Abstract
Microbial life plays a significant role not only in the biological surface but also in the geological subsurface carbon cycle as indicated by the widespread findings of microbial communities (deep biosphere) in the deep underground. Thereby, microorganisms occupy a wide range of different habitats determined by moderate to extreme environmental conditions. Suitable analytical tools are required to assess the presence, spatial distribution, abundance, and composition of microbial life in the many different natural environments on Earth, to understand the response and survival strategies of microorganisms to various environmental living conditions, and to unravel the role of microbial communities on the global biogeochemical cycles in natural habitats. From a biogeochemical perspective, such a tool is provided by microbial biomolecules such as phospholipids (PL) representing a significant part of microbial cell membranes. With their polar head groups and long hydrophobic side chains, they form the basic module of the membrane structure. PLs and especially phospholipid esters not only indicate the occurrence of microbial biomass but also the presence of living microorganisms, since they are only stable in viable microorganisms over longer periods of time. Therefore, PLs are also named microbial life markers. PLs can be used to quantify microbial life, to illustrate its spatial distribution, to provide taxonomic information at least on a broad level, and to assess microbial adaptation and carbon transformation processes. In this chapter we will present basic information on the utilization of phospholipids as life markers, will report on analytical methods to measure these biomolecules and elucidate their structures, and will provide examples for the application of these biomarkers in a geoscientific context.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alawi M, Schneider B, Kallmeyer J (2014) A procedure for separate recovery of extra- and intracellular DNA from a single marine sediment sample. J Microbiol Methods 104:36–42
Al-Dagal M, Fung DY, Bennett RW (2009) Aeromicrobiology-a review. Crit Rev Food Sci Nutr 29:330–340
Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963
Bajerski F, Wagner D, Mangelsdorf K (2017) Cell membrane fatty acid composition of Chryseobacterium frigidisoli PB4T, isolated from Antarctic glacier forefield soils, in response to changing temperature and pH conditions. Front Microbiol 8:677
Bale N, Sorokin D, Hopmans EC, Koenen M, Rijpstra WIC, Villanueva L, Wienk H, Sinninghe Damsté JS (2019) New insights into the polar lipid composition of extremely halo(alkali)philic euryarchaea from hypersaline lakes. Front Microbiol 10:377
Balkwill DL, Leach FR, Wilson JT, McNabb JF, White DC (1988) Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments. Microb Ecol 16:73–84
Barin M, Aliasgharzad N, Olsson PA, Rasouli-Sadaghiani M (2015) Salinity-induced differences in soil microbial communities around the hypersaline Lake Urmia. Soil Res 53:494–504
Baveye P, Vandevivere P, Hoyle BL, DeLeo PC, de Lozada DS (1998) Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials. Crit Rev Environ Sci Technol 28:123–191
Beulig F, Heuer VB, Akob DM, Viehweger B, Elvert M, Herrmann M, Hinrichs K-U, Küsel K (2015) Carbon flow from volcanic CO2 into soil microbial communities of a wetland mofette. The ISME Journal 9:746–759
Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sorensen KB, Anderson R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs K-U (2006) Heterotrophic archaea dominate sedimentary subsurface ecosystem off Peru. Proc Natl Acad Sci 103:3846–3851
Bischoff J, Mangelsdorf K, Gattinger A, Schloter M, Kurchatova AN, Herzschuh U, Wagner D (2013) Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic. Glob Biogeochem Cycles 27:305–317
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci 101:11111–11116
Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626
Boggs JM (1986) Effect of lipid structural modifications on their intermolecular hydrogen bonding interactions and membrane functions. Can J Biochem Cell Biol 64:50–57
Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95
Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800
Christie WW (1999) The LipidWeb. www.lipidhome.co.uk
Ciobanu MC, Burgaud G, Dufresne A, Breuker A, Redou V, Ben Maamar S, Gaboyer F, Vandenabeele-Trambouze O, Lipp JS, Schippers A, Vandenkoornhuyse P, Barbier G, Jebbar M, Godfroy A, Alain K (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. ISME J 8:1370–1380
