Abstract
Democracy is built on the underlying public trust in its institutions and media. This trust is potentially undermined and damaged by targeted disinformation campaigns. Especially online and social media have made it possible to manipulate the masses via disinformation and fake news at an unprecedented scale, which weaken or threaten political as well as state institutions. These organizations, therefore, require improved methods and tools for evaluating ever-increasing volumes of digital media in terms of identification, verification, and correction of sources. Based on these requirements, this chapter will discuss multidisciplinary aspects and counterstrategies of social sciences, law, and computer science, especially Artificial Intelligence (AI) – but also concerning perceived current (ethical) risks – during the process of building AI-driven solutions toward a safe and secure digital infrastructure in the battle against misinformation, fake news, and their impact on democracy. Parts of the chapter use findings from a pertinent European (Austrian) security research grant project as examples.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Albright J (2017) Welcome to the era of fake news. MaC 5(2):87–89. https://doi.org/10.17645/mac.v5i2.977
Alemanno A (2018) How to counter fake news? A taxonomy of anti-fake news approaches. Eur J Risk Regul 9(1):1–5. https://doi.org/10.1017/err.2018.12
Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J Econ Perspect 31(2):211–236. https://doi.org/10.1257/jep.31.2.211
Amine BM, Drif A, Giordano S (2019) Merging deep learning model for fake news detection. In: 2019 International Conference on Advanced Electrical Engineering (ICAEE). pp 1–4
Antonakakis M, Perdisci R, Dagon D, Lee W, Feamster N (2010) Building a dynamic reputation system for DNS. In: 19th USENIX Security Symposium, USENIX Security 10. USENIX Association, Washington, DC
Appel M (ed) (2020) Die Psychologie des Postfaktischen: über fake news, “Lügenpresse”. Clickbait & Co., Springer, Berlin
Askeland B, Borghetti J-S, Deakin SF (2018) Tatsachenmitteilungen und Werturteile: Freiheit und Verantwortung. Jan Sramek Verlag, Wien
Baccianella S, Esuli A, Sebastiani F (2010) SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). European Language Resources Association (ELRA), Valletta
Bahad P, Saxena P, Kamal R (2019) Fake News Detection using Bi-directional LSTM-Recurrent Neural Network. Procedia Computer Science 165:74–82. https://doi.org/10.1016/j.procs.2020.01.072
Belova G, Georgieva G (2018) Fake news as a threat to national security. Int Conf Knowl Based Organ 24(1):19–22. https://doi.org/10.1515/kbo-2018-0002
Bennett WL, Livingston S (2018) The disinformation order: disruptive communication and the decline of democratic institutions. Eur J Commun 33(2):122–139. https://doi.org/10.1177/0267323118760317
Berka W, Binder C, Kneihs B (2019) Die Grundrechte: Grund- und Menschenrechte in Österreich: Handbuch, 2. Auflage. Verlag Österreich, Wien
Bertel M, Pirker J (2017) Krise der liberalen Demokratie?: Krise der liberalen Demokratie? Zeitschrift für öffentliches Recht 72(3):631–635
Bezemek C (2017) Filterblase und Grundrechte (Filter bubble and fundamental rights) (July 14, 2017). Müller/ÖJK (Hg), Frühjahrstagung der Österreichischen Juristenkommission. Available at SSRN: https://ssrn.com/abstract=3002438
Bilal M, Habib HA, Mehmood Z, Saba T, Rashid M (2020) Single and multiple copy–move forgery detection and localization in digital images based on the sparsely encoded distinctive features and DBSCAN clustering. Arab J Sci Eng 45(4):2975–2992. https://doi.org/10.1007/s13369-019-04238-2
