Skip to main content

Drug Delivery: Localized and Systemic Therapeutic Strategies with Polymer Systems

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

This chapter expands upon some of the basic concepts regarding drug delivery and takes a tour through various regions of the body that are commonly treated locally with controlled release systems, investigating current research and commercial strategies involving the use of polymeric systems within each region after briefly describing the biology and the typical biological targets of each region. This section includes drug delivery throughout the gastrointestinal tract and to the skin, lungs, brain, and eye, along with several others. The use of polymeric materials for systemic controlled release is then briefly described and thoroughly investigated in a case study on the most common target of systemically delivered nanomedicines: cancer. The chapter concludes with a perspective on where the field of drug delivery is headed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

AMF:

Alternating magnetic field

AMT:

Adsorptive-mediated transcytosis

APC:

Antigen-presenting cells

BA:

Bioavailability

BBB:

Blood-brain barrier

BCNU:

1,3-bis(2-Chloroethyl)-1-nitrosourea

BRB:

Blood-retinal barrier

CNS:

Central nervous system

COPD:

Chronic obstructive pulmonary disease

CPT:

Camptothecin

DNA:

Deoxyribonucleic acid

Dox:

Doxorubicin

DSPE:

Distearoylphosphatidylethanolamine

EGF:

Epidermal growth factor

EPR:

Enhanced permeability and retention

EVA:

Ethylene vinyl acetate

F(ab′)2:

Dimers of Fabs

Fab:

Antigen-binding fragments

FDA:

U.S. Food and Drug Administration

FGF:

Fibroblast growth factor

GI:

Gastrointestinal

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HA:

Hyaluronic acid

HGH:

Human growth hormone

HIV:

Human immunodeficiency virus

HPV:

Human papillomavirus

IGF-1:

Insulin-like growth factor

IgG:

Immunoglobulin G

IR:

Infrared

LbL:

Layer-by-layer

LCST:

Lower critical solution temperature

LRP:

Low-density lipoprotein receptor-related protein

MPEG:

Methyl ether poly(ethylene glycol)

MPS:

Mononuclear phagocyte system

MRI:

Magnetic resonance imaging

NCS:

Nanotoxicological classification system

NIPAM:

N-Isopropyl acrylamide

PAMAM:

Polyamidoamine

PBA:

Phenyl boronic acid

PBAE:

Poly(β-amino ester)

PCL:

Polycaprolactone

PDGF:

Platelet-derived growth factor

PDMS:

Polydimethylsiloxane

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethylene imine)

PEM:

Polyelectrolyte multilayers

PEO:

Poly(ethylene oxide)

PHEMA:

Poly(2-hydroxyethyl methacrylate)

PLGA:

Poly(lactic acid-co-glycolic acid)

PMMA:

poly(methyl methacrylate)

PNIPAM:

Poly(N-isopropyl acrylamide)

POEGMA:

Poly(oligoethylene glycol methacrylate)

PPO:

Poly(propylene oxide)

Ptx:

Paclitaxel

PVA:

Polyvinyl alcohol

RGD:

Arginine-glycine-aspartic acid

RNA:

Ribonucleic acid

SC:

Subcutaneous

scFv:

Single-chain fragment variables

siRNA:

Small-interfering RNA

SPIONs:

Superparamagnetic iron oxide nanoparticles

Tg:

Glass transition temperature

TGF-β1:

Transforming growth factor

UV:

Ultraviolet

VPPT:

Volume phase transition temperature

References

  1. N. Huebsch, C.J. Kearney, X. Zhao, J. Kim, C.A. Cezar, Z. Suo, D.J. Mooney, Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proc. Natl. Acad. Sci. U. S. A. 111, 9762–9767 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. Maitland, S.B. Campbell, J. Chen, T. Hoare, Controlling the resolution and duration of pulsatile release from injectable magnetic “plum pudding” nanocomposite hydrogels. RSC Adv. 6, 15770–15781 (2016)

    Article  CAS  Google Scholar 

  3. S.V. Sastry, J.R. Nyshadham, J.A. Fix, Recent technological advances in oral drug delivery – a review. Pharm. Sci. Technol. Today 3, 138–145 (2000)

    Article  CAS  PubMed  Google Scholar 

  4. L.M. Ensign, R. Cone, J. Hanes, Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64, 557–570 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. E.M. Pridgen, F. Alexis, O.C. Farokhzad, Polymeric nanoparticle technologies for oral drug delivery challenges of oral delivery. Clin. Gastroenterol. Hepatol. 12, 1605–1610 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. R. Langer, Drug delivery and targeting. Nature 392, 5–10 (1998)

    CAS  PubMed  Google Scholar 

  7. K. Sonaje, K. Lin, S. Wey, C. Lin, T. Yeh, H. Nguyen, C. Hsu, T. Yen, J. Juang, H. Sung, Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: oral delivery using pH-responsive nanoparticles vs. subcutaneous injection. Biomaterials 31, 6849–6858 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. Q. Xu, L.M. Ensign, N.J. Boylan, A. Schon, X. Gong, J.-C. Yang, N.W. Lamb, S. Cai, T. Yu, E. Freire, J. Hanes, Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano 9, 9217–9227 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K.Y. Win, S. Feng, Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. E. Cochran, C. Musso, P. Gorden, The use of U-500 in patients with extreme insulin resistance. Diabetes Care 28, 1240–1244 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. M. Chen, K. Sonaje, K. Chen, H. Sung, A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 32, 9826–9838 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. L.T. Kuhn, Biomaterials, in Introduction to Biomedical Engineering, 4th edn., ed. by J. Enderle, S. Blanchard, J. Bronzino (Elsevier Academic, Burlington, 2005)

