Skip to main content

Plant Cuticular Waxes: Composition, Function, and Interactions with Microorganisms

  • Reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Abstract

The interface between leaves and the surrounding environment is formed by the wax-covered plant cuticle, which is hydrophobic and highly impermeable to water and dissolved solutes. The surface itself may become superhydrophobic by complex three-dimensional wax crystals. There is evidence that this system evolved already early with the colonization of land some 450 million years ago. Although the leaf surface represents a hostile environment, because water and nutrient availability is very limited and variations in temperature and light intensity can be quite large, it forms the habitat for specialized epiphyllic microorganisms successfully colonizing the leaf surface which is also called phyllosphere. Certain strategies improving living conditions within the phyllosphere have been developed by epiphyllic microorganisms. They can significantly enhance leaf surface wetting and water permeability of the hydrophobic cuticle. This interaction significantly increases the abundance of water on the leaf surface, and as a consequence, leaching of nutrients to the leaf surface should be increased, thus becoming available for epiphyllic microorganisms. This strategy is supported by the ability of biosurfactant production, which represents a common and important adaptation of epiphyllic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bailey MJ, Lilley AK, Timms-Wilson TM, Spencer-Phillips PTN (2006) Microbial ecology of aerial plant surfaces. CABI, Wallingford

    Book  Google Scholar 

  • Barthlott W, Mail M, Bhushan B, Koch K (2017) Plant surfaces: structures and functions for biomimetic innovations. Nano-Micro Letters 9:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barthlott W, Mail M, Neinhuis C (2016) Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications. Philos Trans R Soc Lond A 374:20160–20191

    Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260

    Article  Google Scholar 

  • Bhardwaj G, Cameotra SS, Chopra HK (2013) Biosurfactants from fungi: a review. J Pet Environ Biotechnol 4:1–6

    Article  CAS  Google Scholar 

  • Bunster L, Fokkema NJ, Schippers B (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55:1340–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch AY, Do PT, Sbodio A, Suslow TV, Lindow SE (2016) High-level culturability of epiphytic bacteria and frequency of biosurfactant producers on leaves. Appl Environ Microbiol 82:5997–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burch AY, Zeisler V, Yokota K, Schreiber L, Lindow SE (2014) The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity. Environ Microbiol 16:2086–2098

    Article  CAS  PubMed  Google Scholar 

  • Burghardt M, Schreiber L, Riederer M (1998) Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J Agric Food Chem 46:1593–1602

    CAS  Google Scholar 

  • Buschhaus C, Jetter R (2011) Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces? J Exp Bot 62:841–853

    CAS  PubMed  Google Scholar 

  • Cussler EL (1984) Diffusion. Mass transfer in fluid systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groombridge B, Jenkins M (2002) World atlas of biodiversity: Earth’s living resources in the 21st century. University of California Press, Berkeley

    Google Scholar 

  • Guzman P, Fernandez V, Graca J, Cabral V, Kayali N, Khayet M, Gil L (2014) Chemical and structural analysis of Eucalyptus globulus and E. camaldulensis leaf cuticles: a lipidized cell wall region. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00481

  • Hansjakob A, Bischof S, Bringmann G, Riederer M, Hildebrandt U (2010) Very-long-chain aldehydes promote in vitro prepenetration processes of Blumeria graminis in a dose- and chain length-dependent manner. New Phytol 188:1039–1054

    CAS  PubMed  Google Scholar 

  • Holmes-Farley SR, Bain CD, Whitesides GM (1988) Wetting of functionalized polyethylene film having ionizable organic acids and bases at the polymer-water interface: relations between functional group polarity, extent of ionisation, and contact angle with water. Langmuir 4:921–937

    Article  CAS  Google Scholar 

  • Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76:8117–8125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 145–181

    Chapter  Google Scholar 

  • Jetter R, Riederer M (2016) Localization of the transpiration barrier in the epi- and intracuticular waxes of eight plant species: water transport resistances are associated with fatty acyl rather than alicyclic components. Plant Physiol 170:921–934

    CAS  PubMed  Google Scholar 

  • Jetter R, Schäffer S, Riederer M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ 23:619–628

    CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    CAS  Google Scholar 

  • Kinkel LL (1997) Microbial population dynamics on leaves. Annu Rev Phytopathol 35:327–347

