Fertilization Strategies Based on Climate Information to Enhance Food Security Through Improved Dryland Cereals Production

  • Komla Kyky GanyoEmail author
  • Bertrand Muller
  • Aliou Guissé
  • Myriam Adam
Reference work entry


Rainfall uncertainty and nutrient deficiency affect sorghum production in Sahel. This study aimed at (i) determining the responses (varieties*water*nitrogen) of various West-African sorghum (Sorghum bicolor L. Moench) varieties to the application of fertilizer (NPK and urea) at selected growing stages according to water regime (irrigated or not, different rainfall patterns) and (ii) simulating them to define alternative fertilization strategies. This chapter proposes alternative fertilization strategies in line with rainfall patterns. Split plot experiments with four replications were carried out in two locations (Senegal), with four improved sorghum varieties (Fadda, IS15401, Soumba and 621B). Treatments were T1, no fertilizer; T2 = 150 kg/ha of NPK (15-15-15) at emergence +50 kg/ha of urea (46%) at tillering +50 Kg/ha of urea at stem extension; T3 = half rate of T2 applied at the same stages; T4 = 150 kg/ha of NPK + 50 kg/ha of urea at stem extension +50 kg/ha of urea at heading, and T5 = half rate of T4 applied at the same stages. Plant height, leaf number, grain yield, and biomass were significantly affected by the timing and rate of fertilizers. Grain yield were affected by water*nitrogen and nitrogen*variety interactions. It varied from 2111 to 261 kg/ha at “Nioro du Rip” and from 1670 to 267 kg/ha at “Sinthiou Malème.” CERES-Sorghum model overestimated late fertilizer grain yields. To achieve acceptable grain yield, fertilizers application should be managed regarding weather.


Fertilization strategies Climate information Food security Sorghum Sahel Modeling 