    Google Scholar 

  13. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Kim, J. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 64, 1547–1568 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.R. Prausnitz, R. Langer, Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N.R. Mathias, M.A. Hussain, Non-invasive systemic drug delivery: developability considerations for alternate routes of administration. J. Pharm. Sci. 99, 1–20 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. J.J. Norman, J.M. Arya, M.A. McClain, P.M. Frew, M.I. Meltzer, M.R. Prausnitz, Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine 32, 1856–1862 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  18. E.M. Saurer, R.M. Flessner, S.P. Sullivan, M.R. Prausnitz, D.M. Lynn, Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin. Biomacromolecules 11, 3136–3143 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. B.P.C. Demuth, X. Su, R.E. Samuel, P.T. Hammond, D.J. Irvine, Nano-layered microneedles for transcutaneous delivery of polymer nanoparticles and plasmid DNA. Adv. Mater. 22, 4851–4856 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Kim, B. Jung, J. Park, Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 33, 668–678 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. G. Wiedermann, Patient compliance in the use of Vivotif Berna vaccine, typhoid vaccine, live oral Ty21a. J. Travel Med. 5, 1–2 (1998)

    Article  CAS  PubMed  Google Scholar 

  22. J.S. Boateng, K.H. Matthews, H.N.E. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review. J. Pharm. Sci. 97, 2892–2923 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. H. Ueno, T. Mori, T. Fujinaga, Topical formulations and wound healing applications of chitosan. Adv. Drug Deliv. Rev. 52, 105–115 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Sawadal, M. Ara, T. Yotsuyanagi, K. Sonet, Treatment of dermal depth burn wounds with an antimicrobial agent-releasing silicone gel sheet. Burns 16, 347–352 (1990)

    Article  Google Scholar 

  25. A.C. Lee, H. Leem, J. Lee, K. Chan, Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials 26, 4670–4676 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. S. Park, J. Koo, H. Suh, Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25, 3689–3698 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. H. Storrie, D.J. Mooney, Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 58, 500–514 (2006)

    Article  CAS  PubMed  Google Scholar 

  28. M.M. Bailey, C.J. Berkland, Nanoparticle formulations in pulmonary drug delivery. Med. Res. Rev. 29, 196–212 (2008)

    Article  CAS  Google Scholar 

  29. J.S. Patil, S. Sarasija, Pulmonary drug delivery strategies: a concise, systematic review. Lung India 29, 44–49 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D.A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. Lou Eskew, J. Mintzes, D. Deaver, N. Lotan, R. Langer, Large porous particles for pulmonary drug delivery. Science 276, 1868–1871 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. E. Rytting, J. Nguyen, X. Wang, T. Kissel, Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin. Drug Deliv. 5, 629–639 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. M. Beck-Broichsitter, O.M. Merkel, T. Kissel, Controlled pulmonary drug and gene delivery using polymeric nano-carriers. J. Control. Release 161, 214–224 (2012)

    Article  CAS  PubMed  Google Scholar 

  33. F. Ungaro, I. Angelo, A. Miro, M.I. La Rotonda, F. Quaglia, Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. J. Pharm. Pharmacol. 64, 1217–1235 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. M. Paranjpe, C.C. Müller-Goymann, Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci. 15, 5852–5873 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. J.S. Patton, C.S. Fishburn, J.G. Weers, The lungs as a portal of entry for systemic drug delivery. Proc. Am. Thorac. Soc. 1, 338–344 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. J.C. Sung, D.J. Padilla, L. Garcia-Contreras, J.L. Verberkmoes, D. Durbin, C.A. Peloquin, K.J. Elbert, A.J. Hickey, D.A. Edwards, Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm. Res. 26, 1847–1855 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. M. Dutt, G.K. Khuller, Chemotherapy of Mycobacterium tuberculosis infections in mice with a combination of isoniazid and rifampicin entrapped in poly(dl-lactide-co-glycolide) microparticles. J. Antimicrob. Chemother. 47, 829–835 (2001)

    Article  CAS  PubMed  Google Scholar 

  38. M. Dutt, G.K. Khuller, Sustained release of isoniazid from a single injectable dose of poly(dl-lactide-co-glycolide) microparticles as a therapeutic approach towards tuberculosis. Int. J. Antimicrob. Agents 17, 115–122 (2001)

    Article  CAS  PubMed  Google Scholar 

  39. I.M. El-Sherbiny, S. McGill, H.D.C. Smyth, Swellable microparticles as carriers for sustained pulmonary drug delivery. J. Pharm. Sci. 99, 2343–2356 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. E. Kleemann, M. Neu, N. Jekel, L. Fink, T. Schmehl, T. Gessler, W. Seeger, T. Kissel, Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG–PEI. J. Control. Release 109, 299–316 (2005)

