Skip to main content

Optics of Intraocular Lenses

  • 69 Accesses

Abstract

In this chapter, the advantages of using intraocular lens (IOL) correction for aphakia over spectacle or contact lens corrections are discussed. Lens design and lens materials as well as the optical principles for determining the IOL power and optics-related complications are addressed.

There are three forms of IOLs: pseudophakic, phakic, and piggyback. Types of IOLs include monofocal lenses, wave front-adjusted lenses, ultraviolet-blocking lenses, pseudoaccommodative lenses, and accommodative lenses. Formulas to calculate the power of intraocular lenses have been developed and have reached the fifth generation.

Phakic lenses are classified into angle-supported, iris-fixated, and posterior chamber. The purpose of inserting theses lenses is to correct the ametropic conditions of patients while leaving the crystalline lenses undisturbed. Similarly, if a patient already has an IOL, the correction of the ametropia with a secondary piggyback lens utilizes the same optical principles as those of phakic lenses, but the parameters are different from those used in pseudophakic lenses.

Keywords

  • Aphakia
  • Intraocular lens(IOL)
  • Phakic IOL(PIOL)
  • Piggyback Lens
  • Multifocal IOL
  • IOL Designs
  • Accommodating IOL
  • IOL in age-related macular degeneration (ARMD)
  • IOL Formulas
  • Pediatric Cataracts
  • Postrefractive Surgery Patients
  • Optics-Related Complications

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Tortora CM, Hersh PS, Blaker JW. Optics of intraocular lenses. In: Azar DT, editor. Principles and practice of ophthalmology clinical ophthalmology. Philadelphia: W. B. Saunders; 2000. p. 5376–90.

    Google Scholar 

  2. Benton CD, Welsh RC. Spectacles for aphakia. Springfield: Charles C Thomas; 1966. p. 1–164.

    Google Scholar 

  3. Woods AC. Adjustment to aphakia. Am J Ophthalmol. 1952;35:118.

    CrossRef  Google Scholar 

  4. Bannon RE. Space perception – some physiological and psychological effects. Am J Optom Physiol Optic. 1952;29:499.

    CrossRef  CAS  Google Scholar 

  5. Troutman RC. Artiphakia and aniseikonia. Trans Am Ophthalmol Soc. 1962;60:590.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fechner PU, Fechner MU. Tadini, the man who invented the artificial lens. J Am Intraocul Implant Soc. 1979;5:22–3.

    CrossRef  CAS  PubMed  Google Scholar 

  7. Nordlohne ME. The intraocular implant lens development and results with special reference to the Binkhorst lens. Doc Ophthalmol. 1974;38:1–269.

    CrossRef  CAS  PubMed  Google Scholar 

  8. Ridley H. Intraocular acrylic lenses – a recent development in the surgery of cataract. Br J Ophthalmol. 1952;36:113.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ridley H. Intra-ocular acrylic lenses. Trans Ophthalmol Soc UK. 1951;71:617.

    Google Scholar 

  10. Allarakhia L, Knoll RL, Lindstrom RL. Soft intraocular lenses. J Cataract Refract Surg. 1987;13:607.

    CrossRef  CAS  PubMed  Google Scholar 

  11. Hollick EJ, Spalton DJ, Ursell PG, et al. The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology. 1999;106:49–54; discussion 54–5.

    CrossRef  CAS  PubMed  Google Scholar 

  12. AbhilakhMissier KA, Nuijts RM, Tjia KF. Posterior capsule opacification: silicone plate-haptic versus AcrySof intraocular lenses. J Cataract Refract Surg. 2003;29:1569–74.

    CrossRef  Google Scholar 

  13. Kulning W, Menapace R, Skorpik C, et al. Tissue reaction after silicone and PMMA intraocular lens implantation: a light and electron microscopy study in a rabbit model. J Cataract Refract Surg. 1989;15:510.

    CrossRef  Google Scholar 

  14. Keates RH, Erdley RA, Ringel DM, et al. Seventy-six consecutive cases of IOGEL intraocular lens implants. J Cataract Refract Surg. 1990;16:47.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Barrett GD, Beasley H, Lorenzetti OJ, et al. Multicenter trial of an intraocular hydrogel lens implant. J Cataract Refract Surg. 1986;13:621.