D’Hondt SL, Inagaki F, Ferdelman TG, Jorgensen BB, Kato K, Kemp P, Sobecky P, Sogin ML, Takai K (2007) Exploring subseafloor life with the Integrated Ocean Drilling Program. Sci Drill 5:26–37
Dawson KS, Freeman KH, Macalady JL (2012) Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Org Geochem 48:1–8
de Mendoza D (2014) Temperature sensing by membranes. Annu Rev Microbiol 68:101–116
DeLong EF, Yayanos AA (1985) Adaptation of membrane lipids of deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–1103
Destaillats F, Angers P (2002) On-step methodology for the synthesis of FA picolinyl esters from intact lipids. J Am Oil Chem Soc 79:253–256
Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry. J Chem Ecol 11:265–277
Elvert M, Boetius A, Knittel K, Jorgensen BB (2003) Characterisation of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419
Fang J, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J Microbiol Methods 33:23–35
Fang J, Barcelona MJ, Semrau JD (2000) Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. FEMS Microbiol Lett 189:67–72
Fang J, Barcelona MJ, Abrajano T, Nogi Y, Kato C (2002) Isotopic composition of fatty acids of extremely piezophilic bacteria from the Mariana Trench at 11,000 m. Mar Chem 80:1–9
Frostegard A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65
Frostegård Å, Bååth E, Tunlid A (1993a) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723–730
Frostegård Å, Tunlid A, Bååth E (1993b) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617
Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625
Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Kim GT, Mangelsdorf K, Mildenhall DC, Rinna J, Vieth A, Zink K-G, Sass H, Weightman AJ, Parkes RJ (2009) Prokaryotic populations and activities in an interbedded lignite/coal deposit, including a previously deeply buried section (1.6–2.3 km) and ~150 Ma basement rock. Geomicrobiol J 26:163–178
Gambacorta A, Gliozzi A, De Rosa M (1995) Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol 11:115–131
Gattinger A, Günthner A, Schloter M, Munch JC (2003) Characterisation of archaea in soils by polar lipid analysis. Acta Biotechnol 23:21–28
Genderjahn S, Alawi M, Kallmeyer J, Belz L, Wagner D, Mangelsdorf K (2017) Present and past microbial life in continental pan sediments and its response to climate variability in the southern Kalahari. Org Geochem 108:30–42
Genderjahn S, Alawi M, Wagner D, Schüller I, Wanke A, Mangelsdorf K (2018) Microbial community responses to modern environmental and past climatic conditions in Omongwa pan, western Kalahari: a paired 16S rRNA gene profiling and lipid biomarker approach. J Geophys Res Biogeo 123. https://doi.org/10.1002/2017JG004098
Gruner A, Mangelsdorf K, Vieth-Hillebrand A, Horsfield B, van der Kraan GM, Köhler T, Janka C, Morris BEL, Wilkes H (2017) Membrane lipids as indicators for viable bacterial communities inhabiting petroleum systems. Environ Microbiol 74:373–383
Guckert JB, Hood MA, White DC (1986) Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol 52:794–801
Guckert JB, Ringelberg D, White DC, Hanson RS, Bratina BJ (1991) Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J Gen Microbiol 137:2631–2641
Harayama S, Kishira H, Kasai Y, Syutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70
Harvey HR, Fallon R, Patton JS (1986) The effect of organic matter and oxygen on the degradation of bacterial membrane lipids in marine sediments. Geochem Cosmochim Acta 50:795–804
Harwood JL, Russell NJ (1984) Lipids in plants and microbes. George Allen& Unwin, London, p 162
Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352
Heinzelmann SM, Bale NJ, Hopmans E, Sinninghe Damsté JS, Schouten S, van der Meer MTJ (2014) Critical assessment of glyco- and phospholipid separation by using silica chromatography. Appl Environ Microbiol 80:360–365
Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805
Horsfield B, Schenk HJ, Zink K-G, Ondrak R, Dieckmann V, Kallmeyer J, Mangelsdorf K, di Primio R, Wilkes H, Parker J, Fry JC, Cragg B (2006) Living microbial ecosystems within the active zone of catagenesis: implications for feeding the deep biosphere. Earth Planet Sci Lett 246:55–69
Inagaki F, Hinrichs K-U, Kubo Y, Bowles MW, Heuer VB, Hong W-L, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin Y-S, Methe BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu C-H, Murayama M, Ohkouchi N, Ono S, Park Y-S, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trenmbath-Reichert E, Wang DT, Yamada Y (2015) Exploring deep microbial life in coal-bearing sediments down to ~2.5 km below the ocean floor. Science 349:420–424