    Article  CAS  PubMed  Google Scholar 

  41. J. Nguyen, T.W.J. Steele, O. Merkel, R. Reul, T. Kissel, Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J. Control. Release 132, 243–251 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. W. Zhang, H. Yang, X. Kong, S. Mohapatra, H.S. Juan-Vergara, G. Hellermann, S. Behera, R. Singam, R.F. Lockey, S.S. Mohapatra, Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med. 11, 56–62 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. X. Kong, W. Zhang, R.F. Lockey, A. Auais, G. Piedimonte, S.S. Mohapatra, Respiratory syncytial virus infection in Fischer 344 rats is attenuated by short interfering RNA against the RSV-NS1 gene. Genet. Vaccines Ther. 5, 1–8 (2007)

    Article  CAS  Google Scholar 

  44. H. Yamamoto, Y. Kuno, S. Sugimoto, H. Takeuchi, Y. Kawashima, Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J. Control. Release 102, 373–381 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. K.K. Gill, S. Nazzal, A. Kaddoumi, Paclitaxel loaded PEG5000–DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur. J. Pharm. Biopharm. 79, 276–284 (2011)

    Article  CAS  PubMed  Google Scholar 

  46. S. Wohlfart, S. Gelperina, J. Kreuter, Transport of drugs across the blood – brain barrier by nanoparticles. J. Control. Release 161, 264–273 (2012)

    Article  CAS  PubMed  Google Scholar 

  47. P.R. Lockman, R.J. Mumper, M.A. Khan, D.D. Allen, Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev. Ind. Pharm. 28, 1–13 (2002)

    Article  CAS  PubMed  Google Scholar 

  48. M. Elsabahy, K.L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 41, 2545–2561 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. H.-L. Liu, M.-Y. Hua, P.-Y. Chen, P.-C. Chu, C.-H. Pan, H.-W. Yang, C.-Y. Huang, J.-J. Wang, T.-C. Yen, K.-C. Wei, Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255, 415–425 (2010)

    Article  PubMed  Google Scholar 

  50. J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, P. Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42, 1147–1235 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. Z. Pang, L. Feng, R. Hua, J. Chen, H. Gao, S. Pan, X. Jiang, P. Zhang, Lactoferrin-conjugated biodegradable polymersomes holding doxorubicin and tetrandrine for chemotherapy of glioma rats. Mol. Pharm. 7, 1995–2005 (2010)

    Article  CAS  PubMed  Google Scholar 

  52. Z. Pang, H. Gao, Y. Yu, L. Guo, J. Chen, S. Pan, J. Ren, Z. Wen, X. Jiang, Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug. Chem. 22, 1171–1180 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. H. Gao, J. Qian, S. Cao, Z. Yang, Z. Pang, S. Pan, L. Fan, Z. Xi, X. Jiang, Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials 33, 5115–5123 (2012)

    Article  CAS  PubMed  Google Scholar 

  54. U. Bickel, T. Yoshikawa, W.M. Pardridge, Delivery of peptides and proteins through the blood–brain barrier. Adv. Drug Deliv. Rev. 46, 247–279 (2001)

    Article  CAS  PubMed  Google Scholar 

  55. L. Illum, Nasal drug delivery – possibilities, problems and solutions. J. Control. Release 87, 187–198 (2003)

    Article  CAS  PubMed  Google Scholar 

  56. J. Piazza, T. Hoare, L. Molinaro, K. Terpstra, J. Bhandari, P.R. Selvaganapathy, B. Gupta, R.K. Mishra, Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)–block-poly (d,l)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. Eur. J. Pharm. Biopharm. 87, 30–39 (2014)

    Article  CAS  PubMed  Google Scholar 

  57. F.J. Attenello, D. Mukherjee, G. Datoo, M.J. McGirt, E. Bohan, J.D. Weingart, A. Olivi, A. Quinones-Hinojosa, H. Brem, Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann. Surg. Oncol. 15, 2887–2893 (2008)

    Article  PubMed  Google Scholar 

  58. H. Brem, S. Piantadosi, P.C. Burger, M. Walker, R. Selker, N.A. Vick, K. Black, M. Sisti, S. Brem, G. Mohr, P. Muller, R. Morawetz, S.C. Schold, Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. Lancet 345, 1008–1012 (1995)

    Article  CAS  PubMed  Google Scholar 

  59. S. Kunwar, S. Chang, M. Westphal, M. Vogelbaum, J. Sampson, G. Barnett, M. Shaffrey, Z. Ram, J. Piepmeier, M. Prados, D. Croteau, C. Pedain, P. Leland, S.R. Husain, B.H. Joshi, R.K. Puri, Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol. 12, 871–881 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. G.Y. Kim, B.M. Tyler, M.M. Tupper, J.M. Karp, R.S. Langer, H. Brem, M.J. Cima, Resorbable polymer microchips releasing BCNU inhibit tumor growth in the rat 9L flank model. J. Control. Release 123, 172–178 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. U.B. Kompella, A.C. Amrite, R. Pacha, S.A. Durazo, Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog. Retin. Eye Res. 36, 172–198 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M.E. Myles, D.M. Neumann, J.M. Hill, Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv. Drug Deliv. Rev. 57, 2063–2079 (2005)

    Article  CAS  PubMed  Google Scholar 

  63. M.N. Yasin, D. Svirskis, A. Seyfoddin, I.D. Rupenthal, Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J. Control. Release 196, 208–221 (2014)

    Article  CAS  PubMed  Google Scholar 

  64. Y. Chun, B. Chiang, X. Wu, M.R. Prausnitz, Ocular delivery of macromolecules. J. Control. Release 190, 172–181 (2014)