    CAS  PubMed  Google Scholar 

  • Kirkwood RC (1999) Recent developments in our understanding of the plant cuticle as a barrier to the foliar uptake of pesticides. Pestic Sci 55:69–77

    CAS  Google Scholar 

  • Kirsch T, Kaffarnik F, Riederer M, Schreiber L (1997) Cuticular permeability of the three tree species Prunus laurocerasus L., Ginkgo biloba L. and Juglans regia L. - comparative investigation of the transport properties of intact leaves, isolated cuticles and reconstituted cuticular waxes. J Exp Bot 48:1035–1045

    CAS  Google Scholar 

  • Knoll D, Schreiber L (1998) Influence of epiphytic micro-organisms on leaf wettability: wetting of the upper leaf surface of Juglans regia L. and of model surfaces in relation to colonisation by micro-organisms. New Phytol 140:271–282

    PubMed  Google Scholar 

  • Knoll D, Schreiber L (2004) Methods for analysing the interactions between epiphyllic microorgansisms and leaf cuticles. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Heidelberg, pp 471–487

    Google Scholar 

  • Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943–1963

    CAS  Google Scholar 

  • Kolattukudy PE, Walton TJ (1973) The biochemistry of plant cuticular lipids. Prog Chem Fats Other Lipids 13:119–175

    Article  CAS  Google Scholar 

  • Krimm U, Abanda-Nkpwatt D, Schwab W, Schreiber L (2005) Epiphytic microorganisms on strawberry plants (Fragaria ananassa cv. Elsanta): identification of bacterial isolates and analysis of their interaction with leaf surfaces. FEMS Microbiol Ecol 53:483–492

    Article  CAS  PubMed  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  CAS  PubMed  Google Scholar 

  • Leveau JHJ, Lindow SE (2001) Appetite of an epiphyte: quantitative monitoring of bacterial sugar consumption in the phyllosphere. Proc Natl Acad Sci U S A 98:3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg SE, Lovett GM, Richter DD, Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231:141–146

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohaus G, Pennewiss K, Sattelmacher B, Hussmann M, Mühling KH (2001) Is the infiltration-centrifugation technique appropriate for the isolation of apoplastic fluid? A critical evaluation with different plant species. Physiol Plant 111:457–465

    Article  CAS  PubMed  Google Scholar 

  • Meyer KM, Leveau JHJ (2012) Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168:621–629

    Article  PubMed  Google Scholar 

  • Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453

    Article  CAS  PubMed  Google Scholar 

  • Niklas KJ, Cobb ED, Matas AJ (2017) The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J Eperiment Botany. https://doi.org/10.1093/jxb/erx215

  • Parra JL, Guinea J, Manresa MA, Robert M, Mercadé ME, Comelles F, Bosch MP (1989) Chemical characterization and physicochemical behavior of biosurfactants. J Am Oil Chem Soc 66:141–145

    Article  CAS  Google Scholar 

  • Pollard M, Beisson F, Li YH, Ohlrogge JB (2009) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13:236–246

    Article  CAS  Google Scholar 

  • Reynhardt EC, Riederer M (1994) Structures and molecular dynamics of plant waxes. II Cuticular waxes from leaves of Fagus sylvatica L. and Hordeum vulgare L. Eur Biophys J 23:59–70

    Article  CAS  Google Scholar 

  • Riederer M, Müller C (2006) Biology of the plant cuticle. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Riederer M, Schneider G (1989) Comparative study of the composition of waxes extracted from isolated leaf cuticles and from whole leaves of Citrus: evidence for selective extraction. Physiol Plant 77:373–384

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Patrick JW, Brady CJ (1996) The composition of apoplast fluid recovered from intact developing tomato fruit. Aust J Plant Physiol 23:9–13

    CAS  Google Scholar 

  • Ruinen J (1961) The phyllosphere: 1. An ecologically neglected milieu. Plant Soil 15:81–109

    Article  Google Scholar 

  • Samuels L, Kunst L, Jetter R (2009) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707

    Article  CAS  Google Scholar 

  • Schlegel TK, Schönherr J, Schreiber L (2005) Size selectivity of aqueous pores in stomatous cuticles of Vicia faba leaves. Planta 221:648–655