Jahn U, Summons RE, Sturt H, Grosjean E, Huber H (2004) Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp strain KIN4/I. Arch Microbiol 182:404–413
Kallmeyer J (2017) Contamination control for scientific drilling operation. Adv Appl Microbiol 98:61–91
Kallmeyer J, Mangelsdorf K, Cragg B, Horsfield B (2006) Techniques for contamination assessment during drilling for terrestrial subsurface sediments. Geomicrobiol J 23:227–239
Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci 109:16213–16216
Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302
Kerr RA (1997) Life goes to extremes in the deep earth-and elsewhere. Science 276:703–704
Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69:2019–2034
Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinninghe Damsté JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611
Lanekoff I, Karlsson R (2010) Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-MS. Anal Bioanal Chem 397:3543–3551
Laurent F, Richli U (1991) Location of double bonds in polysaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 541:89–98
Lin L-H, Wang P-L, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Sherwood Lollar B, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482
Lipp JS, Hinrichs K-U (2009) Structural diversity and fate of intact polar lipids in marine sediments. Geochim Cosmochim Acta 73:6816–6833
Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991–994
Logemann J, Graue J, Koester J, Engelen B, Rullkoetter J, Cypionka H (2011) A laboratory experiment of intact polar lipid degradation in sandy sediments. Biogeosciences 8:2547–2560
Madigan MT, Martinko JM, Parker J (1999) Brock-biology of microorganisms. Prentice Hall, London
Mallet CR, Lu Z, Mazzeo JR (2004) A study of ion suppression effects in electrospray ionization from mobile phase additives and solid phase extracts. Rapid Commun Mass Spectrom 18:49–58
Mancuso CA, Franzmann PD, Burton HR, Nichols PD (1990) Microbial community structure and biomass estimates of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses. Microb Ecol 19:73–95
Mangelsdorf K, Haberer RM, Zink K-G, Dieckmann V, Wilkes H, Horsfield B (2005a) Molecular indicators for the occurrence of deep microbial communities at the Mallik 5L-38 gas hydrate research well. In: Dallimore SR, Collett TS (eds) Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada. Geological Survey of Canada, Bulletin, pp 1–11
Mangelsdorf K, Zink K-G, Birrien J-L, Toffin L (2005b) A quantitative assessment of pressure dependent adaptive changes in the membrane lipids of a piezosensitive deep sub-seafloor bacterium. Org Geochem 36:1459–1479
Mangelsdorf K, Finsel E, Liebner S, Wagner D (2009) Temperature adaptation of microbial communities in different horizons of Siberian permafrost-affected soils from the Lena-Delta. Chem Erde 69:169–182
Mangelsdorf K, Zink K-G, Di Primio R, Horsfield B (2011) Microbial lipid markers within and adjacent to Challenger Mound in the Belgica carbonate mound province, Porcupine Basin, offshore Ireland (IODP Expedition 307). Mar Geol 282:91–101
Mangelsdorf K, Bajerski F, Karger C, Wagner D (2017) Identification of a novel fatty acid in the cell membrane of Chryseobacterium frigidisoli PB4T isolated from an East Antarctic glacier forefield. Org Geochem 106:68–75
Männistö MK, Tiirola M, Häggblom MM (2007) Bacterial communities in Arctic fields of Finnish Lapland are stable but highly pH dependent. FEMS Microbiol Ecol 59:452–465
Mills CT, Dias RF, Graham D, Mandernack KW (2006) Determination of phospholipid fatty acid structures and stable carbon isotope compositions of deep-sea sediments of the Northwest Pacific, ODP site 1179. Mar Chem 98:198–209
Mueller KD, Husmann H, Nalik HP (1990) A new and rapid method for the assay of bacterial fatty acids using high resolution capillary gas chromatography and trimethylsulfonium hydroxide. Zentralbl Bakteriol 274:174–182
Mukamolova GV, Yanopolskaya ND, Votyakova TV, Popov VI, Kaprelyants AS, Kell DB (1995) Biochemical changes accompanying the long-term starvation of Micrococcus luteus cells in spent growth medium. Arch Microbiol 163:373–379
Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229
Olsen I, Jantzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7:103–112