    Article  CAS  Google Scholar 

  65. E. Lavik, M.H. Kuehn, Y.H. Kwon, Novel drug delivery systems for glaucoma. Eye 25, 578–586 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. N. Kuno, S. Fujii, Recent advances in ocular drug delivery systems. Polymers 3, 193–221 (2011)

    Article  CAS  Google Scholar 

  67. N. Nagai, H. Kaji, H. Onami, Y. Ishikawa, M. Nishizawa, A polymeric device for controlled transscleral multi-drug delivery to the posterior segment of the eye. Acta Biomater. 10, 680–687 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. M. Allansmith, A. De Ramus, D. Maurice, The dynamics of IgG in the cornea. Invest. Ophthalmol. Vis. Sci. 18, 947–955 (1979)

    CAS  PubMed  Google Scholar 

  69. H. Sheardown, Critical role for drug delivery in the development of new ophthalmic treatments. Future Med. Chem. 4, 2123–2125 (2012)

    Article  CAS  PubMed  Google Scholar 

  70. S.D. Fitzpatrick, M.A. Jafar Mazumder, F. Lasowski, L.E. Fitzpatrick, H. Sheardown, PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules 11, 2261–2267 (2010)

    Article  CAS  PubMed  Google Scholar 

  71. V. Delplace, S. Payne, M. Shoichet, Delivery strategies for treatment of age-related ocular diseases: from a biological understanding to biomaterial solutions. J. Control. Release 219, 652–668 (2015)

    Article  CAS  PubMed  Google Scholar 

  72. T.R. Thrimawithana, S. Young, C.R. Bunt, C. Green, R.G. Alany, Drug delivery to the posterior segment of the eye. Drug Discov. Today 16, 270–277 (2011)

    Article  CAS  PubMed  Google Scholar 

  73. F.M. Veronese, A. Mero, The impact of PEGylation on biological therapies. BioDrugs 22, 315–329 (2008)

    Article  CAS  PubMed  Google Scholar 

  74. J. Jiang, J.S. Moore, H.F. Edelhauser, M.R. Prausnitz, Intrascleral drug delivery to the eye using hollow microneedles. Pharm. Res. 26, 399–403 (2009)

    Article  CAS  Google Scholar 

  75. S.R. Patel, A.S. Lin, H.F. Edelhauser, M.R. Prausnitz, Suprachoroidal drug delivery to the back of the eye using hollow microneedles. Pharm. Res. 28, 166–176 (2011)

    Article  CAS  PubMed  Google Scholar 

  76. A.L. Gomes dos Santos, A. Bochot, A. Doyle, N. Tsapis, J. Siepmann, F. Siepmann, J. Schmaler, M. Besnard, F. Behar-Cohen, E. Fattal, Sustained release of nanosized complexes of polyethylenimine and anti-TGF-β2 oligonucleotide improves the outcome of glaucoma surgery. J. Control. Release 112, 369–381 (2006)

    Article  CAS  PubMed  Google Scholar 

  77. T. Hoare, S.B. Campbell, W.-I. Wu, J. Yang, P.R. Selvaganapathy, A microinjection device for delivering in situ-gelling hydrogels for posterior segment drug delivery. Invest. Ophthalmol. Vis. Sci. 55, 478 (2014)

    Google Scholar 

  78. M. Patenaude, N.M.B. Smeets, T. Hoare, Designing injectable, covalently cross-linked hydrogels for biomedical applications. Macromol. Rapid Commun. 35(6), 1–20 (2014)

    Article  CAS  PubMed  Google Scholar 

  79. G. Zhu, Y. Zhang, K. Wang, X. Zhao, H. Lian, H. Wang, J. Wu, Y. Hu, H. Guo, G. Zhu, Y. Zhang, K. Wang, X. Zhao, H. Lian, G. Zhu, Y. Zhang, K. Wang, X. Zhao, H. Lian, W. Wang, H. Wang, Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release. Drug Deliv. 23, 2820–2826 (2016)

    Article  CAS  PubMed  Google Scholar 

  80. D. Zhang, P. Sun, P. Li, A. Xue, X. Zhang, H. Zhang, X. Jin, A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guérin in the treatment of bladder cancer. Biomaterials 34, 10258–10266 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. Y.L. Traore, Y. Chen, A. Bernier, A. Ho, Impact of hydroxychloroquine-loaded polyurethane intravaginal rings on Lactobacilli. Antimicrob. Agents Chemother. 59, 7680–7686 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. E.A. Ho, Intravaginal rings as a novel platform for mucosal vaccination. Mol. Pharm. Org. Process Res. 1, 1–2 (2013)

    Google Scholar 

  83. S. Kim, Y. Chen, E.A. Ho, S. Liu, Reversibly pH-responsive polyurethane membranes for on-demand intravaginal drug delivery. Acta Biomater. 47, 100–112 (2017)

    Article  CAS  PubMed  Google Scholar 

  84. S. Yang, Y. Chen, R. Ahmadie, E.A. Ho, Advancements in the field of intravaginal siRNA delivery. J. Control. Release 167, 29–39 (2013)

    Article  CAS  PubMed  Google Scholar 

  85. W.C. Carlyle, J.B. McClain, A.R. Tzafriri, L. Bailey, G. Brett, P.M. Markham, J.R.L. Stanley, E.R. Edelman, Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug. J. Control. Release 162, 561–567 (2015)