Campan A, Cuzzocrea A, Truta TM (2017) Fighting fake news spread in online social networks: actual trends and future research directions. In: 2017 IEEE International Conference on Big Data (Big Data). IEEE, Boston, pp 4453–4457
Charalabidis Y, Zuiderwijk A, Alexopoulos C, Janssen M, Lampoltshammer T, Ferro E (2018) The world of open data: concepts, methods, tools and experiences. Springer International Publishing, Cham
Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:14061078 [cs, stat]
Choraś M, Demestichas K, Giełczyk A, Herrero Á, Ksieniewicz P, Remoundou K, Urda D, Woźniak M (2021) Advanced machine learning techniques for fake news (online disinformation) detection: a systematic mapping study. Appl Soft Comput 101:107050. https://doi.org/10.1016/j.asoc.2020.107050
Dahl RA (1989) Democracy and its critics, Nachdr. Yale University Press, New Haven
Davies G, Wu E, Frank R (2021) A Witch’s brew of grievances: the potential effects of COVID-19 on radicalization to violent extremism. Stud Conflict Terrorism:1–24. https://doi.org/10.1080/1057610X.2021.1923188
Della Vedova ML, Tacchini E, Moret S, Ballarin G, DiPierro M, de Alfaro L (2018) Automatic online fake news detection combining content and social signals. In: 2018 22nd Conference of Open Innovations Association (FRUCT). IEEE, Jyvaskyla, pp 272–279
Devlin J, Chang M-W, Lee K, Toutanova K (2019) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:181004805 [cs]
Dhuliawala S, Kanojia D, Bhattacharyya P (2016) SlangNet: a WordNet like resource for English slang. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16). European Language Resources Association (ELRA), Portorož, pp 4329–4332
Dou Y, Shu K, Xia C, Yu PS, Sun L (2021) User preference-aware fake news detection arXiv:210412259 [cs]
European Union Agency for Fundamental Rights (2020) Getting the future right: artificial intelligence and fundamental rights: report. Publications Office, LU
Flanagin A, Metzger M (2007) The role of site features, user attributes, and information verification behaviors on the perceived credibility of web-based information. New Media Soc 9:319–342. https://doi.org/10.1177/1461444807075015
Fraas C, Klemm M, Gesellschaft für Angewandte Linguistik (2005) Mediendiskurse: Bestandsaufnahme und Perspektiven. P. Lang, Frankfurt am Main/New York
Gerrig RJ, Zimbardo PG (2018) Psychologie, 21., aktualisierte und erweiterte Auflage. Pearson, Hallbergmoos
Grabenwarter C, Pabel K (2021) Europäische Menschenrechtskonvention: ein Studienbuch, 7. Auflage. C.H. Beck, München
Hagen L (2015) Nachrichtenjournalismus in der Vertrauenskrise. “Lügenpresse” wissenschaftlich betrachtet: Journalismus zwischen Ressourcenkrise und entfesseltem Publikum. ComSoz 48(2):152–163. https://doi.org/10.5771/0010-3497-2015-2-152
Hajli N, Saeed U, Tajvidi M, Shirazi F (2021) Social bots and the spread of disinformation in social media: the challenges of artificial intelligence. Br J Manage:1467–8551.12554. https://doi.org/10.1111/1467-8551.12554
Hasell A, Weeks BE (2016) Partisan provocation: the role of partisan news use and emotional responses in political information sharing in social media: partisan news, emotions, and information sharing. Hum Commun Res 42(4):641–661. https://doi.org/10.1111/hcre.12092
Hegli R, Lonas H, Harris CK (2014) System and method for developing a risk profile for an internet service
Holznagel B (2018) Phänomen “fake news” – was ist zu tun? MMR:18–22
Huijstee D, Vermeulen I, Kerkhof P, Droog E (2021) Continued influence of misinformation in times of COVID ‐19. Int J Psychol :ijop.12805. https://doi.org/10.1002/ijop.12805