    CrossRef  Google Scholar 

  16. Yong JL, Lertsumitkul S, Killingsworth MC, et al. Calcification of intraocular hydrogel lens: evidence of dystrophic calcification. Clin Exp Ophthalmol. 2004;32:492–500.

    CrossRef  PubMed  Google Scholar 

  17. Izak AM, Werner L, Pandey SK, et al. Calcification of modern foldable hydrogel intraocular lens designs. Eye. 2003;17:393–406.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Yu AK, Ng AS. Complications and clinical outcomes of intraocular lens exchange in patients with calcified hydrogel lenses. J Cataract Refract Surg. 2002;28:1217–22.

    CrossRef  PubMed  Google Scholar 

  19. Yu AK, Kwan KY, Chan DH, et al. Clinical features of 46 eyes with calcified hydrogel intraocular lenses. J Cataract Refract Surg. 2001;27(10):1596–606.

    CrossRef  CAS  PubMed  Google Scholar 

  20. Mak ST, Wong AC, Tsui WM, Tse RK. Calcification of a hydrophilic acrylic intraocular lens: clinicopathological report. J Cataract Refract Surg. 2008;34(12):2166–9.

    CrossRef  PubMed  Google Scholar 

  21. Lindstrom RL, Doddi N. Ultraviolet light absorption in intraocular lenses. J Cataract Refract Surg. 1986;12:285.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Peyman GA, Sloan HD, Lim J. Ultraviolet light-absorbing pseudophakos. J Am Intraocul Implant Soc. 1982;8:357.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Lerman S. Chemical and physical properties of the normal and aging lens: spectroscopic (UV, fluorescence, phosphorescence and NMR) analyses. Am J Optom Physiol Optic. 1987;64(11):11–2.

    CrossRef  CAS  Google Scholar 

  24. Kraff MC, Sanders DR, Jampol LM, et al. Effect of an ultraviolet-filtering intraocular lens on cystoid macular edema. Ophthalmology. 1985;92:366.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Sliney DH. Ocular injury due to light toxicity. Int Ophthalmol Clin. 1988;28:246.

    CrossRef  CAS  PubMed  Google Scholar 

  26. Miller D. Intraocular lenses. Ann Ophthalmol. 1981;13:541.

    CAS  PubMed  Google Scholar 

  27. Zhao H, Mainster MA. The effect of chromatic dispersion on pseudophakic optical performance. Br J Ophthalmol. 2007;91(9):1225–9.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Yuan Z, Reinach P, Yuan J. Contrast sensitivity and color vision with a yellow intraocular lens. Am J Ophthalmol. 2004;138:138–40.

    CrossRef  PubMed  Google Scholar 

  29. Atchison D. Optical design of intraocular lenses. Optom Vis Sci. 1989;66:492.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Jalie M. The design of intraocular lenses. Br J Physiol Opt. 1978;32:1.

    CAS  PubMed  Google Scholar 

  31. Simcoe CW. Ridley revisited: anatomic and lens design consideration in posterior chamber pseudophakia. In: Emery JM, Jacobson AC, editors. Current concepts in cataract surgery. Selected proceedings of the sixth biennial cataract surgical congress. St. Louis: CV Mosby; 1980.

    Google Scholar 

  32. Choyce DP. The theoretical ideal for an artificial lens implant to correct aphakia. Trans Ophthalmol Soc UK. 1977;97:94.

    CAS  PubMed  Google Scholar 

  33. Wang G, Pomerantzeff O. Obtaining a high-quality retinal image with a biconvex intraocular lens. Am J Ophthalmol. 1982;94:87.

    CrossRef  CAS  PubMed  Google Scholar 

  34. McCartney DL, Miller KM, Stark WJ, et al. Intraocular lens style and refraction in eyes treated with silicone oil. Arch Ophthalmol. 1987;105(10):1385–7.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Koeppl C, Findl O, Kriechbaum K, et al. Change in IOL position and capsular bag size with an angulated intraocular lens early after cataract surgery. J Cataract Refract Surg. 2005;31:348–53.