    Article  CAS  Google Scholar 

  86. L. Lei, S. Guo, W. Chen, H. Rong, F. Lu, Stents as a platform for drug delivery. Expert Opin. Drug Deliv. 8, 813–831 (2011)

    Article  CAS  PubMed  Google Scholar 

  87. T. Keler, V. Ramakrishna, M. Fanger, Mannose receptor-targeted vaccines. Expert Opin. Biol. Ther. 4, 1953–1962 (2004)

    Article  CAS  PubMed  Google Scholar 

  88. T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang, Y. Xia, Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 53, 12320–12364 (2014)

    CAS  Google Scholar 

  89. D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  CAS  PubMed  Google Scholar 

  90. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760 (2007)

    Article  CAS  PubMed  Google Scholar 

  91. R. Tong, D.S. Kohane, New strategies in cancer nanomedicine. Annu. Rev. Pharmacol. Toxicol. 56, 41–57 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. T.M. Allen, P.R. Cullis, Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2003)

    Article  CAS  Google Scholar 

  93. Y.H. Bae, K. Park, Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release 153, 198–205 (2012)

    Article  CAS  Google Scholar 

  94. A.A. Gabizon, Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin. Cancer Res. 7, 223–225 (2001)

    CAS  PubMed  Google Scholar 

  95. A.K. Iyer, G. Khaled, J. Fang, H. Maeda, Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 11, 812–818 (2006)

    Article  CAS  PubMed  Google Scholar 

  96. G. Bergers, L.E. Benjamin, Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401–410 (2003)

    Article  CAS  PubMed  Google Scholar 

  97. B. Haley, E. Frenkel, Nanoparticles for drug delivery in cancer treatment. Urol. Oncol. 26, 57–64 (2008)

    Article  CAS  PubMed  Google Scholar 

  98. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    CAS  PubMed  Google Scholar 

  99. M.J. Alonso, Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 58, 168–172 (2004)

    Article  PubMed  CAS  Google Scholar 

  100. R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. P. Decuzzi, S. Lee, B. Bhushan, M. Ferrari, A theoretical model for the margination of particles within blood vessels. Ann. Biomed. Eng. 33, 179–190 (2005)

    Article  CAS  PubMed  Google Scholar 

  102. P. Decuzzi, R. Pasqualini, W. Arap, M. Ferrari, Intravascular delivery of particulate systems: does geometry really matter? Pharm. Res. 26, 235–243 (2009)

    Article  CAS  PubMed  Google Scholar 

  103. V.P. Torchilin, Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005)

    Article  CAS  PubMed  Google Scholar 

  104. H.M. Warenius, G. Galfre, N.M. Bleehen, C. Milstein, Attempted targeting of a monoclonal antibody in a human tumour xenograft system. Eur. J. Cancer Clin. Oncol. 17, 1009–1015 (1981)

    Article  CAS  PubMed  Google Scholar 

  105. D.E.L. De Menezes, L.M. Pilarski, T.M. Allen, In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 58, 3320–3331 (2000)

    Google Scholar 

  106. J.W. Park, K. Hong, D.B. Kirpotin, G. Colbern, R. Shalaby, J. Baselga, Y. Shao, U.B. Nielsen, J.D. Marks, D. Moore, D. Papahadjopoulos, C.C. Benz, Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8, 1172–1181 (2002)

    CAS  PubMed  Google Scholar 

  107. J. Majoros, B.G. Orr, J.R. Baker, S. Hong, P.R. Leroueil, M.M.B. Holl, The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115 (2007)

    Article  PubMed  CAS  Google Scholar 

  108. D. Peer, P. Zhu, C.V. Carmen, J. Lieberman, M. Shimaoka, Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. U. S. A. 104, 4095–4100 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. O.C. Farokhzad, J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P. Kantoff, J.P. Richie, R. Langer, Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. U. S. A. 103, 6315–6320 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Y.N. Dou, J. Zheng, W.D. Foltz, R. Weersink, N. Chaudary, D.A. Jaffray, C. Allen, Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice. J. Control. Release 178, 69–78 (2014)

    Article  CAS  PubMed  Google Scholar 

  111. S. Heilmann, S. Küchler, C. Wischke, A. Lendlein, C. Stein, M. Schäfer-Korting, A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int. J. Pharm. 444, 96–102 (2013)

    Article  CAS  PubMed  Google Scholar 

  112. R. Pelton, Temperature-sensitive aqueous microgels. Adv. Colloid Interface Sci. 85, 1–33 (2000)

    Article  CAS  PubMed  Google Scholar 

  113. C. Ju, R. Mo, J. Xue, L. Zhang, Z. Zhao, L. Xue, Q. Ping, C. Zhang, Sequential intra-intercellular nanoparticle delivery system for deep tumor penetration. Angew. Chem. Int. Ed. 53, 6253–6258 (2014)

    Article  CAS  Google Scholar 

  114. C.L. Lay, J.N. Kumar, C.K. Liu, X. Lu, Y. Liu, A rocket-like encapsulation and delivery system with two-stage booster layers: pH-responsive poly(methacrylic acid)/poly(ethylene glycol) complex-coated hollow silica vesicles. Macromol. Rapid Commun. 34, 1563–1568 (2013)

    Article  CAS  PubMed  Google Scholar 

  115. X. Yao, L. Chen, X. Chen, C. He, J. Zhang, X. Chen, Metallo-supramolecular nanogels for intracellular pH-responsive drug release. Macromol. Rapid Commun. 35, 1697–1705 (2014)