    Article  CAS  PubMed  Google Scholar 

  • Schönherr J (1976) Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water. Planta 131:159–164

    PubMed  Google Scholar 

  • Schönherr J (2006) Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J Exp Bot 57:2471–2491

    PubMed  Google Scholar 

  • Schönherr J, Baur P (1996) Cuticle permeability studies - a model for estimating leaching of plant metabolits to leaf surfaces. In: Morris CE, Nicot PC, Nguyen-The C (eds) Aerial plant surface microbiology. Plenum Press, New York, pp 1–23

    Google Scholar 

  • Schönherr J, Lendzian K (1981) A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102:321–327

    Google Scholar 

  • Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam Toxicol 108:1–70

    Google Scholar 

  • Schreiber L (1996) Wetting of the upper needle surface of Abies grandis: influence of pH, wax chemistry and epiphyllic microflora on contact angles. Plant Cell Environ 19:455–463

    CAS  Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95:1069–1073

    PubMed  PubMed Central  Google Scholar 

  • Schreiber L (2006) Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities. J Exp Bot 57:2515–2523

    CAS  PubMed  Google Scholar 

  • Schreiber L, Krimm U, Knoll D, Sayed M, Auling G, Kroppenstedt RM (2005) Plant-microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol 166:589–594

    CAS  PubMed  Google Scholar 

  • Schreiber L, Riederer M (1996) Ecophysiology of cuticular transpiration: comparative investigation of cuticular water permeability of plant species from different habitats. Oecologia 107:426–432

    CAS  PubMed  Google Scholar 

  • Schreiber L, Schönherr J (1993) Mobilities of organic compounds in reconstituted cuticular wax of barley leaves: determination of diffusion coefficients. Pestic Sci 38:353–361

    CAS  Google Scholar 

  • Schreiber L, Schönherr J (2009) Water and solute permeability of plant cuticles. Springer, Heidelberg

    Google Scholar 

  • Segado P, Dominguez E, Heredia A (2016) Ultrastructure of the epidermal cell wall and cuticle of tomato fruit (Solanum lycopersicum L.) during development. Plant Physiol 170:935–946

    CAS  PubMed  Google Scholar 

  • Shi T, Simanova E, Schönherr J, Schreiber L (2005) Effects of accelerators on mobility of 14C-2,4-dichlorophenoxy butyric acid in plant cuticles depends on type and concentration of accelerator. J Agric Food Chem 53:2207–2212

    CAS  PubMed  Google Scholar 

  • Ueda H, Mitsuhara I, Tabata J, Kugimiya S, Watanabe T, Suzuki K, Yoshida S, Kitamoto H (2015) Extracellular esterases of phylloplane yeast Pseudozyma antarctica induce defect on cuticle layer structure and water-holding ability of plant leaves. Appl Microbiol Biotechnol 99:6405–6415

    CAS  PubMed  Google Scholar 

  • Villena JF, Dominguez E, Stewart D, Heredia A (1999) Characterization and biosynthesis of non-degradable polymers in plant cuticles. Planta 208:181–187

    CAS  PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    CAS  PubMed  Google Scholar 

  • Wang ZH, Guhling O, Yao RN, Li FL, Yeats TH, Rose JKC, Jetter R (2011) Two oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant Physiol 155:540–552

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang JH, Chai GQ, Li CL, Hu YG, Chen XH, Wang ZH (2015) Developmental changes in composition and morphology of cuticular waxes on leaves and spikes of glossy and glaucous wheat (Triticum aestivum L.). PLoS One 10(11):e0143671

    Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    CAS  PubMed  Google Scholar 

  • Zabka V, Stangl M, Bringmann G, Vogg G, Riederer M, Hildebrandt U (2008) Host surface properties affect prepenetration processes in the barley powdery mildew fungus. New Phytol 177:251–263

    PubMed  Google Scholar 

  • Zeisler V, Schreiber L (2016) Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Planta 243:65–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Long-lasting financial support by the DFG (Deutsche Forschungsgemeinschaft) to LS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zeisler-Diehl, V.V., Barthlott, W., Schreiber, L. (2020). Plant Cuticular Waxes: Composition, Function, and Interactions with Microorganisms. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-90569-3_7

Download citation

Publish with us

Policies and ethics