    CrossRef  PubMed  Google Scholar 

  36. Pomerantzeff O, Pankratov MM, Wang GJ. Calculation of an IOL from the wide-angle optical model of the eye. J Am Intraocul Implant Soc. 1985;11:37.

    CrossRef  CAS  PubMed  Google Scholar 

  37. Holladay JT, Bishop JE, Prager TC, et al. The ideal intraocular lens. CLAO J. 1983;9:15–9.

    CAS  PubMed  Google Scholar 

  38. Barbero S, Marcos S, Jimenez-Alfaro I. Optical aberrations of intraocular lenses measured in vivo and in vitro. J Opt Soc Am A Opt Image Sci Vis. 2003;20(10):1841–51.

    CrossRef  PubMed  Google Scholar 

  39. Taketani F, Yukawa E, Yoshii T, et al. Influence of intraocular lens optical design on high–order aberrations. J Cataract Refract Surg. 2005;31:969–72.

    CrossRef  PubMed  Google Scholar 

  40. Kamath GG, Prasad S, Danson A, et al. Visual outcome with the array multifocal intraocular lens in patients with concurrent eye disease. J Cataract Refract Surg. 2000;26:576–81.

    CrossRef  CAS  PubMed  Google Scholar 

  41. Oshika T, Mimura T, Tanaka S, et al. Apparent accommodation and corneal wavefront aberration in pseudophakic eyes. Invest Ophthalmol Vis Sci. 2002;43:2882–6.

    PubMed  Google Scholar 

  42. Guirao A, Redondo M, Geraghty E, et al. Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted. Arch Ophthalmol. 2002;120:1143–51.

    CrossRef  PubMed  Google Scholar 

  43. Kershner RM. Retinal image contrast and functional visual performance with aspheric, silicone, and acrylic intraocular lenses. Prospective evaluation. J Cataract Refract Surg. 2003;29:1684–94.

    CrossRef  PubMed  Google Scholar 

  44. Preussner PR, Wahl J. Simplified mathematics for customized refractive surgery. J Cataract Refract Surg. 2003;29:462–70.

    CrossRef  PubMed  Google Scholar 

  45. Preussner PR, Wahl J, Lahdo H, et al. Ray tracing for intraocular lens calculation. J Cataract Refract Surg. 2002;28:1412–9.

    CrossRef  PubMed  Google Scholar 

  46. Marcos S, Barbero S, Jime’nez-Alfaro I. Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses. J Refract Surg. 2005;21:223–35.

    CrossRef  PubMed  Google Scholar 

  47. Rocha KM, Soriano ES, Chamon W, Chalita MR, Nosé W. Spherical aberration and depth of focus in eyes implanted with aspheric and spherical intraocular lenses: a prospective randomized study. Ophthalmology. 2007;114(11):2050–4.

    CrossRef  PubMed  Google Scholar 

  48. Montés-Micó R, Ferrer-Blasco T, Cerviño A. Analysis of the possible benefits of aspheric intraocular lenses: review of the literature. J Cataract Refract Surg. 2009;35(1):172–81.

    CrossRef  PubMed  Google Scholar 

  49. Holladay JT, Piers PA, Koranyi G, van der Mooren M, Norrby NES. A new intraocular lens design to reduce spherical aberration of pseudophakic eyes. J Refract Surg. 2002;18:683–91.

    CrossRef  PubMed  Google Scholar 

  50. Dietze HH, Cox MJ. Limitations of correcting spherical aberration with aspheric intraocular lenses. J Refract. 2005;21:S541–6.

    Google Scholar 

  51. Hersh D. A novel modality for management of presbyopic contact lens patients. Opt J Rev Optom. 1969;106:35.

    Google Scholar 

  52. Reflection, Refraction, and Diffraction. Waves – Lesson 3 – Behavior of Waves The Physics Classroom Tutorial. https://www.physicsclassroom.com/class/waves/Lesson-3/Reflection,-Refraction,-and-Diffraction

  53. Hansen TE, Corydon L, Krag S, et al. New multifocal intraocular lens design. J Cataract Refract Surg. 1990;16:38.

    CrossRef  CAS  PubMed  Google Scholar 

  54. Zissor HC, Guyton DL. Photographic simulation of image quality through bifocal intraocular lenses. Am J Ophthalmol. 1989;108:324.