    Article  CAS  PubMed  Google Scholar 

  116. T. Hoare, R. Pelton, Charge-switching, amphoteric glucose-responsive microgels with physiological swelling activity. Biomacromolecules 9, 733–740 (2008)

    Article  CAS  PubMed  Google Scholar 

  117. A. Matsumoto, K. Yamamoto, R. Yoshida, K. Kataoka, T. Aoyagi, Y. Miyahara, A totally synthetic glucose responsive gel operating in physiological aqueous conditions. Chem. Commun. 46, 2203–2205 (2010)

    Article  CAS  Google Scholar 

  118. S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013)

    Article  CAS  PubMed  Google Scholar 

  119. S. Merino, C. Martin, K. Kostarelos, M. Prato, E. Vazquez, Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano 9, 4686–4697 (2015)

    Article  CAS  PubMed  Google Scholar 

  120. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008)

    Article  CAS  PubMed  Google Scholar 

  121. M. Sepantafar, R. Maheronnaghsh, H. Mohammadi, F. Radmanesh, M.M. Hasani-Sadrabadi, M. Ebrahimi, Engineered hydrogels in cancer therapy and diagnosis. Trends Biotechnol. 35, 1074–1087 (2017)

    Article  CAS  PubMed  Google Scholar 

  122. T. Tagami, W.D. Foltz, M.J. Ernsting, C.M. Lee, I.F. Tannock, J.P. May, S. Li, MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 32, 6570–6578 (2011)

    Article  CAS  PubMed  Google Scholar 

  123. S. Lee, H. Park, J. Choi, Y.N. Park, C. Yun, H. Yoo, Multifunctional nanoparticles for targeted chemophotothermal treatment of cancer cells. Angew. Chem. Int. Ed. 50, 7581–7586 (2011)

    Article  CAS  Google Scholar 

  124. P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, P.M. Schlag, Review. Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)

    Article  CAS  PubMed  Google Scholar 

  125. I. Hilger, W.A. Kaiser, Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7, 1443–1459 (2012)

    Article  CAS  PubMed  Google Scholar 

  126. P. Pradhan, J. Giri, F. Rieken, C. Koch, O. Mykhaylyk, M. Döblinger, R. Banerjee, D. Bahadur, C. Plank, Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J. Control. Release 142, 108–121 (2010)

    Article  CAS  PubMed  Google Scholar 

  127. B. Thiesen, A. Jordan, Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24, 467–474 (2008)

    Article  CAS  PubMed  Google Scholar 

  128. J. Gautier, E. Allard-Vannier, E. Munnier, M. Soucé, I. Chourpa, Recent advances in theranostic nanocarriers of doxorubicin based on iron oxide and gold nanoparticles. J. Control. Release 169, 48–61 (2013)

    Article  CAS  PubMed  Google Scholar 

  129. C.S. Brazel, Magnetothermally-responsive nanomaterials: combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm. Res. 26, 644–656 (2009)

    Article  CAS  PubMed  Google Scholar 

  130. S. Hu, S. Chen, X. Gao, Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano 6, 2558–2565 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, T. Sen, Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 63, 24–46 (2011)

    Article  CAS  PubMed  Google Scholar 

  132. W.-H. Chiang, V.T. Ho, H.-H. Chen, W.-C. Huang, Y.-F. Huang, S.-C. Lin, C.-S. Chern, H.-C. Chiu, Superparamagnetic hollow hybrid nanogels as a potential guidable vehicle system of stimuli-mediated MR imaging and multiple cancer therapeutics. Langmuir 29, 6434–6443 (2013)

    Article  CAS  PubMed  Google Scholar 

  133. Z. Deng, Z. Zhen, X. Hu, S. Wu, Z. Xu, P.K. Chu, Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32, 4976–4986 (2011)

    Article  CAS  PubMed  Google Scholar 

  134. K. Hyun, J. Kim, S. Mun, H. Shin, M. Sang, S. Park, H. Lee, R. Park, I. Kim, K. Kim, I. Chan, S. Young, D. Sung, Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J. Control. Release 144, 259–266 (2010)

    Article  CAS  Google Scholar 

  135. G. Hui Gao, M. Jung Park, Y. Li, G. Ho Im, J. Kim, H. Nyun Kim, J. Won Lee, P. Jeon, O. Young Bang, J. Hee Lee, D. Sung Lee, The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials 33, 9157–9164 (2012)

    Article  CAS  Google Scholar 

  136. W. Wu, T. Zhou, A. Berliner, P. Banerjee, S. Zhou, Smart core−shell hybrid nanogels with Ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery. Chem. Mater. 22, 1966–1976 (2010)

    Article  CAS  Google Scholar 

  137. M.E.R. O’Brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke, A. Santoro, R. Catane, D.G. Kieback, P. Tomczak, S.P. Ackland, F. Orlandi, L. Mellars, L. Alland, C. Tendler, Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 15, 440–449 (2004)

    Article  PubMed  Google Scholar 

  138. K.S. Lee, H.C. Chung, S.A. Im, Y.H. Park, C.S. Kim, S.-B. Kim, S.Y. Rha, M.Y. Lee, J. Ro, Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. 108, 241–250 (2008)

    Article  CAS  PubMed  Google Scholar 

  139. P.A. Dinndorf, J. Gootenberg, M.H. Cohen, P. Keegan, R. Pazdur, FDA drug approval summary: pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist 12, 991–998 (2007)