Orwin KH, Dickie IA, Holdaway R, Wood JR (2018) A comparison of the ability of PLFA and 16S rRNA gene metabarcoding to resolve soil community change and predict ecosystem functions. Soil Biol Biochem 117:27–35
Oshima M, Ariga T (1975) ω-Cyclohexyl fatty acids in acidophilic thermophilic bacteria. J Biol Chem 250:6963–6968
Parkes RJ, Taylor J (1983) The relationship between fatty acid distributions and bacterial respiratory types in contemporary marine sediments. Estuar Coast Shelf Sci 16:173–189
Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413
Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28
Parkes J, Cragg B, Roussel E, Webster G, Weightman AJ, Sass H (2014) A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions. Mar Geol 352:409–425
Pearson A (2008) Who lives in the sea floor. Nature 454:952–953
Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414
Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16
Pelz O, Chatzinotas A, Andersen N, Bernasconi SM, Hesse C, Abraham W-R, Zeyer J (2001) Use of isotopic and molecular techniques to link toluene degradation in denitrifying aquifer microcosms to specific microbial populations. Arch Microbiol 175:270–281
Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22:332–364
Qin X, Tang JC, Li DS, Zhang QM (2012) Effect of salinity on the bioremediation of petroleum hydrocarbons in a saline-alkaline soil. Lett Appl Microbiol 55:210–217
Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103
Rajendran N, Matsuda O, Rajendran R, Urushigawa Y (1997) Comparative description of microbial community structure in surface sediments of eutrophic bays. Mar Pollut Bull 34:26–33
Rath KM, Maheshwari A, Bengtson P, Rouska J (2016) Comparative toxicities of salts on microbial processes in soil. Appl Environ Microbiol 82:2012–2020
Ringelberg DB, Sutton S, White DC (1997) Biomass, bioactivity and biodiversity: microbial ecology of the deep subsurface: analysis of ester-linked phospholipids fatty acids. FEMS Microbiol Rev 20:371–377
Rontani J-F (1998) Electron ionization mass spectrometric determination of double bond position in monounsaturated α,β- and β,γ-isomeric isoprenoid acids. Rapid Commun Mass Spectrom 12:961–967
Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101
Russell NJ (1989) Functions of lipids: structural roles and membrane functions. In: Ratledge C, Wilkinson SG (eds) Microbial lipids 2. Academic Press, London, pp 279–365
Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182
Rütters H (2001) Tracing viable bacteria in Wadden Sea sediments using phospholipid analysis. PhD thesis, Department of Chemistry, University of Oldenburg, Oldenburg, p 133
Rütters H, Sass H, Cypionka H, Rullkoetter J (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442
Rütters H, Sass H, Cypionka H, Rullkötter J (2002) Phospholipid analysis as a tool to study complex microbial communities in marine sediments. J Microbiol Methods 48:149–160
Schouten S, Middelburg JJ, Hopmans E, Sinninghe Damsté JS (2010) Fossilization and degradation of intact polar lipids in deep subsurface sediments: a theoretical approach. Geochim Cosmochim Acta 74:3806–3814
Schouten S, Hopmans EC, Sinninghe Damsté JS (2013) The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem 54:19–61
Schubotz F, Wakeham SG, Lipp JS, Fredricks HF, Hinrichs K-U (2009) Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environ Microbiol 11:2720–2734
Schulze-Makuch D, Wagner D, Kounaves SP, Mangelsdorf K, Devine KG, de Vera J-P, Schmitt-Kopplin P, Grossart H-P, Parron V, Kaupenjohann M, Galy A, Schneider B, Airo A, Frösler J, Davila AF, Arens FL, Cáceres L, Solís Cornejo F, Carrizo D, Dartnell L, DiRuggiero J, Flury M, Ganzert L, Gessner MO, Grathwohl P, Guan L, Heinz J, Hess M, Keppler F, Maus D, McKay CP, Meckenstock RU, Montgomery W, Oberlin EA, Probst AJ, Sáenz JS, Sattler T, Schirmack J, Sephton MA, Schloter M, Uhl J, Valenzuela B, Vestergaard G, Wörmer L, Zamorano P (2018) Transitory microbial habitat in the hyperarid Atacama Desert. Proc Natl Acad Sci 115:2670–2675
Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028
Sinensky M (1974) Homeoviscous adaptation – a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci 71:522–525
Sinninghe Damsté JS, Strous M, Rijpstra WIC, Hopmans E, Geenevasen JAJ, van Duln ACT, van Niftrik LA, Jetten MSM (2002) Linearly concatenated cyclobutane lipids form a dense membrane. Nature 419:708–712
Stapel JG, Schirrmeister L, Overduin PP, Wetterich S, Strauss J, Horsfield B, Mangelsdorf K (2016) Microbial lipid signatures and substrate potential of organic matter in permafrost deposits: implications for future greenhouse gas production. J Geophys Res Biogeo 121:2652–2666
Stapel JG, Schwamborn G, Schirrmeister L, Horsfield B, Mangelsdorf K (2018) Substrate potential of last interglacial to Holocene permafrost organic matter for future microbial greenhouse gas production. Biogeosciences 15:1969–1985
Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry – new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628
Suutari M, Laakso S (1994) Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328
Suzuki K-I, Saito K, Kawaguchi A, Okuda S, Komagata K (1981) Occurrence of ω-cyclohexyl fatty acids in Curtobacterium Pusillum strains. J Gen Appl Microbiol 27:261–266
Suzuki K-I, Collins MD, Iijima E, Komagata K (1988) Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–39
Toffin L, Zink K, Kato C, Pignet P, Bidault A, Bienvenu N, Birrien JL, Prieur D (2005) Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int J Syst Evol Microbiol 55:345–351
Trautwein K, Kühner S, Wöhlbrand L, Halder T, Kuchta K, Steinbüchel A, Rabus R (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74:2267–2274
Turich C, Freeman KH (2011) Archaeal lipids record paleosalinity in hypersaline systems. Org Geochem 42:1147–1157
Vestal JR, White DC (1989) Lipid analysis in microbial ecology. Biosci Biotechnol Biochem 39:535–541
Vetter A, Mangelsdorf K, Schettler G, Seibt A, Wolfgramm M, Rauppach K, Vieth-Hillebrand A (2012a) Fluid chemistry and impact of different operating modes on microbial community at Neubrandenburg heat storage. Org Geochem 53:8–15
Vetter A, Mangelsdorf K, Wolfgramm M, Rauppach K, Schettler G, Vieth-Hillebrand A (2012b) Variations in fluid chemistry and membrane phospholipid fatty acid composition of bacterial community in a cold storage groundwater system during clogging events. Appl Geochem 27:1278–1290
Vieth A, Mangelsdorf K, Sykes R, Horsfield B (2008) Water extraction of coals – potential for estimating low molecular weight organic acids as carbon feedstock for deep terrestrial biosphere. Org Geochem 39:985–991
Weber FJ, de Bont JAM (1996) Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta 1286:225–245
White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary microbial biomass by extractible liquid phosphate. Oecologia 40:51–62
Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci 95:6578–6583
Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276
Wilkes H, Boreham C, Harms G, Zengler K, Rabus R (2000) Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria. Org Geochem 31:101–115
Wörmer L, Lipp JS, Schröder JM, Hinrichs K-U (2013) Application of two new LC-ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Org Geochem 59:10–21
Yano Y, Nakayama A, Ishihara K, Saito H (1998) Adaptive changes in membrane lipids of barophilic bacteria in response to changes in growth pressure. Appl Environ Microbiol 64:479–485
Yeagle PL (2016) The membranes of cells. Academic Press, San Diego, p 452
Yuan B-C, Li Z-Z, Liu H, Gao M, Zhang Y-Y (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328
Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294
Zhang QC, Wang GH, Yao HY (2007) Phospholipid fatty acid patterns of microbial communities in paddy soil under different fertilizer treatments. J Environ Sci (China) 19:55–59
Zink K-G, Mangelsdorf K (2004) Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis. Anal Bioanal Chem 380:798–812
Zink K-G, Rabus R (2010) Stress-induced changes of phospholipids in betaproteobacterium Aromatoleum aromaticum strain EbN1 due to alkylbenzene growth substrates. J Mol Microbiol Biotechnol 18:92–101
Zink K-G, Wilkes H, Disko U, Elvert M, Horsfield B (2003) Intact phospholipids – microbial “life markers” in marine deep subsurface sediments. Org Geochem 34:755–769
Zink K-G, Mangelsdorf K, Granina L, Horsfield B (2008) Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids. Anal Bioanal Chem 390:885–896
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this entry
Cite this entry
Mangelsdorf, K., Karger, C., Zink, KG. (2020). Phospholipids as Life Markers in Geological Habitats. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-90569-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-90569-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-90568-6
Online ISBN: 978-3-319-90569-3
eBook Packages: Biomedical and Life SciencesReference Module Biomedical and Life Sciences