Jacobson NG, Thacker I, Sinatra GM (2021) Here’s Hoping It’s not Just Text Structure: The Role of Emotions in Knowledge Revision and the Backfire Effect. Discourse Processes :1–23. https://doi.org/10.1080/0163853X.2021.1925059
Jaiswal AK, Srivastava R (2020) A technique for image splicing detection using hybrid feature set. Multimed Tools Appl 79(17–18):11837–11860. https://doi.org/10.1007/s11042-019-08480-6
James A, Edwin EB, Anjana MC, Abraham AM, Johnson H (2019) Image forgery detection on cloud. In: 2019 2nd International Conference on Signal Processing and Communication (ICSPC). IEEE, Coimbatore, pp 94–98
Jin Z, Cao J, Guo H, Zhang Y, Luo J (2017) Multimodal fusion with recurrent neural networks for rumor detection on microblogs. In: Proceedings of the 25th ACM international conference on Multimedia. ACM, Mountain View, pp 795–816
Jolley D, Paterson JL (2020) Pylons ablaze: examining the role of 5G COVID-19 conspiracy beliefs and support for violence. Br J Soc Psychol 59(3):628–640
Jwa H, Oh D, Park K, Kang J, Lim H (2019) exBAKE: automatic fake news detection model based on Bidirectional Encoder Representations from Transformers (BERT). Appl Sci 9(19):4062. https://doi.org/10.3390/app9194062
Kaliyar RK, Goswami A, Narang P, Sinha S (2020) FNDNet – a deep convolutional neural network for fake news detection. Cogn Syst Res 61:32–44. https://doi.org/10.1016/j.cogsys.2019.12.005
Kamath U, Liu J, Whitaker J (2019) Deep learning for NLP and speech recognition. Springer International Publishing, Cham
Kanwal N, Girdhar A, Kaur L, Bhullar JS (2020) Digital image splicing detection technique using optimal threshold based local ternary pattern. Multimed Tools Appl 79(19–20):12829–12846. https://doi.org/10.1007/s11042-020-08621-2
Khaldarova I, Pantti M (2016) Fake news: the narrative battle over the Ukrainian conflict. J Pract 10(7):891–901. https://doi.org/10.1080/17512786.2016.1163237
Kim S, Kim S (2020) The crisis of public health and Infodemic: Analyzing belief structure of fake news about COVID-19 pandemic. Sustainability 12(23):9904. https://doi.org/10.3390/su12239904
Kumar S, Carley K (2019) Tree LSTMs with convolution units to predict stance and rumor veracity in social media conversations. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, Florence, pp 5047–5058
Lampoltshammer TJ, Thurnay L, Eibl G (2019) Impact of anonymization on sentiment analysis of twitter postings. In: Haber P, Lampoltshammer T, Mayr M (eds) Data science – analytics and applications. Springer Fachmedien Wiesbaden, Wiesbaden, pp 41–48
Le T, Wang S, Lee D (2020) MALCOM: generating malicious comments to attack neural fake news detection models. arXiv:200901048 [cs, stat]
Lee H, Kwak N (2014) The affect effect of political satire: sarcastic humor, negative emotions, and political participation. Mass Commun Soc 17(3):307–328. https://doi.org/10.1080/15205436.2014.891133
Luhn HP (1957) A statistical approach to mechanized encoding and searching of literary information. IBM J Res Dev 1(4):309–317. https://doi.org/10.1147/rd.14.0309
Maier SF, Seligman MEP (2016) Learned helplessness at fifty: insights from neuroscience. Psychol Rev 123(4):349–367. https://doi.org/10.1037/rev0000033
Mayrhofer M (2017) Google, Facebook & Co: Die Macht der Algorithmen aus grundrechtlicher Perspektive. REM 15: Meinungs- und Medienfreiheit in der digitalen Ära
McCrae JP, Wood I, Hicks A (2017) The colloquial WordNet: extending Princeton WordNet with neologisms. In: Gracia J, Bond F, McCrae JP, Buitelaar P, Chiarcos C, Hellmann S (eds) Language, data, and knowledge. Springer International Publishing, Cham, pp 194–202