    Article  CAS  PubMed  Google Scholar 

  140. T. Okusaka, S. Okada, H. Ueno, M. Ikeda, R. Iwata, H. Furukawa, K. Takayasu, N. Moriyama, T. Sato, K. Sato, Transcatheter arterial embolization with zinostatin stimalamer for hepatocellular carcinoma. Oncology 62, 228–233 (2002)

    Article  CAS  PubMed  Google Scholar 

  141. Q. Song, S.D. Merajver, J.Z. Li, Cancer classification in the genomic era: five contemporary problems. Hum. Genomics 9, 1–8 (2015)

    Article  CAS  Google Scholar 

  142. L.K. Fung, W.M. Saltzman, Polymeric implants for cancer chemotherapy. Adv. Drug Deliv. Rev. 26, 209–230 (1997)

    Article  CAS  PubMed  Google Scholar 

  143. P.N. Schlegel, Efficacy and safety of histrelin subdermal implant in patients with advanced prostate cancer. J. Urol. 175, 1353–1358 (2006)

    Article  CAS  PubMed  Google Scholar 

  144. D.J. Overstreet, D. Dutta, S.E. Stabenfeldt, B.L. Vernon, Injectable hydrogels. J. Polym. Sci. B Polym. Phys. 50, 881–903 (2012)

    Article  CAS  Google Scholar 

  145. Y. Li, J. Rodrigues, H. Tomás, Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41, 2193–2221 (2012)

    Article  CAS  PubMed  Google Scholar 

  146. P. Huang, Y. Zhang, W. Wang, J. Zhou, Y. Sun, J. Liu, D. Kong, J. Liu, A. Dong, Co-delivery of doxorubicin and 131 I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy. J. Control. Release 220, 456–464 (2015)

    Article  CAS  PubMed  Google Scholar 

  147. L. Gu, D.J. Mooney, Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16, 56–66 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. H. Hu, Z. Lin, B. He, W. Dai, X. Wang, J. Wang, X. Zhang, H. Zhang, Q. Zhang, A novel localized co-delivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. J. Control. Release 220, 189–200 (2015)

    Article  CAS  PubMed  Google Scholar 

  149. D. Weissglas-Volkov, N. Oliva, E. Friedman, N. Artzi, A. Gilam, N. Shomron, Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat. Commun. 7, 12868 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  150. S.B. Campbell, T. Hoare, Externally addressable hydrogel nanocomposites for biomedical applications. Curr. Opin. Chem. Eng. 4, 1–10 (2014)

    Article  Google Scholar 

  151. S.B. Campbell, M. Patenaude, T. Hoare, Injectable superparamagnets: highly elastic and degradable poly(N-isopropylacrylamide)-superparamagnetic iron oxide nanoparticle (SPION) composite hydrogels. Biomacromolecules 14, 644–653 (2013)

    Article  CAS  PubMed  Google Scholar 

  152. L.E. Strong, S.N. Dahotre, J.L. West, Hydrogel-nanoparticle composites for optically modulated cancer therapeutic delivery. J. Control. Release 178, 63–68 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. B.C. Youan, Chronopharmaceutical drug delivery systems: hurdles, hype or hope? Adv. Drug Deliv. Rev. 62, 898–903 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. R. Tong, H.D. Hemmati, R. Langer, D.S. Kohane, Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. J. Am. Chem. Soc. 134, 8848–8855 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. S. Campbell, D. Maitland, T. Hoare, Enhanced pulsatile drug release from injectable magnetic hydrogels with embedded thermosensitive microgels. ACS Macro Lett. 4, 312–316 (2015)

    Article  CAS  PubMed  Google Scholar 

  156. P.W. Kantoff, C.S. Higano, N.D. Shore, E.R. Berger, E.J. Small, D.F. Penson, C.H. Redfern, A.C. Ferrari, R. Dreicer, R.B. Sims, Y. Xu, D. Ph, M.W. Frohlich, P.F. Schellhammer, Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2012)

    Article  Google Scholar 

  157. O. Hamid, C. Robert, A. Daud, F.S. Hodi, W.-J. Hwu, R. Kefford, J.D. Wolchok, P. Hersey, R.W. Joseph, J.S. Weber, R. Dronca, T.C. Gangadhar, A. Patnaik, H. Zarour, A.M. Joshua, K. Gergich, J. Elassaiss-Schaap, A. Algazi, C. Mateus, P. Boasberg, P.C. Tumeh, B. Chmielowski, S.W. Ebbinghaus, X.N. Li, S.P. Kang, A. Ribas, Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. M.A. Postow, J. Chesney, A.C. Pavlick, C. Robert, K. Grossmann, D. McDermott, G.P. Linette, N. Meyer, J.K. Giguere, D. Minor, A.K. Salama, M. Taylor, P.A. Ott, L.M. Rollin, C. Horak, P. Gagnier, J.D. Wolchok, F.S. Hodi, Nivolumab and Ipilimumab versus Ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  159. O.A. Ali, N. Huebsch, L. Cao, G. Dranoff, D.J. Mooney, Infection-mimicking materials to program dendritic cells in situ. Nat. Mater. 8, 151–158 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. S.T. Koshy, D.J. Mooney, Biomaterials for enhancing anti-cancer immunity. Curr. Opin. Biotechnol. 40, 1–8 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. O.A. Ali, D. Emerich, G. Dranoff, D.J. Mooney, In situ regulation of DC subsets and T cells mediates tumor regression in mice. Sci. Transl. Med. 1, 1–10 (2009)

