 50, 122–126 (1999)

    Article  CAS  Google Scholar 

  210. K.A. Carrado, L.Q. Xu, In-situ synthesis of polymer-clay nanocomposites from silicate gels. Chem. Mater. 10, 1440–1445 (1998)

    Article  CAS  Google Scholar 

  211. J. Lee, T. Takekoshi, E. Giannelis, Fire retardant polyetherimide nanocomposites. Mater. Res. Soc. Symp. Proc. 457, 513–518 (1997)

    Article  CAS  Google Scholar 

  212. J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)

    Article  CAS  Google Scholar 

  213. F. Dietsche, R.M. Èlhaupt, Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym. Bull. 43, 395–402 (1999)

    Article  CAS  Google Scholar 

  214. A.R. Bunsell, B. Harris, Hybrid carbon and glass fibre composites. Composites 5(4), 157–164 (1974)

    Article  Google Scholar 

  215. J. Summerscales, D. Short, Carbon fibre and glass fibre hybrid reinforced plastics. Composites 9(3), 157–166 (1978)

    Article  Google Scholar 

  216. D. Short, J. Summerscales, Hybrids – A review: Part 2. Physical properties. Composites 11(1), 33–38 (1980)

    Article  CAS  Google Scholar 

  217. M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Act. Mater. 51(19), 5801–5821 (2003)

    Article  CAS  Google Scholar 

  218. M.F. Ashby, Chapter 11 – Designing hybrid materials, in Materials Selection in Mechanical Design, ed. by M. F. Ashby, 4th edn., (Butterworth Heinemann, Oxford, 2011), pp. 299–340

    Chapter  Google Scholar 

  219. A. Pegoretti et al., Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: Tensile and impact properties. Polym. Int. 53(9), 1290–1297 (2004)

    Article  CAS  Google Scholar 

  220. H. Fukunaga, T.-W. Chou, H. Fukuda, Strength of intermingled hybrid composites. J. Reinf. Plast. Compos. 3(2), 145–160 (1984)

    Article  Google Scholar 

  221. G. Kretsis, A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 18(1), 13–23 (1987)

    Article  CAS  Google Scholar 

  222. P. Wambua, J. Ivens, I. Verpoest, Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9), 1259–1264 (2003)

    Article  CAS  Google Scholar 

  223. O. Faruk et al., Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37(11), 1552–1596 (2012)

    Article  CAS  Google Scholar 

  224. F.P. La Mantia, M. Morreale, Green composites: A brief review. Compos A: Appl. Sci. Manuf. 42(6), 579–588 (2011)

    Article  CAS  Google Scholar 

  225. G. Marom et al., Hybrid effects in composites: Conditions for positive or negative effects versus rule-of-mixtures behaviour. J. Mater. Sci. 13(7), 1419–1426 (1978)

    Article  CAS  Google Scholar 

  226. Y. Swolfs, L. Gorbatikh, I. Verpoest, Fibre hybridisation in polymer composites: A review. Compos. A Appl. Sci. Manuf. 67, 181–200 (2014)

    Article  CAS  Google Scholar 

  227. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2002)

    Book  Google Scholar 

  228. M. Biron, 7 – Future prospects for thermosets and composites, in Thermosets and Composites, ed. by M. Biron, 2nd edn., (William Andrew Publishing, Oxford, 2014), pp. 475–501

    Chapter  Google Scholar 

  229. F. Ahmad et al., Hybrid composites for engineering application, in Composite Technologies for 2020, ed. by L. Ye, Y. W. Mai, Z. Su, (Woodhead Publishing, Cambride, 2004), pp. 545–550

    Chapter  Google Scholar 

  230. V. Fiore, G. Di Bella, A. Valenza, Glass–basalt/epoxy hybrid composites for marine applications. Mater. Design 32(4), 2091–2099 (2011)

    Article  CAS  Google Scholar 

  231. D. Lau, Hybrid fiber-reinforced polymer (FRP) composites for structural applications, in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, ed. by N. Uddin, (Woodhead Publishing, Cambridge, UK, 2013), pp. 205–225

    Chapter  Google Scholar 

  232. T. Sathishkumar, J. Naveen, S. Satheeshkumar, Hybrid fiber reinforced polymer composites – A review. J. Reinf. Plast. Compos. 33(5), 454–471 (2014)

    Article  CAS  Google Scholar 

  233. D. Lehmhus et al., Taking a downward turn on the weight spiral – Lightweight materials in transport applications. Mater. Des. 66(0), 385–389 (2015)

    Article  Google Scholar 

  234. M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R. Rep. 63(1), 1–30 (2008)

    Article  Google Scholar 

  235. (a) J.C. Halpin, J.L. Kardos, The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16, 344–352 (1976); (b) M. Jawaid, H.P.S.A. Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carb. Polym. 86(1), 1–18 (2011)

    Google Scholar 

  236. (a) M. Terrones, O. Martín, M. González, J. Pozuelo, B. Serrano, J.C. Cabanelas, S.M. Vega-Díaz, J. Baselga, Interphases in graphene polymer-based Nanocomposites: Achievements and challenges. Adv. Mater. 23, 5302–5310 (2011); (b) A. Ashori, S. Sheshmani, Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behaviour. Bioresour. Technol. 101(12), 4717–4720 (2010)

    Google Scholar 

  237. (a) M. Cadek, J.N. Coleman, K.P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J.B. Nagy, K. Szostak, F. Béguin, W.J. Blau, Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 4, 353–356 (2004); (b) A. Kelly, et al., Controlling thermal expansion to obtain negative expansivity using laminated composites. Compos. Sci. Technol. 65(1), 47–59 (2005)

    Google Scholar 

  238. (a) R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000); (b) A. Kelly, R.J. Stearn, L.N. McCartney, Composite materials of controlled thermal expansion. Compos. Sci. Technol. 66(2), 154–159 (2006)

    Google Scholar 

  239. (a) R. Haggenmueller, W. Zhou, J.E. Fisher, K.I. Winey, Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3, 105–110 (2003); (b) G. Jefferson, T.A. Parthasarathy, R.J. Kerans, Tailorable thermal expansion hybrid structures. Int. J. Solids Struct. 46(11–12), 2372–2387 (2009)

    Google Scholar 

  240. (a) X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 78, 3714–3716 (2001); (b) L.Z. Zhao et al., Thermal expansion of a novel hybrid SiC foam–SiC particles–Al composites. Compos. Sci. Technol. 67(15–16), 3404–3408 (2007)