Merli F (2019) Grenzen der Staatsinformation und staatlicher propaganda. In: Berka W, Holoubek M, Leitl-Staudinger B (eds) Elektronische Medien im “postfaktischen” Zeitalter. Manz, Wien, pp 107–120
Mridha MF, Keya AJ, Hamid MA, Monowar MM, Rahman MS (2021) A comprehensive review on fake news detection with deep learning. IEEE Access 9:156151–156170. https://doi.org/10.1109/ACCESS.2021.3129329
O’Mahony N, Campbell S, Carvalho A, Harapanahalli S, Hernandez GV, Krpalkova L, Riordan D, Walsh J (2020) Deep learning vs. traditional computer vision. In: Arai K, Kapoor S (eds) Advances in computer vision. Springer International Publishing, Cham, pp 128–144
Ory S, Cole MD, Ukrow J (eds) (2018) “Fake News” als Rechtsproblem
Patwa P, Sharma S, Pykl S, Guptha V, Kumari G, Akhtar MS, Ekbal A, Das A, Chakraborty T (2021) Fighting an infodemic: COVID-19 fake news dataset. In: Chakraborty T, Shu K, Bernard HR, Liu H, Akhtar MS (eds) Combating online hostile posts in regional languages during emergency situation. Springer International Publishing, Cham, pp 21–29
Pennebaker JW, Francis ME, Booth RJ (2001) Linguistic inquiry and word count: LIWC 2001. Lawrence Erlbaum Associates, Mahway. 71(2001):2001
Potthast M, Kiesel J, Reinartz K, Bevendorff J, Stein B (2018) A stylometric inquiry into hyperpartisan and fake news. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics, Melbourne, pp 231–240
Rahbarinia B, Perdisci R, Antonakakis M (2015) Segugio: efficient behavior-based tracking of malware-control domains in large ISP networks. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. IEEE, Rio de Janeiro, pp 403–414
Rees J, Lamberty P (2019) Mitreißende Wahrheiten: Verschwörungsmythen als Gefahr für den gesellschaftlichen Zusammenhalt. pp 203–222
Rusli A, Young JC, Iswari NMS (2020) Identifying fake news in Indonesian via supervised binary text classification. In: 2020 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT). IEEE, Bali, pp 86–90
Sadler P, Woody E (2003) Is who you are who you’re talking to? Interpersonal style and complementarity in mixed-sex interactions. J Pers Soc Psychol 84:80–96. https://doi.org/10.1037//0022-3514.84.1.80
Safieddine F, Masri W, Pourghomi P (2016) Corporate responsibility in combating online misinformation. Int J Adv Comput Sci Appl 7(2):126–132
Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003
Sharma K, Qian F, Jiang H, Ruchansky N, Zhang M, Liu Y (2019) Combating fake news: a survey on identification and mitigation techniques. ACM Trans Intell Syst Technol 10(3):1–42. https://doi.org/10.1145/3305260
Siri J (2016) Systemtheorie und Psychoanalyse: Für welches problem ist die Neurose eine Lösung? In: Möller K, Siri J (eds) Systemtheorie und Gesellschaftskritik: Perspektiven der kritischen Systemtheorie. Transcript, Bielefeld, pp 77–95
Sparck Jones K (1972) A statistical interpretation of term specificity and its application in retrieval. J Doc 28(1):11–21. https://doi.org/10.1108/eb026526
Stoick B, Snell N, Straub J (2019) Fake news identification: a comparison of parts-of-speech and N-grams with neural networks. In: Ahmad F (ed) Big data: learning, analytics, and applications. SPIE, Baltimore, p 12
Stolcke A, Segal J (1994) Precise n-gram probabilities from stochastic context-free grammars. arXiv:cmp-lg/9405016
Storr S (2019) Darf der Staat lügen? JRP 27(2):75. https://doi.org/10.33196/jrp201902007501
Struth AK (2019) Hassrede und Freiheit der Meinungsäußerung: der Schutzbereich der Meinungsäußerungsfreiheit in Fällen demokratiefeindlicher Äußerungen nach der Europäischen Menschenrechtskonvention, dem Grundgesetz und der Charta der Grundrechte der Europäischen Union. Springer, Berlin
Swami V (2012) Social psychological origins of conspiracy theories: the case of the Jewish conspiracy theory in Malaysia. Front Psychol 3:280. https://doi.org/10.3389/fpsyg.2012.00280
Thelwall M (2017) The heart and soul of the web? Sentiment strength detection in the social web with sentistrength. In: Holyst JA (ed) Cyberemotions. Springer International Publishing, Cham, pp 119–134
Thoma K (2011) European perspectives on security research. Springer, Berlin Heidelberg
Thongtan T, Phienthrakul T (2019) Sentiment classification using document embeddings trained with cosine similarity. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. Association for Computational Linguistics, Florence, pp 407–414
Torfi A, Shirvani RA, Keneshloo Y, Tavaf N, Fox EA (2021) Natural language processing advancements by deep learning: a survey. arXiv:200301200 [cs]
Umer M, Imtiaz Z, Ullah S, Mehmood A, Choi GS, On B-W (2020) Fake news stance detection using deep learning architecture (CNN-LSTM). IEEE Access 8:156695–156706. https://doi.org/10.1109/ACCESS.2020.3019735
Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. Science 359(6380):1146–1151. https://doi.org/10.1126/science.aap9559
Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: a brief review. Comput Intell Neurosci 2018:1–13. https://doi.org/10.1155/2018/7068349
Wardle C, Derakhshan H (2017) Information disorder: toward an interdisciplinary framework for research and policy making
Wollebæk D, Karlsen R, Steen-Johnsen K, Enjolras B (2019) Anger, fear, and Echo chambers: the emotional basis for online behavior. Soc Media Soc 5(2):205630511982985. https://doi.org/10.1177/2056305119829859
Wood TJ, Porter E (2019) The elusive backfire effect: mass attitude’ steadfast factual adherence. Polit Behav 41:135–163
Zhang R, Ni J (2020) A dense U-net with cross-layer intersection for detection and localization of image forgery. In: ICASSP 2020 – 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 2982–2986
Zollo F, Novak PK, Del Vicario M, Bessi A, Mozetič I, Scala A, Caldarelli G, Quattrociocchi W (2015) Emotional dynamics in the age of misinformation. PLoS One 10(9):e0138740. https://doi.org/10.1371/journal.pone.0138740
Jurisprudence
European Commission (2018): Code of Practice on disinformation, COM (2018)
ECHR, Article 17
ECthR 17. 12. 2004, 49017/99
ECthR 6.9.2005, 65518/01
ECthR 17. 12. 2004, 49017/99, Pedersen and Baadgaard/Denmark
ECthR 6. 9. 2005, 65518/01, Salov/Ukraine
ECthR 7. 12. 1976, 5493/72), Handyside/UK
OGH 6Ob211/06g
OGH 6Ob281/08d
OGH 6Ob50/09k
Article 13 Staatsgrundgesetz (StGG)
Article 10 European Convention on Human Rights (ECHR)
Article 11 Charter on Fundamental Rights (CFR)
§ 111 Strafgesetzbuch (StGB)
§ 264 Strafgesetzbuch (StGB)
§ 276 Strafgesetzbuch (StGB)
§ 41 Audiovisuelles Medien-Gesetz; § 10 ORF Gesetz
§ 6 (2) Z 2 Medien-Gesetz (MedienG).
Article 22 GDPR
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this entry
Cite this entry
Seboeck, W., Biron, B., Lampoltshammer, T.J., Scheichenbauer, H., Tschohl, C., Seidl, L. (2022). Disinformation and Fake News. In: Masys, A.J. (eds) Handbook of Security Science. Springer, Cham. https://doi.org/10.1007/978-3-319-91875-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-91875-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91874-7
Online ISBN: 978-3-319-91875-4
eBook Packages: Physics and AstronomyReference Module Physical and Materials Science