    Article  CAS  Google Scholar 

  162. P. Duewell, U. Kisser, K. Heckelsmiller, S. Hoves, P. Stoitzner, S. Koernig, A.B.. Morelli, B.E. Clausen, M. Dauer, A. Eigler, D. Anz, C. Bourquin, E. Maraskovsky, S. Endres, M. Schnurr, ISCOMATRIX adjuvant combines immune activation with antigen delivery to dendritic cells in vivo leading to effective cross-priming of CD8+ T cells. J. Immunol. 187, 55–63 (2015)

    Article  CAS  Google Scholar 

  163. S.A. Bencherif, R.W. Sands, O.A. Ali, W.A. Li, S.A. Lewin, T.M. Braschler, T. Shih, C.S. Verbeke, D. Bhatta, G. Dranoff, D.J. Mooney, Injectable cryogel-based whole-cell cancer vaccines. Nat. Commun. 6, 1–13 (2015)

    Article  CAS  Google Scholar 

  164. A.Z. Wang, R. Langer, O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185–198 (2012)

    Article  CAS  PubMed  Google Scholar 

  165. M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher, C.A. Alabi, Y. Yen, J.D. Heidel, A. Ribas, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. R. Farra, N.F. Sheppard Jr., L. McCabe, R.M. Neer, J.M. Anderson, J.T. Santini Jr., M.J. Cima, R. Langer, First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl. Med. 4, 122ra121 (2012)

    Article  CAS  Google Scholar 

  167. J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1, 1–18 (2016)

    Google Scholar 

  168. E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. G. Oberdorster, Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J. Intern. Med. 267, 89–105 (2009)

    Article  CAS  Google Scholar 

  170. C.M. Keck, R.H. Müller, Nanotoxicological classification system (NCS) – a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm. 84, 445–448 (2013)

    Article  CAS  PubMed  Google Scholar 

  171. D. Huh, D.C. Leslie, D. Benjamin, J.P. Fraser, S. Jurek, A. Geraldine, K.S. Thorneloe, M. Allen, D.E. Ingber, A. Human Disease, Model of drug toxicity – induced pulmonary edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 4, 1–8 (2012)

    Article  CAS  Google Scholar 

  172. J.A. Doudna, E. Charpentier, The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096-1–1258096-9 (2014)

    Article  CAS  Google Scholar 

  173. A.J. Vegas, O. Veiseh, M. Gürtler, J.R. Millman, F.W. Pagliuca, A.R. Bader, J.C. Doloff, J. Li, M. Chen, K. Olejnik, H.H. Tam, S. Jhunjhunwala, E. Langan, S. Aresta-DaSilva, S. Gandham, J.J. McGarrigle, M.A. Bochenek, J. Hollister-Lock, J. Oberholzer, D.L. Greiner, G.C. Weir, D.A. Melton, R. Langer, D.G. Anderson, Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. O. Veiseh, J.C. Dolo, M. Ma, A.J. Vegas, H.H. Tam, A.R. Bader, J. Li, E. Langan, J. Wycko, W.S. Loo, S. Jhunjhunwala, A. Chiu, S. Siebert, K. Tang, J. Hollister-Lock, S. Aresta-Dasilva, M. Bochenek, J. Mendoza-Elias, Y. Wang, M. Qi, D.M. Lavin, M. Chen, N. Dholakia, R. Thakrar, I. Lacík, G.C. Weir, J. Oberholzer, D.L. Greiner, R. Langer, Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–652 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. A.J. Vegas, O. Veiseh, J.C. Doloff, M. Ma, H.H. Tam, K. Bratlie, J. Li, A.R. Bader, E. Langan, K. Olejnik, P. Fenton, J.W. Kang, J. Hollister-Locke, M.A. Bochenek, A. Chiu, S. Siebert, K. Tang, S. Jhunjhunwala, S. Aresta-DaSilva, N. Dholakia, R. Thakrar, T. Vietti, M. Chen, J. Cohen, K. Siniakowicz, M. Qi, J. McGarrigle, A.C. Graham, S. Lyle, D.M. Harlan, D.L. Greiner, J. Oberholzer, G.C. Weir, R. Langer, Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Y. Zhu, T. Tchkonia, T. Pirtskhalava, A.C. Gower, H. Ding, N. Giorgadze, A.K. Palmer, Y. Ikeno, G.B. Hubbard, S.P.O. Hara, N.F. Larusso, D. Jordan, C.M. Roos, G.C. Verzosa, K. Nathan, J.D. Wren, J.N. Farr, M.B. Stout, S.J. McGowan, A.U. Gurkar, J. Zhao, A. Dorronsoro, Y.Y. Ling, S. Amira, D.C. Navarro, T. Sano, D. Paul, L.J. Niedernhofer, J.L. Kirkland, The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. D.J. Baker, T. Wijshake, T. Tchkonia, N.K. Lebrasseur, B.G. Childs, B. Van De Sluis, J.L. Kirkland, J.M. Van Deursen, Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick, A. Sen, Intelligent, self-powered, drug delivery systems. Nanoscale 5, 1273–1283 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Campbell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Campbell, S., Smeets, N. (2019). Drug Delivery: Localized and Systemic Therapeutic Strategies with Polymer Systems. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics