Skip to main content

Basic Biological Anticipation

  • Reference work entry
  • First Online:

Abstract

Living organisms persist as functional wholes far beyond the individual lifetimes of their functional components. They achieve this by taking antecedent action, continuously fabricating themselves in anticipation of a future nonfunctional and deleterious internal state. This property of self-fabrication is the most basic expression of biological anticipation and of life itself. Self-fabricating systems must be closed to efficient causation, and in this chapter, I identify the classes of efficient biochemical causes in the cell and show how they are organized in a hierarchical cycle, the hallmark of a system closed to efficient causation. Broadly speaking, the three classes of efficient causes are the enzyme catalysts of covalent metabolic chemistry, the intracellular milieu that drives the supramolecular processes of chaperone-assisted folding and self-assembly of polypeptides and nucleic acids into functional catalysts and transporters, and the membrane transporters that maintain the intracellular milieu, in particular its electrolyte composition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, 181, 223–230.

    Article  Google Scholar 

  • Atkinson, D. E. (1977). Cellular energy metabolism and its regulation. New York: Academic.

    Google Scholar 

  • Barbieri, M. (2015). Code biology: A new science of life. Heidelberg: Springer.

    Book  Google Scholar 

  • Caspar, D. L. D., & Klug, A. (1962). Physical principles in the construction of regular viruses. In L. Frisch (Ed.), Cold Spring Harbor symposia on quantitative biology (Vol. 27, pp. 1–24). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • DOE. (1994). Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water [Version 2, ORNL/CDIAC-74]. U.S. Department of Energy. http://cdiac.ornl.gov/oceans/DOE_94.pdf.

  • Ellis, R. J. (1987). Proteins as molecular chaperones. Nature, 328, 378–379.

    Article  Google Scholar 

  • Ellis, R. J. (2001). Macromolecular crowding: An important but neglected aspect of the intracellular environment. Current Opinion in Structural Biology, 11, 114–119.

    Article  Google Scholar 

  • Ellis, R. J. (2013). Assembly chaperones: A perspective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368, 20110398.

    Article  Google Scholar 

  • Ellis, R. J., Dobson, C., & Hartl, F. U. (1998). Sequence does specify protein conformation. Trends in Biochemical Sciences, 23, 468.

    Article  Google Scholar 

  • Hofmeyr, J. H. S. (2007). The biochemical factory that autonomously fabricates itself: A systemsbiological view of the living cell, Chapter 10. In F. C. Boogerd, F. Bruggeman, J. H. S. Hofmeyr, & H. V. Westerhoff (Eds.), Systems biology: Philosophical foundations (pp. 217–242). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Karbstein, K. (2010). Chaperoning ribosome assembly. The Journal of Cell Biology, 189, 11–12.

    Article  Google Scholar 

  • Laskey, R. A., Honda, B. M., Mills, A. D., & Finch, J. T. (1978). Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature, 275, 416–420.

    Article  Google Scholar 

  • Lehn, J. M. (1995). Supramolecular chemistry: Concepts and perspectives. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Letelier, J. C., Marn, G., & Mpodozis, J. (2003). Autopoietic and (M,R) systems. Journal of Theoretical Biology, 222(2), 261–272.

    Article  Google Scholar 

  • Lissin, N. M., Venyaminov, S. Y., & Girshovich, A. S. (1990). (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature, 348, 339–341.

    Article  Google Scholar 

  • Lodish, H., Berk, A., Kaiser, C. A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A., & Scott, M. P. (2013). Molecular cell biology. New York: W. H. Freeman.

    Google Scholar 

  • Louie, A. H. (2009). More than life itself. A synthetic continuation in relational biology. Heusenstamm: Ontos Verlag.

    Book  Google Scholar 

  • Louie, A. H. (2013). Reflection of life: Functional entailment and imminence in relational biology (Systems science and engineering, Vol. 29). New York: Springer.

    Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realisation of the living. Dordrecht: D. Reidel Publishing Company.

    Book  Google Scholar 

  • Rosen, R. (1958a). A relational theory of biological systems. The Bulletin of Mathematical Biophysics, 20, 245–260.

    Article  Google Scholar 

  • Rosen, R. (1958b). The representation of biological systems from the standpoint of the theory of categories. The Bulletin of Mathematical Biophysics, 20, 317–341.

    Article  Google Scholar 

  • Rosen, R. (1959). A relational theory of biological systems II. The Bulletin of Mathematical Biophysics, 21, 109–128.

    Article  Google Scholar 

  • Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical & methodological foundations. New York: Pergamon Press.

    Google Scholar 

  • Rosen, R. (1991). Life itself: A comprehensive inquiry into the nature, origin, and fabrication of life. New York: Columbia University Press.

    Google Scholar 

  • Steitz, T. A., & Moore, P. B. (2003). RNA, the first macromolecular catalyst: The ribosome is a ribozyme. Trends in Biochemical Sciences, 28(8), 411–418.

    Article  Google Scholar 

  • Von Neumann, J., & Burks, A. W. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Wittung-Stafshede, P. (2002). Role of cofactors in protein folding. Accounts of Chemical Research, 35, 201–208.

    Article  Google Scholar 

  • Woolford, J. (2002). Chaperoning ribosome assembly. Molecular Cell, 10, 8–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Hendrik S. Hofmeyr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hofmeyr, JH.S. (2019). Basic Biological Anticipation. In: Poli, R. (eds) Handbook of Anticipation. Springer, Cham. https://doi.org/10.1007/978-3-319-91554-8_51

Download citation

Publish with us

Policies and ethics