    CrossRef  Google Scholar 

  55. Atebara NH, Miller D. An optical model to describe image contrast with bifocal intraocular lenses. Am J Ophthalmol. 1990;110:172.

    CrossRef  CAS  PubMed  Google Scholar 

  56. Olsen T, Corydon L. Contrast sensitivity in patients with a new type of multifocal intraocular lens. J Cataract Refract Surg. 1990;16:42–6.

    CrossRef  CAS  PubMed  Google Scholar 

  57. Holladay JT, Van Dijk H, Lang A, et al. Optical performance of multifocal intraocular lenses. J Cataract Refract Surg. 1990;16:413–22.

    CrossRef  CAS  PubMed  Google Scholar 

  58. Holladay JT. Principles and optical performance of multifocal intraocular lenses. Ophthalmol Clin N Am. 1991;4:295–311.

    Google Scholar 

  59. Atchison D, Smith G. Retinal image quality. In: Optics of the human eye. Oxford: Butterworth Heinemann; 2000. p. 194–210.

    CrossRef  Google Scholar 

  60. Soda M, Yaguchi S. Effect of decentration on the optical performance in multifocal intraocular lenses. Ophthalmologica. 2012;227(4):197–204.

    CrossRef  PubMed  Google Scholar 

  61. Pieh S, Marvan P, Lackner B, et al. Quantitative performance of bifocal and multifocal intraocular lenses in a model eye: point spread function in multifocal intraocular lenses. Arch Ophthalmol. 2002;120:23–8.

    CrossRef  PubMed  Google Scholar 

  62. Gunenc U, Celik L. Long-term experience with mixing and matching refractive array and diffractive CeeOn multifocal intraocular lenses. J Refract Surg. 2008;24(3):233–42.

    CrossRef  PubMed  Google Scholar 

  63. Yoon SY, Song IS, Kim JY, Kim MJ, Tchah H. Bilateral mix-and-match versus unilateral multifocal intraocular lens implantation: long-term comparison. J Cataract Refract Surg. 2013;39(11):1682–90.

    CrossRef  PubMed  Google Scholar 

  64. Weeber HA, Meijer ST, Piers PA. Extending the range of vision using diffractive intraocular lens technology. J Cataract Refract Surg. 2015;41:2746–54.

    CrossRef  PubMed  Google Scholar 

  65. Weeber HA, Piers PA. Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration. J Refract Surg. 2012;28(1):48–52.

    CrossRef  PubMed  Google Scholar 

  66. Artal P, Manzanera S, Piers P, Weeber H. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. Opt Express. 2010;18(2):1637–48.

    CrossRef  PubMed  Google Scholar 

  67. Cochener B, Boutillier G, Lamard M, Auberger-Zagnoli C. A comparative evaluation of a new generation of diffractive trifocal and extended depth of focus intraocular lenses. J Refract Surg. 2018;34(8):507–14.

    CrossRef  PubMed  Google Scholar 

  68. Savini G, Balducci N, Carbonara C, et al. Functional assessment of a new extended depth-of-focus intraocular lens. Eye (Lond). 2019;33(3):404–10.

    CrossRef  Google Scholar 

  69. Gillmann K, Mermoud A. Visual performance, subjective satisfaction and quality of life effect of a new refractive intraocular lens with central extended depth of focus. Klin Monatsbl Augenheilkd. 2019;236(4):384–90.

    CrossRef  PubMed  Google Scholar 

  70. Rana A, Miller D, Magnante P. Understanding the accommodating intraocular lens. J Cataract Refract Surg. 2003;29(12):2284–7.