    Google Scholar 

  241. (a) M.S. Kumar, S.H. Lee, T.Y. Kim, T.H. Kim, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh, DC electric field assisted alignment of carbon nanotubes on metal electrodes. Solid State Electron. 47, 2075–2080 (2003); (b) H.T. Hatta, T. Takei, M. Taya, Effects of dispersed microvoids on thermal expansion behavior of composite materials. Mater. Sci. Eng. A 285(1–2), 99–110 (2000)

    Google Scholar 

  242. (a) M.S. Kumar, T.H. Kim, S.H. Lee, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh, Influence of electric field type on the assembly of single walled carbon nanotubes. Chem. Phys. Lett. 383, 235–239 (2004); (b) A.M.D. Pascual, M. Naffakh, M.A. Gómez-Fatou, Mechanical and electrical properties of novel poly(ether ether ketone)/carbon nanotube/inorganic fullerene-like WS2 hybrid nanocomposites: Experimental measurements and theoretical predictions. Mater. Chem. Phys. 130(1–2), 126–133 (2011)

    Google Scholar 

  243. (a) C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W.K. Bauhofer, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877–886 (2005); (b) J. Tan, T. Kitano, T. Hatakeyama, Crystallization of carbon fibre reinforced polypropylene. J. Mater. Sci. 25(7), 3380–3384 (1990)

    Google Scholar 

  244. C.J. Strobl, C. Schaflein, U. Beierlein, J. Ebbecke, A. Wixforth, Carbon nanotube alignment by surface acoustic waves. Appl. Phys. Lett. 85, 1427–1429 (2004)

    Article  CAS  Google Scholar 

  245. (a) P.V. Kamat, K.G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, D. Meisel, Self-assembled linear bundles of Single Wall carbon nanotubes and their alignment and deposition as a film in a DC field. J. Am. Chem. Soc. 126, 10757–10762 (2004); (b) C. Pradere, C. Sauder, Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures. Carbon 46(14), 1874–1884 (2008)

    Google Scholar 

  246. (a) E. Camponeschi, R. Vance, M.S. Al-Haik, H. Garmestani, R. Tannebaum, Properties of carbon nanotube-polymer composites in a magnetic field. Carbon 45, 2037–2046 (2007); (b) M.H. Gabr et al., Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos. Part B 69, 94–100 (2015)

    Google Scholar 

  247. (a) H. Garmestani, M.S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S.S. Sablin, M.Y. Hussaini, Polymer-mediated alignment of carbon nanotubes under high magnetic fields. Adv. Mater. 15, 1918–1921 (2003); (b) C. Sauder, J. Lamon, R. Pailler, Thermomechanical properties of carbon fibres at high temperatures (up to 2000°C). Compos. Sci. Technol. 62(4), 499–504 (2002)

    Google Scholar 

  248. (a) B.W. Steinart, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET-carbon nanotube composite films. Polymer 50, 898–904 (2009); (b) R.S. Praveen et al., Hybridization of carbon–glass epoxy composites: An approach to achieve low coefficient of thermal expansion at cryogenic temperatures. Cryogenics 51(2), 95–104 (2011)

    Google Scholar 

  249. (a) J. Yang, C. Wang, K. Wang, Q. Zhang, F. Chen, R. Du, Q. Fu, Direct formation of Nanohybrid shish-kebab in the injection molded Bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 42, 7016–7023 (2009); (b) M. Esposito et al., Fiber Bragg grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures. Sensors Act. A: Phys. 189, 195–203 (2013)

    Google Scholar 

  250. (a) Y. Bin, M. Kitanaka, D. Zhu, M. Matsuo, Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36, 6213–6219 (2003); (b) A. Tezvergil, L.V.J. Lassila, P.K. Vallittu, The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites. Dent. Mater. 19(6), 471–477 (2003)

    Google Scholar 

  251. (a) W. Chen, X. Tao, Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes. Appl. Surf. Sci. 252, 3547–3552 (2006); (b) Y.A. Dzenis, Thermal expansion of a composite with a hybrid granular-fibrous filler. Mech. Compos. Mater. 25(2), 173–182 (1989)

    Google Scholar 

  252. (a) Q. Wang, J.F. Dai, W. Li, Z.Q. Wei, J.L. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68, 1644–1648 (2008); (b) C.W. Camacho et al., Stiffness and thermal expansion predictions for hybrid short fiber composites. Polym. Compos. 11(4), 229–239 (1990)

    Google Scholar 

  253. (a) M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Fracture and fatigue in graphene nanocomposites. Small 6, 179–183 (2010); (b) J.S. Jang et al., Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites. Compos. A: Appl. Sci. Manuf. 42(1), 98–103 (2011)

    Google Scholar 

  254. (a) A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1182–1189 (2006); (b) F.-L. Jin, S.-J. Park, Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stab. 97(11), 2148–2153 (2012)

    Google Scholar 

  255. (a) H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010); (b) G.C. Papanicolaou, A.S. Bouboulas, N.K. Anifantis, Thermal expansivities in fibrous composites incorporating hybrid interphase regions. Compos. Struc. 88(4), 542–547 (2009)

    Google Scholar 

  256. (a) T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003); (b) C.D. Price et al., Modelling the elastic and thermoelastic properties of short fibre composites with anisotropic phases. Compos. Sci. Technol. 66(1), 69–79 (2006)

    Google Scholar 

  257. (a) A. Usuki, N. Hasegawa, M. Kato, Polymer-clay Nanocomposites. Adv. Polym. Sci. 179, 135–195 (2005); (b) H. Tsukamoto, A mean-field micromechanical approach to design of multiphase composite laminates. Mater. Sci. Eng. A 528(7–8), 3232–3242 (2011)

    Google Scholar 

  258. (a) A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8, 1179–1184 (1993); (b) S.K. Nayak, S. Mohanty, S.K. Samal, Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater. Sci. Eng. A. 523(1–2), 32–38 (2009)

    Google Scholar 

  259. (a) E. Manias, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001); (b) O.L.S. Alsina et al., Thermal properties of hybrid lignocellulosic fabric-reinforced polyester matrix composites. Polym. Test. 24(1), 81–85 (2005)

    Google Scholar 

  260. Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 36(7), 914–944 (2011)

    Article  CAS  Google Scholar 

  261. R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectricpyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)

    Article  CAS  Google Scholar 

  262. M. Taya, Electronic Composites. Modeling, Characterization, Processing, and MEMS Applications (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  263. W.J. Kim, M. Taya, M.N. Nguyen, Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite. Mech. Mater. 41(10), 1116–1124 (2009)

    Article  Google Scholar 

  264. M. El Hasnaoui et al., Modelling of dielectric relaxation processes of epoxy-resin filled with carbon black particles. Phys. B Condens. Matter 433, 62–66 (2014)