  1. Almodares A, Hadi MR, Ranjbar M, Taheri R (2007) The effect of nitrogen treatments, cultivars and harvest stages on stalk yield and sugar content in sweet sorghum. Asian J Plant Sci 6:423–426. Scholar
  2. Amiri M, Mojaddam M, Shokouhfar A, Bakhtiarinejad N (2014) The effect of different levels and time of nitrogen application on grain yield, some physiological traits and nitrogen use efficacy in grain sorghum. Indian J Fundam Appl Life Sci 4:223–227Google Scholar
  3. Bezançon G, Renno J-F, Kumar KA (1997) Le mil. In: Hamon S (ed) L’amélioration des plantes tropicales. CIRAD/ORSTOM, Paris, pp 457–482Google Scholar
  4. Blandino M, Vaccino P, Reyneri A (2015) Late-season nitrogen increases improver common and durum wheat quality. Agron J 107:680–690. Scholar
  5. Bodson B, Vancutsem F, Destain J et al. (2003) Evolution du fractionnement de la fumure azotée. In: CRA (ed) Livre Blanc “Céréales.” FUSAGx, Gembloux (Belgique), pp 1–8Google Scholar
  6. Brassard M (2007) Développement d’outils diagnostiques de la nutrition azotée du maïs-grain pour une gestion optimale de l’engrais azoté. Université de Laval, QuébecGoogle Scholar
  7. Casenave A, Valentin C (1989) Les états de surface de la zone sahélienne : influence sur l’infiltration, ORSTOM. Institut français de recherche scientifique pour le développement en Coopération, ParisGoogle Scholar
  8. Defrance D, Ramstein G, Charbit S et al (2017) Consequences of rapid ice-sheet melting on the Sahelian population vulnerability. Proc Natl Acad Sci U S A 114:6533–6538. Scholar
  9. Fageria NK, Baligar VC (1999) Yield and yield components of lowland rice as influenced by timing of nitrogen fertilization. J Plant Nutr 22:23–32. Scholar
  10. Gnansounoua E, Dauriat A, Wyman C (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002. Scholar
  11. Gueye T, Sine B, Cisse N et al (2016) Characterization of phenotypic diversity of Sorghum collection for developing breeding material. Int J Sci 5:38–48. Scholar
  12. Hansen JW (2002) Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agric Syst 74:309–330. Scholar
  13. Ingram KT, Roncoli MC, Kirshen PH (2002) Opportunities and constraints for farmers of west Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric Syst 74:331–349. Scholar
  14. IPCC (2007) Climate change 2007: impacts, adaptations and vulnerability. Contribution of working group II to the fourth assessment of the Intergovernmental Panel on Climate Change. CambridgeGoogle Scholar
  15. Jones JW, Hoogenboom G, Porter CH et al (2003) The DSSAT cropping system model. Eur J Agron 18:235–265CrossRefGoogle Scholar
  16. Keating BA, Wafula BM, Watiki JM, Karanja DR (1993) Dealing with climatic risk in agricultural research – a case study modelling maize in semi-arid Kenya. In: Craswell ET, Simpson J (eds) Soil fertility and climatic constraints in dryland agriculture. ACIAR, Harare, pp 105–114Google Scholar
  17. Kulkarni DP, Almodares A, Somani RB (1995) Sweet sorghum – supplementary sugar crop in Iran. Ann Plant Physiol 9:90–94Google Scholar
  18. Legwaila GM, Balole TV, Karikari SK (2003) Review of sweet sorghum: a potential cash and forage crop in Botswana. J Agric For 12:5–14. Scholar
  19. McCown RL, Wafula BM, Mohammed L et al (1991) Assessing the value of a seasonal rainfall predictor to agronomic decisions: the case of response farming in Kenya. In: Muchow RC, Bellamy JA (eds) Climatic risk in crop production. Models and management for the semi-arids tropics and subtropics. CAB Internatioanl, Wallingford, pp 383–409Google Scholar
  20. Perez CM, Juliano B, Liboon SP et al (1996) Effects of late nitrogen fertilizer application on head rice yield, protein content, and grain quality of rice. Cereal Chem 73:556–560Google Scholar
  21. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  22. Rötter R, Van Keulen H (1997) Variations in yield response to fertilizer application in the tropics: II. Risks and opportunities for smallholders cultivating maize on Kenya’s arable land. Agric Syst 53:69–95. Scholar
  23. Roudier P, Sultan B, Quirion P et al (2012) An ex-ante evaluation of the use of seasonal climate forecasts for millet growers in SW Niger. Int J Climatol 32:759–771. Scholar
  24. Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104:19703–19708. Scholar
  25. Sultan B, Gaetani M (2016) Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Front Plant Sci 7:1–20. Scholar
  26. Sultan B, Barbier B, Fortilus J et al (2010) Estimating the potential economic value of seasonal forecasts in West Africa: a long-term ex-ante assessment in Senegal. Am Meteorol Soc 2:69–87. Scholar
  27. Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci U S A 104:19686–19690. Scholar
  28. Wuest SB, Cassman KG (1992) Fertilizer-nitrogen use efficiency of irrigated wheat: I. Uptake efficiency of preplant versus late-season application. Agron J 84:682–688CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Komla Kyky Ganyo
    • 1
    • 2
    Email author
  • Bertrand Muller
    • 1
    • 3
  • Aliou Guissé
    • 4
  • Myriam Adam
    • 3
    • 5
    • 6
  1. 1.Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS)ThièsSénégal
  2. 2.Institut Togolais de Recherche Agronomique (ITRA)LoméTogo
  3. 3.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)UMR AGAP/PAMMontpellierFrance
  4. 4.Département de Biologie VégétaleUniversité Cheikh Anta Diop de Dakar (UCAD)DakarSénégal
  5. 5.Institut de l’Environnement et de la Recherche Agricole (INERA)Bobo DioulassoBurkina Faso
  6. 6.International Crops Research Institute for Semi-Arid Tropics (ICRISAT)BamakoMali

Personalised recommendations