    Article  CAS  Google Scholar 

  265. I. Novák, I. Krupa, I. Janigová, Hybrid electro-conductive composites with improved toughness, filled by carbon black. Carbon 43(4), 841–848 (2005)

    Article  CAS  Google Scholar 

  266. L. Shen et al., The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym. Test. 30(4), 442–448 (2011)

    Article  CAS  Google Scholar 

  267. J. Jin et al., Enhancing the electrical conductivity of polymer composites. Eur. Polym. J. 49(5), 1066–1072 (2013)

    Article  CAS  Google Scholar 

  268. R.N. Othman, I.A. Kinloch, A.N. Wilkinson, Synthesis and characterisation of silica–carbon nanotube hybrid microparticles and their effect on the electrical properties of poly (vinyl alcohol) composites. Carbon 60, 461–470 (2013)

    Article  CAS  Google Scholar 

  269. J.A. Puértolas, S.M. Kurtz, Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater. 39, 129–145 (2014)

    Article  PubMed  CAS  Google Scholar 

  270. M.H.G. Wichmann et al., Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix. Eng. Frac. Mech. 73(16), 2346–2359 (2006)

    Article  Google Scholar 

  271. A. Lonjon et al., Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes. J. Non Cryst. Solids 358(15), 1859–1862 (2012)

    Article  CAS  Google Scholar 

  272. N. Yamamoto, R.G. de Villoria, B.L. Wardle, Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72(16), 2009–2015 (2012)

    Article  CAS  Google Scholar 

  273. G. George et al., Dielectric behaviour of PP/jute yarn commingled composites: Effect of fibre content, chemical treatments, temperature and moisture. Compos. A: Appl. Sci. Manuf. 47, 12–21 (2013)

    Article  CAS  Google Scholar 

  274. C.Q. Yang, Z.S. Wu, H. Huang, Electrical properties of different types of carbon fiber reinforced plastics (CFRPs) and hybrid CFRPs. Carbon 45(15), 3027–3035 (2007)

    Article  CAS  Google Scholar 

  275. L. Yao et al., Modeling and experimental verification of dielectric constants for three dimensional woven composites. Compos. Sci. Technol. 68(7–8), 1794–1799 (2008)

    Article  CAS  Google Scholar 

  276. M. Zhan, R.P. Wool, J.Q. Xiao, Electrical properties of chicken feather fiber reinforced epoxy composites. Compos. A: Appl. Sci. Manuf. 42(3), 229–233 (2011)

    Article  CAS  Google Scholar 

  277. J.-M. Thomassin et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74(7), 211–232 (2013)

    Article  Google Scholar 

  278. M.H. Al-Saleh, W.H. Saadeh, Hybrids of conductive polymer nanocomposites. Mater. Design 52, 1071–1076 (2013)

    Article  CAS  Google Scholar 

  279. G. Zheming et al., Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. J. Ind. Eng. Chem. 16(1), 10–14 (2010)

    Article  CAS  Google Scholar 

  280. A.B.. Silva et al., Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. Eur. Polym. J. 49(10), 3318–3327 (2013)

    Google Scholar 

  281. S.-Y. Yang et al., Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3), 793–803 (2011)

    Article  CAS  Google Scholar 

  282. C.-R. Yu et al., Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos. Sci. Technol. 71(15), 1706–1712 (2011)

    Article  CAS  Google Scholar 

  283. A. Salinier et al., Electrical, rheological and mechanical characterization of multiscale composite materials based on poly(etherimide)/short glass fibers/multiwalled carbon nanotubes. Compos. Struct. 102, 81–89 (2013)

    Article  Google Scholar 

  284. A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. (2014)

    Google Scholar 

  285. M. Shah, B. Reduwan, Textile Coatings, in Polymer and Polymer Composites: A Reference Series. Functional Polymers ed. by M. J. Mazumder, H. Sheardown, A. A. Ahmed, Springer International Publishing AG, Part of Springer Nature, Germany, ISBN: 978-3-319-92067-2. https://doi.org/10.1007/978-3-319-92067-2_30-1, 1–58 (2018)

    Google Scholar 

  286. M. Shah, B. Reduwan, Chapter No. 41 Dielectric Polymers, ed. by M. J. Mazumder, H. Sheardown, A. A. Ahmed, Springer, Germany, Polymer and Polymer Composites: A Reference Series. Functional Polymers, ISBN: 978-3-319-92067-2. https://doi.org/10.1007/978-3-319-92067-2_8-1, 1–49 (2018)

    Google Scholar 

  287. M. Shah, B. Reduwan, Sazzad Hossain, ed. by M. Nahid Pervez, Md Obidul Haque, Chapter on Enzyme Responsive Hydrogels, in the book on Polymer and Polymer Composites: A Reference Series. Cellulose-Based Superabsorbent Hydrogels, I. H. Mondal (Ed), Springer, Germany, ISBN: 978-3-319-76573-0. http://doi.org/10.1007/978-3-319-76573-0_62-1 2–23 (2018)

    Google Scholar 

  288. (a) M. Shah, B. Reduwan, I. H. Mondal, Sazzad Hossain, M. Nahid Pervez; Cellulose Based Hydrogels for Industrial Applications, in Polymer and Polymer Composites: A Reference Series. Cellulose-Based Superabsorbent Hydrogels, ed. I. H. Mondal, (Springer, Germany, 2018), ISBN: 978-3-319-76573-0, http://doi.org/10.1007/978-3-319-76573-0_63-1, pp. 2–41; (b) M. Shah, B. Reduwan, I. H. Mondal, Sazzad Hossain Somoal, M. Nahid Pervez, Md. Obaidul Haque, Synthesis of external stimuli-responsive hydrogels based CMC and other cellulose derivatives for advanced applications, in Carboxymethylcellulose. Volume II. Pharmaceutical and Industrial Applications, ed. by I. H. Mondal, (Nova Science Publishers, New York, USA, 2019), ISBN:978-1-53614-752-0 (eBook), pp. 43–75

    Google Scholar 

  289. J. Yan et al., Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos. A: Appl. Sci. Manuf. 67, 1–7 (2014)

    Article  CAS  Google Scholar 

  290. J. Yan, Y.G. Jeong, Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Compos. Sci. Technol. 106, 134–140 (2015)

    Article  CAS  Google Scholar 

  291. D.C. Edwards, Polymer-filler interactions in rubber reinforcement. J. Mater. Sci. 25, 4175–4185 (1990)

    Article  CAS  Google Scholar 

  292. (a) R. Feng, G. Guan, W. Zhou, C. Li, D. Zhang, Y. Xiao, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J. Mater. Chem. 21, 3931–3939 (2011); (b) T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003)

    Google Scholar 

  293. (a) E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 52, 819–828 (1996); (b) J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)

    Google Scholar 

  294. (a) P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized Graphenes and thermoplastic Nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30, 316–327 (2009); (b) B. Lin, G.A. Gelves, J.A. Haber, U. Sundararaj, Electrical, rheological, and mechanical properties of polystyrene/copper nanowire Nanocomposites. Ind. Eng. Chem. Res. 46, 2481–2487 (2007)

    Google Scholar 

  295. (a) J.B. Bai, A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – Experimental investigation. Compos. A: Appl. Sci. Manuf. 34, 689–694 (2003); (b) A. Okada, A. Usuki, Twenty years of polymer-clay Nanocomposites. Macromol. Mater. Eng. 291, 1449–1476 (2006)

    Google Scholar 

  296. (a) A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J.F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 53, 6209–6214 (1996); (b) A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene. Nat. Mater. 6, 858; E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E. 52, 819–828 (1996)

    Google Scholar 

  297. (a) X.Y. Qi, D. Yan, Z. Jiang, Y.K. Cao, Z.Z. Yu, F. Yavari, N. Koratkar, Enhanced electrical conductivity in polystyrene Nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011); (b) Y. Liu, A. Wang, R. Claus, Molecular self-assembly of TiO2/polymer Nanocomposite films. J. Phys. Chem. B 101, 1385–1388 (1997)

    Google Scholar 

  298. (a) J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003); (b) J. Huang, C. He, Y. Xiao, K.Y. Mya, J. Dai, Y.P. Siow, Polyimide/POSS nanocomposites: Interfacial interaction, thermal properties and mechanical properties. Polymer 44, 4491–4499 (2003)

    Google Scholar 

  299. (a) J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67, 296–305 (2007); (b) E.K. Thostenson, T.W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D. Appl. Phys. 35, L77–L80 (2002)

    Google Scholar 

  300. (a) W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009); (b) E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Google Scholar 

  301. (a) L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007); (b) D.A. Brune, J. Bicerano, Micromechanics of nanocomposites: Comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer 43, 369–387 (2002)

    Google Scholar 

  302. (a) R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A.D. Saja, M.A. Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008); (b) K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)

    Google Scholar 

  303. D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites. Polymer 49, 3187–3204 (2008)

    Article  CAS  Google Scholar 

  304. (a) M. Bhattacharya, Review – Polymer Nanocomposites – A comparison between carbon nanotubes, graphene, and clay as Nanofillers. Materials 9(262), 1–35 (2016); (b) M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001)

    Google Scholar 

  305. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of Nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)

    Article  CAS  PubMed  Google Scholar 

  306. B.P. Grady, Carbon Nanotube-Polymer Composites Manufacture, Properties, and Applications (Wiley, New York, 2011)

    Book  Google Scholar 

  307. P. Das, S. Jani-Markus, B.Z. Malho, U. Klemradt, A. Walther, A. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl. Mater. Interfaces 5, 3738–3747 (2013)

    Article  CAS  PubMed  Google Scholar 

  308. P. Podsiadlo, Z. Tang, B.S. Shim, N.A. Kotov, Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled Nanocomposites. Nano Lett. 7, 1224–1231 (2007)

    Article  CAS  PubMed  Google Scholar 

  309. N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez-Manchado, Recent advances in clay/polymer Nanocomposites. Adv. Mater. 23, 5229–5236 (2011)

    Article  CAS  PubMed  Google Scholar 

  310. T. Kashiwagi, F.M. Du, J.F. Douglas, K.I. Winey, R.H. Harris, J.R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005)

    Article  CAS  PubMed  Google Scholar 

  311. D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)

    Article  CAS  Google Scholar 

  312. J.N. Coleman, U. Khan, Y.K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 637–640 (2006)

    Article  CAS  Google Scholar 

  313. K.H. Liao, S. Aoyama, A.A. Abdala, C.W. Macosko, Does graphene change Tg of Nanocomposites? Macromolecules 47, 8311–8319 (2014)

    Article  CAS  Google Scholar 

  314. U. Gaur, B. Wunderlich, Study of microphase separation in block copolymers of styrene and -Methylstyrene in the glass transition region using quantitative thermal analysis. Macromolecules 13, 1618–1625 (1980)

    Article  CAS  Google Scholar 

  315. C.B. Roth, J.R. Dutcher, Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur. Phys. J. 12, 103–107 (2003)

    Google Scholar 

  316. R.S. Tate, D.S. Fryer, S. Pasqualini, M.F. Montague, J.J. de Pablo, P.F. Nealey, Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J. Chem. Phys. 115, 9982–9990 (2001)

    Article  CAS  Google Scholar 

  317. J.L. Keddie, R.A.L. Jones, R.A. Cory, Interface and surface effects on the glass-transition temperature in thin polymer films. Farad. Discuss. 98, 219–230 (1994)

    Article  CAS  Google Scholar 

  318. P. Rittigstein, J.M. Torkelson, Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B Polym. Phys. 44, 2935–2943 (2006)

    Article  CAS  Google Scholar 

  319. S.M. Yuen, C.M. Ma, Y.Y. Lin, H.C. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos. Sci. Technol. 67, 2564–2573 (2007)

    Article  CAS  Google Scholar 

  320. B.P. Grady, Effects of carbon nanotubes on polymer physics. J. Polym. Sci. B Polym. Phys. 50, 591–623 (2012)

    Article  CAS  Google Scholar 

  321. K.M. Lee, C.D. Han, Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44, 4573–4588 (2003)

    Article  CAS  Google Scholar 

  322. X. Dai, J. Xu, X. Guo, Y. Lu, D. Shen, N. Zhao, X. Luo, X. Zhang, Study on structure and orientation action of polyurethane Nanocomposites. Macromolecules 37, 5615–5623 (2004)

    Article  CAS  Google Scholar 

  323. X. Zhang, L.S. Loo, Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites. Macromolecules 42, 5196–5207 (2009)

    Article  CAS  Google Scholar 

  324. R. Krishnamoorti, R.A. Vaia, E.P. Giannelis, Structure and dynamics of polymer-layered silicate Nanocomposites. Macromolecules 8, 1728–1734 (1996)

    CAS  Google Scholar 

  325. P.B. Messersmith, E.P. Giannelis, Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. A Polym. Chem. 33, 1047–1057 (1995)

    Article  CAS  Google Scholar 

  326. Y.H. Yang, L. Bolling, M.A. Priolo, J.C. Grunlan, Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater. 45, 503–508 (2013)

    Article  CAS  Google Scholar 

  327. H. Liu, T. Kuila, N.H. Kim, B.C. Kud, J.H. Lee, In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 1, 3739–3746 (2013)

    Article  CAS  Google Scholar 

  328. I.M. Tseng, Y.F. Liao, J.C. Chiang, M.H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater. Chem. Phys. 136, 247–253 (2012)

    Article  CAS  Google Scholar 

  329. A.B.. Morgan, Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systems. Polym. Adv. Technol. 96, 206–217 (2006)

    Article  CAS  Google Scholar 

  330. M.R. Schutz, H. Kalo, T. Lunkenbein, J. Breu, C.A. Wilkie, Intumescent-like behavior of polystyrene synthetic clay nanocomposites. Polymer 52, 3288–3294 (2012)

    Article  CAS  Google Scholar 

  331. M. Bartholmai, B. Schartel, Layered silicate polymer nanocomposites: New approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym. Adv.Technol. 15, 355–364 (2004)

    Article  CAS  Google Scholar 

  332. M.C. Costache, M.J. Heidecker, E. Manias, G. Camino, A. Frache, G. Beyer, R.K. Gupta, C.A. Wilkie, The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer 48, 6352–6345 (2007)

    Article  CAS  Google Scholar 

  333. P. May, U. Khan, A. O’Neill, J.N. Coleman, Approaching the theoretical limit for reinforcing polymers with graphene. J. Mater. Chem. 22, 1278–1282 (2012)

    Article  CAS  Google Scholar 

  334. C.S. Grimmer, C.K.H. Dharan, High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J. Mater. Sci. 43, 4487–4492 (2008)

    Article  CAS  Google Scholar 

  335. K.T. Kim, W.H. Jo, Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for high performance Nylon66/multi-walled carbon nanotube composites. Carbon 49, 819–826 (2011)

    Article  CAS  Google Scholar 

  336. W. Yuan, M.B.C. Park, Covalent cum noncovalent Functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interf. 4, 2065–2073 (2012)

    Article  CAS  Google Scholar 

  337. S. Aoyama, Y.T. Park, T. Ougizawa, C.W. Macosko, Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer 55, 2077–2085 (2014)

    Article  CAS  Google Scholar 

  338. C.I.W. Calcagno, C.M. Mariani, S.R. Teixeira, R.S. Mauler, The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48, 966–974 (2007)

    Article  CAS  Google Scholar 

  339. P.J. Yoon, D.L. Hunter, D.R. Paul, Polycarbonate nanocomposites: Part 2. Degradation and color formation. Polymer 44, 5341–5354 (2003)

    Article  CAS  Google Scholar 

  340. B. Chen, J.R.G. Evans, Poly(epsilon-caprolactone)-clay Nanocomposites: Structure and mechanical properties. Macromolecules 39, 747–754 (2006)

    Article  CAS  Google Scholar 

  341. B. Lepoittevin, M. Devalckenaere, N. Pantoustier, M. Alexandre, D. Kubies, C. Calberg, R. Jérôme, P. Dubois, Poly(caprolactone)/clay nanocomposites prepared by melt intercalation: Mechanical, thermal and rheological properties. Polymer 43, 4017–4023 (2002)

    Article  CAS  Google Scholar 

  342. S.S. Ray, K. Yamada, M. Okamoto, A. Ogami, K. Ueda, New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem. Mater. 15, 1456–1465 (2003)

    Article  CAS  Google Scholar 

  343. S.S. Ray, P. Maiti, M. Okamoto, K. Yamada, K. Ueda, New Polylactide/layered silicate Nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35, 3104–3110 (2002)

    Article  CAS  Google Scholar 

  344. P. Maiti, K. Yamada, M. Okamoto, K. Ueda, K. Okamoto, New polylactide/layered silicate nanocomposites: Role of organoclays. Chem. Mater. 14, 4654–4661 (2002)

    Article  CAS  Google Scholar 

  345. J.H. Wang, T.H. Young, D.J. Lin, M.K. Sun, H.S. Huag, L.P. Cheng, Preparation of clay/PMMA Nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromol. Mater. Eng. 291, 661–669 (2006)

    Article  CAS  Google Scholar 

  346. Y. Wang, W.C. Chen, Effect of clay modification on the dynamic mechanical and dielectric properties of PMMA nanocomposites via melt blending. Polymer 12, 128–144 (2013)

    Google Scholar 

  347. L. Shen, I.Y. Phang, L. Chen, T. Liu, K. Zeng, Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer 45, 3341–3349 (2004)

    Article  CAS  Google Scholar 

  348. K. Masenelli-Varlot, E. Reynaud, G. Vigier, J. Varlet, Mechanical properties of clay-reinforced polyamide. J. Polym. Sci. B Polym. Phys. 40, 272–283 (2002)

    Article  CAS  Google Scholar 

  349. J.W. Cho, D.R. Paul, Nylon 6 Nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)

    Article  CAS  Google Scholar 

  350. H.A. Stretz, D.R. Paul, P.E. Cassidy, Poly(styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: A model systems for ABS nanocomposites. Polymer 46, 3818–3830 (2005)

    Article  CAS  Google Scholar 

  351. H. Ma, L. Tong, Z. Xu, Z. Fang, Clay network in ABS-graft-MAH nanocomposites: Rheology and flammability. Polym. Degrad. Stab. 92, 1439–1445 (2007)

    Article  CAS  Google Scholar 

  352. T.N. Abraham, D. Ratna, S. Siengchin, J. Karger-Kocsis, Structure and properties of polyethylene oxideorgano clay nanocomposite prepared via melt mixing. Polym. Eng. Sci. 49, 379–390 (2009)

    Article  CAS  Google Scholar 

  353. S. Choudhary, R.J. Sengwa, Dielectric properties and structures of melt-compounded poly(ethylene oxide)-montmorillonite nanocomposites. J. Appl. Polym. Sci. 124, 4847–4853 (2012)

    CAS  Google Scholar 

  354. P. Aranda, E. Mosqueda, E. Pérez-Cappe, E. Ruiz-Hitzky, Electrical characterization of poly(ethylene oxide)-clay nanocomposites prepared by microwave irradiation. J. Polym. Sci. B Polym. Phys. 41, 3249–3263 (2003)

    Article  CAS  Google Scholar 

  355. L. Liu, Z. Qi, X. Zhu, Studies on nylon 6/clay Nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 71, 1133–1138 (1999)

    Article  CAS  Google Scholar 

  356. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30, 6333–6338 (1997)

    Article  CAS  Google Scholar 

  357. H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho, D.R. Paul, Effect of melt processing conditions on the extent of the exfoliation in organoclay-based composites. Polymer 42, 9513–9522 (2001)

    Article  CAS  Google Scholar 

  358. M.S.P. Shaffer, A.H. Windle, Fabrication and characterization of CNT-PVA composites. Adv. Mater. 11, 937–941 (1999)

    Article  CAS  Google Scholar 

  359. L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–1199 (1998)

    Article  CAS  Google Scholar 

  360. B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 84, 2660–2669 (2002)

    Article  CAS  Google Scholar 

  361. R. Haggenmueller, J.E. Fischer, K.I. Winey, Single wall carbon nanotube/polyethylene nanocomposites: Nucleating and templating polyethylene crystallites. Macromolecules 39, 2964–2971 (2006)

    Article  CAS  Google Scholar 

  362. Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47, 3538–3543 (2009)

    Article  CAS  Google Scholar 

  363. Y.R. Lee, A.V. Raghu, H.M. Jeong, B.K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys. 210, 1247–1254 (2009)

    Article  CAS  Google Scholar 

  364. R. Feng, G. Guan, W. Zhou, C. Li, D. Zhang, Y. Xiao, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J. Mater. Chem. 21, 3931–3939 (2011)

    Article  CAS  Google Scholar 

  365. E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 52, 819–828 (1996)

    Article  Google Scholar 

  366. P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized Graphenes and thermoplastic Nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30, 316–327 (2009)

    Article  CAS  PubMed  Google Scholar 

  367. J.B. Bai, A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – Experimental investigation. Compos. A: Appl. Sci. Manuf. 34, 689–694 (2003)

    Article  CAS  Google Scholar 

  368. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J.F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 53, 6209–6214 (1996)

    Article  CAS  Google Scholar 

  369. X.Y. Qi, D. Yan, Z. Jiang, Y.K. Cao, Z.Z. Yu, F. Yavari, N. Koratkar, Enhanced electrical conductivity in polystyrene Nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011)

    Article  CAS  PubMed  Google Scholar 

  370. J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)

    Article  CAS  Google Scholar 

  371. J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67, 296–305 (2007)

    Article  CAS  Google Scholar 

  372. W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)

    Article  CAS  Google Scholar 

  373. L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007)

    Article  CAS  Google Scholar 

  374. R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A.D. Saja, M.A. Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008)

    Article  CAS  Google Scholar 

  375. L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J.W. Connell, Y.P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088–2092 (2009)

    Article  CAS  Google Scholar 

  376. S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Thermal expansion of graphene composites. Macromolecules 42, 5251–5255 (2009)

    Article  CAS  Google Scholar 

  377. N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)

    Article  CAS  Google Scholar 

  378. Y. Kayano, H. Keskkula, D.R. Paul, Effect of polycarbonate molecular weight and processing conditions on mechanical behaviour of blends with a core-shell impact modifier. Polymer 37, 4505–4518 (1996)

    Article  CAS  Google Scholar 

  379. H. Koerner, E. Hampton, D. Dean, Z. Turgut, L. Drummy, P. Mirau, R. Vaia, Generating Triaxial reinforced epoxy/Montmorillonite Nanocomposites with uniaxial magnetic fields. Chem. Mater. 17, 1990–1996 (2005)

    Article  CAS  Google Scholar 

  380. H. Koerner, J.D. Jacobs, D.W. Tomlin, J.D. Busbee, R.A. Vaia, Tuning polymer Nanocomposite morphology: AC electric field manipulation of epoxy-Montmorillonite (clay) suspensions. Adv. Mater. 16, 297–302 (2004)

    Article  CAS  Google Scholar 

  381. T. Sasaki, A. Shimizu, T.H. Mourey, C.T. Thurau, M.D. Ediger, Glass transition of small polystyrene spheres in aqueous suspensions. J. Chem. Phys. 119, 8730–8735 (2003)

    Article  CAS  Google Scholar 

  382. J. Ding, G. Xue, Q. Dai, R. Cheng, Glass transition temperature of polystyrene microparticles. Polymer 34, 3325–3327 (1993)

    Article  CAS  Google Scholar 

  383. J.A. Forrest, K.D. Veress, J.R. Stevens, J.R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996)

    Article  CAS  PubMed  Google Scholar 

  384. P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6, 278–282 (2007)

    Article  CAS  PubMed  Google Scholar 

  385. K.H. Liao, S. Aoyama, A.A. Abdala, C.W. Macosko, Does graphene change Tg of Nanocomposites? Macromolecules 47, 8311–8319 (2014)

    Article  CAS  Google Scholar 

  386. W. Yuan, M.B.C. Park, Covalent cum noncovalent Functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interf. 4, 2065–2073 (2012)

    Article  CAS  Google Scholar 

  387. S. Aoyama, Y.T. Park, T. Ougizawa, C.W. Macosko, Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer 55, 2077–2085 (2014)

    Article  CAS  Google Scholar 

  388. C.I.W. Calcagno, C.M. Mariani, S.R. Teixeira, R.S. Mauler, The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48, 966–974 (2007)

    Article  CAS  Google Scholar 

  389. Z. Guo, D. Zhang, S. Wei, Z. Wang, A.B.. Karki, Y. Li, P. Bernazzani, D.P. Young, J. Gomes, D. Cocke, T.C. Ho, Effects of iron oxide nanoparticles on polyvinyl alcohol: Interfacial layer and bulk nanocomposites thin film. J. Nanopart. Res. 12, 2415–2426 (2010)

    Article  CAS  Google Scholar 

  390. W.E. Teo, S.A. Ramakrishna, Review on electrospinning design and nanofibre assemblies. Nanotechnology 17, 89–106 (2006)

    Article  CAS  Google Scholar 

  391. J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrost. 35, 151–160 (1995)

    Article  CAS  Google Scholar 

  392. S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: Solving global issues. Mater. Today 9, 40–50 (2006)

    Article  CAS  Google Scholar 

  393. A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670–5703 (2007)

    Article  CAS  Google Scholar 

  394. W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, Y. Zhang, Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 45, 704–709 (2005)

    Article  CAS  Google Scholar 

  395. J.M. Deitzel, J. Kleinmeyer, D. Harris, T.N.C. Beck, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261–272 (2001)

    Article  CAS  Google Scholar 

  396. T. Lin, H. Wang, X. Wang, M.P. Brenner, The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15, 1375–1381 (2004)

    Article  CAS  Google Scholar 

  397. Z. Yang, S. Chen, W. Hu, N. Yin, W. Zhang, C. Xiang, H. Wang, Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr. Polym. 88(1), 173–178 (2012)

    Article  CAS  Google Scholar 

  398. M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13, 2201–2220 (2001)

    Article  CAS  Google Scholar 

  399. M.M. Hohman, M. Shin, G. Rutledge, Electrospinning and electrically forced jets. II. Appl. Phys. Fluid. 13, 2221–2236 (2001)

    Article  CAS  Google Scholar 

  400. D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531–4547 (2000)

    Article  CAS  Google Scholar 

  401. A.L. Yarin, S. Koombhongse, D.H. Reneker, Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026 (2001)

    Article  CAS  Google Scholar 

  402. G.M. Kim, R. Lach, G.H. Michler, P. Poetschke, K. Albrecht, Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process. Nanotechnology 17, 963–972 (2006)

    Article  CAS  PubMed  Google Scholar 

  403. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J.H. Wendorff, Nanoprocessing of polymers: Applications in medicine, sensors, catalysis, photonics. Polym. Adv. Technol. 16, 276–282 (2005)

    Article  CAS  Google Scholar 

  404. H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Ko, Reinforcement and rupture behavior of carbon nanotubespolymer nanofibers. Appl. Phys. Lett. 85, 1775–1777 (2004)

    Article  CAS  Google Scholar 

  405. Y.Q. Wan, J.H. He, J.Y. Yu, Carbon nanotube-reinforced polyacrylonitrile nanofibers by vibration-electrospinning. Polym. Intern. 56, 1367–1370 (2007)

    Article  CAS  Google Scholar 

  406. C. Pan, L.Q. Ge, Z.Z. Gu, Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning. Compos. Sci. Technol. 67, 3271–3277 (2007)

    Article  CAS  Google Scholar 

  407. H. Lam, N. Titchenal, N. Naguib, H. Ye, Y. Gogotski, F. Ko, Electrospinning of carbon nanotubes reinforced nanocomposite fibrils and yarns. Mater. Res. Soc. Symp. Proc. 791, 353–358 (2004)

    CAS  Google Scholar 

  408. M.T. Byrne, Y.K. Gun’ko, Recent advances in research on carbon nanotube-polymer composites. Adv. Mater. 22, 1672–1688 (2010)

    Article  CAS  PubMed  Google Scholar 

  409. Z. Sun, V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne, J.N. Coleman, Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 112, 10692–10699 (2008)

    Article  CAS  Google Scholar 

  410. R.A. Vaia, K.D. Jandt, E.J. Kramer, E.P. Giannelis, Microstructural evolution of melt intercalated polymer-organically modified layered silicates Nanocomposites. Chem. Mater. 8, 2628–2635 (1996)

    Article  CAS  Google Scholar 

  411. D. Wang, C.A. Wilkie, A stibonium-modified clay and its polystyrene nanocomposite. Polym. Degrad. Stab. 82, 309–315 (2003)

    Article  CAS  Google Scholar 

  412. J. Zhang, C.A. Wilkie, A carbocation substituted clay and its styrene nanocomposite. Polym. Degrad. Stab. 83, 301–307 (2004)

    Article  CAS  Google Scholar 

  413. S. Su, D.D. Jiang, C.A. Wilkie, Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polym. Degrad. Stab. 84, 321–331 (2004)

    Article  CAS  Google Scholar 

  414. D.H. Kim, P.D. Fasulo, W.R. Rodgers, D.R. Paul, Structure and properties of polypropylene-based nanocomposies: Effect of PP-g-MA to organoclay ratio. Polymer 48, 5308–5323 (2007)

    Article  CAS  Google Scholar 

  415. E. Manias, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)

    Article  CAS  Google Scholar 

  416. B.P. Grady, Carbon Nanotube-Polymer Composites Manufacture, Properties, and Applications (Wiley, New York, 2011), p. 145

    Book  Google Scholar 

  417. C. McClory, S.J. Chin, T. McNally, Polymer/carbon nanotube composites. Aust. J. Chem. 62, 762–785 (2009)

    Article  CAS  Google Scholar 

  418. R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8, 31–37 (2004)

    Article  CAS  Google Scholar 

  419. J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun’ko, W.J. Blau, High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791–798 (2004)

    Article  CAS  Google Scholar 

  420. T. Villmow, P. Potschke, S. Pegel, L. Haussler, B. Kretzschmar, Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in poly(lactic acid) matrix. Polymer 49, 3500–3509 (2008)

    Article  CAS  Google Scholar 

  421. D. Wu, Y. Sun, M. Zhang, Kinetics study on melt compounding of carbon nanotube/polypropylene Nanocomposites. J. Polym. Sci. B Polym. Phys. 47, 608–618 (2009)

    Article  CAS  Google Scholar 

  422. J.S. Hong, C. Kim, Extension-induced dispersion of multi-walled carbon nanotubes in non-Newtonian fluid. J. Rheol. 51, 833–850 (2007)

    Article  CAS  Google Scholar 

  423. I.H. Kim, Y.G. Jeong, Polylactide/exfoliated graphite Nanocomposites with enhanced thermal stability, mechanical Modulus, and electrical conductivity. J. Polym. Sci. B Polym. Phys. 48, 850–858 (2010)

    Article  CAS  Google Scholar 

  424. H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu, G.Y. Ji, Z.Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51, 1191–1196 (2010)

    Article  CAS  Google Scholar 

  425. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)

    Article  CAS  Google Scholar 

  426. W. Weng, G. Chen, D. Wu, Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites. Polymer 46, 6250–6257 (2005)

    Article  CAS  Google Scholar 

  427. H. Kim, C.W. Macosko, Processing-property relationship of polycarbonate/graphene composites. Polymer 50, 3797–3809 (2009)

    Article  CAS  Google Scholar 

  428. G. Chen, C. Wu, W. Weng, D. Wu, W. Yan, Preparation of polystyrene/graphite nanosheet composites. Polymer 44, 1781–1784 (2003)

    Article  CAS  Google Scholar 

  429. H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane Nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)

    Article  CAS  Google Scholar 

  430. R.A. Vaia, E.P. Giannelis, Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 8000–8009 (1997)

    Article  CAS  Google Scholar 

  431. R.A. Vaia, H. Ishii, E.P. Giannelis, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694–1696 (1993)

    Article  CAS  Google Scholar 

  432. E. Bugnicourt, T. Kehoe, M. Latorre, C. Serrano, S. Philippe, M. Schmid, Recent prospects in the inline monitoring of Nanocomposites and Nanocoatings by optical technologies. Nano 6(150), 1–19 (2016)

    Google Scholar 

  433. P.J. Yoon, D.L. Hunter, D.R. Paul, Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties. Polymer 44, 5323–5339 (2003)

    Article  CAS  Google Scholar 

  434. I. Siro, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3), 459–494 (2010)

    Article  CAS  Google Scholar 

  435. X. Qiu, S. Hu, Smart materials based on cellulose: A review of the preparations, properties, and applications. Materials 6, 738–781 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. A.K. Bledzki, S. Reihmane, J. Gassan, Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329–1336 (1996)

    Article  CAS  Google Scholar 

  437. P.R. Hornsby, E. Hinrichsen, K. Tarverdi, Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II analysis of composite microstructure and mechanical properties. J. Mater. Sci. 32(4), 1009–1015 (1996)

    Article  Google Scholar 

  438. K. Oksman, L. Wallstrom, L.A. Berglund, R.D.T. Filho, Morphology and mechanical properties of unidirectional sisal-epoxy composites. J. Appl. Polym. Sci. 84(13), 2358–2365 (2002)

    Article  CAS  Google Scholar 

  439. D.N. Saheb, J.P. Jog, Natural fiber polymer composites: A review. Adv. Polym. Technol. 18(4), 351–363 (1999)

    Article  CAS  Google Scholar 

  440. S.T. Georgopoulos, P.A. Tarantili, E. Avgerinos, A.G. Andreopoulos, E.G. Koukios, Thermoplastic polymers reinforced with fibrous agricultural residues. Polym. Degrad. Stab. 90(2), 303–312 (2005)

    Article  CAS  Google Scholar 

  441. A. Alemdar, M. Sain, Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 68(2), 557–565 (2008)

    Article  CAS  Google Scholar 

  442. A. Alemdar, M. Sain, Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresour. Technol. 99(6), 1664–1671 (2008)

    Article  CAS  PubMed  Google Scholar 

  443. T. Zimmermann, N. Bordeanu, E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79(4), 1086–1093 (2010)

    Article  CAS  Google Scholar 

  444. B. Wang, M. Sain, Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym. Int. 56(4), 538–546 (2007)

    Article  CAS  Google Scholar 

  445. E. Doelker, Cellulose derivatives. Adv. Polym. Sci. 107, 199–265 (1993)

    Article  CAS  Google Scholar 

  446. A.K. Bledzki, I.J. Gassan, Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)

    Article  CAS  Google Scholar 

  447. S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polym. Eng. Sci. 49, 1253–1272 (2009)

    Article  CAS  Google Scholar 

  448. M. Mashkour, M. Tajvidi, T. Kimura, F. Kimura, G. Ebrahimi, Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticale coveres natural cellulose fibers. BioResources 6, 4731–4738 (2011)

    CAS  Google Scholar 

  449. M.N. Belgacem, A. Gandini, The surface modification of cellulose fibers for use as reinforcing elements in compostite materials. Compos. Interf. 12, 41–75 (2005)

    Article  CAS  Google Scholar 

  450. A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)

    Article  CAS  Google Scholar 

  451. M.L. Reid, M.B. Brown, G.P. Moss, S.A. Jones, An investigation into solvent- membrane interactions when assessing drug release from organic vehicles using regenerated cellulose membranes. J. Pharm. Pharmacol. 60, 1139–1147 (2008)

    Article  CAS  PubMed  Google Scholar 

  452. K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton, D. Tindall, Advances in cellulose ester performance and application. Prog. Polym. Sci. 26, 1605–1688 (2001)

    Article  CAS  Google Scholar 

  453. D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)

    Article  CAS  Google Scholar 

  454. E. Kontturi, T. Tammelin, M. Österberg, Cellulose – Model films and the fundamental approach. Chem. Soc. Rev. 35, 1287–1304 (2006)

    Article  CAS  PubMed  Google Scholar 

  455. K.L. Spence, R.A. Venditti, O.J. Rojas, J.J. Pawlak, M.A. Hubbe, Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6, 4370–4388 (2011)

    CAS  Google Scholar 

  456. (a) F.L. MAatthews, R.D. Rawlings, Composite Materials: Engineering and Science (Chapman & Hall, London, 1993); (b) A. Pegoretti, Editorial corner – A personal view. Trends in composite materials: The challenge of single-polymer composites. Express Polym. Lett. 1, 710 (2007)

    Google Scholar 

  457. (a) K.P. Matabola, A.R. De Vries, F.S. Moolman, A.S. Luyt, Single polymer composites: A review. J. Mater. Sci. 44, 6213–6222 (2009); (b) A. Kelley, Concise Encyclopedia of Composites Materials (Pergamon Press, New York, 1995)

    Google Scholar 

  458. R. Seymour, The role of fillers and reinforcements in plastic chemistry, in Fillers and Reinforcements for Plastic. Advances in Chemistry Series, ed. by R. D. Deanin, N. R. Schott, vol. 134, (ACS, Washington, DC, 1974), pp. 1–6

    Chapter  Google Scholar 

  459. M.R. Piggot, The effect of the Interface/interphase on Fiber composite properties. Polym. Compos. 8(5), 291–287 (1987)

    Article  Google Scholar 

  460. M.R. Piggot, A. Sanadi, P.S. Chua, D. Anderson, Mechanical interactions in the Interphasial region of fibre reinforced thermosets, in Composite Interfaces, ed. by H. Ishida, J. L. Koenig, (North-Holland, New York, 1986), pp. 109–121

    Google Scholar 

  461. C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)

    Article  CAS  Google Scholar 

  462. T.G. Gopakumar, D.J.Y.S. Page, Polypropylene/graphite Nanocomposites by ThermoKinetic mixing. Polym. Eng. Sci. 44(6), 1162–1169 (2004)

    Article  CAS  Google Scholar 

  463. F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Review article: Polymer-matrix Nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater. 40(17), 1511–1575 (2006)

    Article  CAS  Google Scholar 

  464. X. Jiang, L.T. Drzal, Multifunctional high density polyethylene Nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties. Polym. Compos. 31, 1091–1098 (2010)

    CAS  Google Scholar 

  465. K. Kalaitzidou, H. Fukushima, L.T. Drzal, A new compounding method for xfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67, 2045–2051 (2007)

    Article  CAS  Google Scholar 

  466. K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)

    Article  CAS  Google Scholar 

  467. Shah Mohammed, Reduwan Billah, Ibrahim Hossain Mondal, Sazzad Hossain Somoal, M. Nahid Pervez, Md. Obaidul Haque, Synthesis of External Stimuli-Responsive Hydrogels based CMC and Other Cellulose Derivatives for Advanced Applications, in Carboxymethylcellulose. Volume II. Pharmaceutical and Industrial Applications, ed. by I. H. Mondal, Nova Science Publishers, New York, USA, ISBN: 978-1-53614-752-0 (eBook), 43–75 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Mohammed Reduwan Billah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Billah, S.M.R. (2019). Composites and Nanocomposites. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95987-0_15

Download citation

Publish with us

Policies and ethics