    CrossRef  PubMed  Google Scholar 

  71. McLeod SD, Portney V, Ting A. A dual optic accommodating foldable intraocular lens. Br J Ophthalmol. 2003;87:1083–5.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  72. Doane JF. Accommodating intraocular lenses. Curr Opin Ophthalmol. 2004;15:16–21.

    CrossRef  PubMed  Google Scholar 

  73. Dick HB. Accommodative intraocular lenses: current status. Curr Opin Ophthalmol. 2005;16:8–26.

    CrossRef  PubMed  Google Scholar 

  74. Alió JL, Ben-Nun J, Rodríguezs JL, Plaza AB. Visual and accommodative outcomes 1 year after implantation of an accommodating intraocular lens based on a new concept. J Cataract Refract Surg. 2009;35:1671–8.

    CrossRef  PubMed  Google Scholar 

  75. Alió JL, Alió Del Barrio JL, Vega-Estrada A. Accommodative intraocular lenses: where are we and where we are going. Eye Vis (Lond). 2017;4:16.

    CrossRef  Google Scholar 

  76. Studeny P, Krizova D, Urminsky J. Clinical experience with the WIOL-CF accommodative bioanalogic intraocular lens: Czech national observational registry. Eur J Ophthalmol. 2016;26:230–5.

    CrossRef  PubMed  Google Scholar 

  77. Sachdev GS, Sachdev M. Optimizing outcomes with multifocal intraocular lenses. Indian J Ophthalmol. 2017;65(12):1294–300.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  78. Zvorničanin J, Zvorničanin E. Premium intraocular lenses: the past, present and future. J Curr Ophthalmol. 2018;30(4):287–96. Review.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  79. Grzybowski A, Wasinska-Borowiec W, Alio JL, Amat-Peral P. Tabernero. Intraocular lenses in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017;255(9):1687–96.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Binkhorst RD. Intraocular lens power calculation manual. New York: RD Binkhorst; 1978.

    Google Scholar 

  81. Olsen T. Prediction of intraocular lens position after cataract extraction. J Cataract Refract Surg. 1986;12:376–9.

    CrossRef  CAS  PubMed  Google Scholar 

  82. Holladay JT, Prager TC, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988;14(1):17–24.

    CrossRef  CAS  PubMed  Google Scholar 

  83. Colenbrander MC. Calculation of the power of an iris-clip lens for distance vision. Br J Ophthalmol. 1973;57:735.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shammas HJF. The fudged formula for intraocular lens power calculations. J Am Intraocul Implant Soc. 1982;8:350.

    CrossRef  CAS  PubMed  Google Scholar 

  85. Retzlaff JA, Sanders DR, Kraff M. Lens implant power calculation. 3rd ed. Thorofare: Slack; 1990.

    Google Scholar 

  86. Hoffer KJ. Important considerations for IOL calculations. In: Wallace RB, editor. Refractive cataract surgery and multifocal IOLs. Thorofare: Slack; 2001. p. 37–56.

    Google Scholar 

  87. Sanders DR, Retzlaff J, Kraff MC. Comparison of the SRK II formula and other second generation formulas. J Cataract Refract Surg. 1988;14:136–41.

    CrossRef  CAS  PubMed  Google Scholar 

  88. Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990;16:333–40.

    CrossRef  CAS  PubMed  Google Scholar 

  89. Cooke DL, Cooke TL. Prediction accuracy of preinstalled formulas on two optical biometers. J Cataract Refract Surg. 2016;42:358–62.

    CrossRef  PubMed  Google Scholar 

  90. Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19:700–12.

    CrossRef  CAS  PubMed  Google Scholar 

  91. Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg. 2000;26:1233–7.

    CrossRef  CAS  PubMed  Google Scholar 

  92. Popovic M, Schlenker MB, Campos-Möller X, Pereira A, Ahmed IIK. Wang-Koch formula for optimization of intraocular lens power calculation: evaluation at a Canadian center. J Cataract Refract Surg. 2018;44(1):17–22.

    CrossRef  PubMed  Google Scholar 

  93. Sheard RM, Smith GT, Cooke DL. Improving the prediction accuracy of the SRK/T formula: the T2 formula. J Cataract Refract Surg. 2010;36:1829–34.

    CrossRef  PubMed  Google Scholar 

  94. Langenbucher A, Haigis W, Seitz B. Difficult lens power calculations. Curr Opin Ophthalmol. 2004;15:1–9.

    CrossRef  PubMed  Google Scholar 

  95. Olsen TJ. The Olsen formula. In: Shammas HJ, editor. Intraocular lens power calculations. Thorofare: Slack; 2004. p. 27–38.

    Google Scholar 

  96. Olsen T, Hoffmann P. C constant: new concept for ray tracing-assisted intraocular lens power calculation. J Cataract Refract Surg. 2014;40(5):764–73.

    CrossRef  PubMed  Google Scholar 

  97. The Barrett IOL Calculation Suite and the Aladdin Biometer https://www.topcon-medical.eu/files/EU_Downloads/Products/Aladdin/The_Barrett_IOL_Calculation_article_Barrett_MD_1117.pdf

  98. Barrett GD. An improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg. 1993;19(6):713–20.

    CrossRef  CAS  PubMed  Google Scholar 

  99. Hoffer KJ, Savini G. IOL power calculation in short and long eyes. Asia Pac J Ophthalmol (Phila). 2017;6(4):330–1.

    Google Scholar 

  100. Wang Q, Jiang W, Lin T, et al. Accuracy of intraocular lens power calculation formulas in long eyes: a systematic review and meta-analysis. Clin Exp Ophthalmol. 2018;46(7):738–49.

    CrossRef  PubMed  Google Scholar 

  101. Findl O, Struhal W, Dorffner G, Drexler W. Analysis of nonlinear systems to estimate intraocular lens position after cataract surgery. J Cataract Refract Surg. 2004;30:863–6.

    CrossRef  PubMed  Google Scholar 

  102. Roberts TV, Hodge C, Sutton G, Lawless M, Contributors to the Vision Eye Institute IOL Outcomes Registry. Comparison of Hill-radial basis function, Barrett universal and current third generation formulas for the calculation of intraocular lens power during cataract surgery. Clin Exp Ophthalmol. 2018;46(3):240–6.

    CrossRef  PubMed  Google Scholar 

  103. Clarke GP, Burmeister J. Comparison of intraocular lens computations using a neural network versus the Holladay formula. J Cataract Refract Surg. 1997;23(10):1585–9.

    CrossRef  CAS  PubMed  Google Scholar 

  104. Hoffer KJ, Savini G. Clinical results of the Hoffer H-5 formula in 2707 eyes: first 5th-generation formula based on gender and race. Int Ophthalmol Clin. 2017 Fall;57(4):213–9.

    CrossRef  PubMed  Google Scholar 

  105. Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas. Ophthalmology. 2018;125(2):169–78.

    CrossRef  PubMed  Google Scholar 

  106. Ladas JG, Siddiqui AA, Devgan U, et al. A 3-D “super surface” combining modern intraocular lens formulas to generate a “super formula” and maximize accuracy. JAMA Ophthalmol. 2015;133:1431–6.

    CrossRef  PubMed  Google Scholar 

  107. Cooke DL, Cooke TL. Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg. 2016;42(8):1157–64.

    CrossRef  PubMed  Google Scholar 

  108. Conneell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol. 2019;4:1–6.

    CrossRef  Google Scholar 

  109. Voytsekhivskyy OV. Development and clinical accuracy of a new intraocular lens power formula (VRF) compared to other formulas. Am J Ophthalmol. 2018;185:56–67.

    CrossRef  PubMed  Google Scholar 

  110. Tang M, Li Y, Huang D. An intraocular lens power calculation formula based on optical coherence tomography: a pilot study. J Refract Surg. 2010;26(6):430–7.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  111. Ianchulev T, Hoffer KJ, Yoo SH, Chang DF, Breen M, Padrick T, Tran DB. Intraoperative refractive biometry for predicting intraocular lens power calculation after prior myopic refractive surgery. Ophthalmology. 2014;121(1):56–60. https://doi.org/10.1016/j.ophtha.2013.08.041. Epub 2013 Oct 30.

  112. Fram NR, Masket S, Wang L. Comparison of intraoperative aberrometry, OCT-based IOL formula, Haigis-L, and masket formulae for IOL power calculation after laser vision correction. Ophthalmology. 2015;122(6):1096–101.

    CrossRef  PubMed  Google Scholar 

  113. Fenzl RE, Gills JP, Cherchio M. Refractive and visual outcome of hyperopic cataract cases operated on before and after implementation of the Holladay II formula. Ophthalmology. 1998;105:1759–64.

    CrossRef  CAS  PubMed  Google Scholar 

  114. Gills JP. Piggyback minus-power lens implantation in keratoconus. J Cataract Refract Surg. 1998;24:566–8.

    CrossRef  CAS  PubMed  Google Scholar 

  115. van der Heijde GL. Some optical aspects of implantation of an IOL in a myopic eye. Eur J Ophthalmol. 1989;1:245–8.

    Google Scholar 

  116. van der Heijde GL, Budo C. Power calculation of phakic IOLs. In: Alio JL, Perez-Santonja JJ, editors. Refractive surgery with Phakic IOLs. Highlights of ophthalmology. El Dorado: Highlights of Ophthalmology International; 2004. p. 63–70.

    Google Scholar 

  117. Holladay JT. Refractive power calculations for intraocular lenses in the phakic eye. Am J Ophthalmol. 1993;116:63–6.

    CrossRef  CAS  PubMed  Google Scholar 

  118. Davidorf JM, Zaldivar R, Oscherow S. Posterior chamber phakic intraocular lens for hyperopia of +4 to +11 diopters. J Refract Surg. 1998;14:306–11.

    CrossRef  CAS  PubMed  Google Scholar 

  119. Rosen E, Gore C. Staar Collamer posterior chamber phakic intraocular lens to correct myopia and hyperopia. J Cataract Refract Surg. 1998;24:596–606.

    CrossRef  CAS  PubMed  Google Scholar 

  120. Zaldivar R, Davidorf JM, Oscherow S. Posterior chamber phakic intraocular lens for myopia of −8 to −19 diopters. J Refract Surg. 1998;14:294–305.

    CrossRef  CAS  PubMed  Google Scholar 

  121. Pesando PM, Ghiringhello MP, Tagliavacche P. Posterior chamber collamer phakic intraocular lens for myopia and hyperopia. J Refract Surg. 1999;15:415–23.

    CAS  PubMed  Google Scholar 

  122. Sanders DR, Martin RG, Brown DC, et al. Posterior chamber phakic intraocular lens for hyperopia. J Refract Surg. 1999;15:309–15.

    CAS  PubMed  Google Scholar 

  123. Thompson JT, Maumenee AE, Baker CC. A new posterior chamber intraocular lens formula for axial myopes. Ophthalmology. 1984;91:484–8.

    CrossRef  CAS  PubMed  Google Scholar 

  124. Shammas HJ. Intraocular lens power calculations. In: Azar DT, editor. Intraocular lenses in cataract and refractive surgery. Philadelphia: W. B. Saunders; 2001. p. 51–64.

    Google Scholar 

  125. Wong AC, Azar DT. Mathematical analysis of phakic intraocular lens power formula and the derivative of a new approximation formula. In ASCRS meeting. 2005. San Francisco.

    Google Scholar 

  126. Wong AC, Azar DT. Phakic IOL power calculations. In: Azar DT, Gatinel D, Thanh HX, editors. Refractive surgery. 2nd ed. Philadelphia: Mosby Elsevier; 2007. p. 401–16.

    CrossRef  Google Scholar 

  127. Shammas HJF. A comparison of immersion and contact techniques for axial length measurement. J Am Intraocul Implant Soc. 1984;10:444.

    CrossRef  CAS  PubMed  Google Scholar 

  128. Coleman DJ. Ophthalmic biometry using ultrasound. Int Ophthalmol Clin. 1969;9:667.

    CrossRef  CAS  PubMed  Google Scholar 

  129. Coleman DJ, Lizzi FL, Franzen LA, et al. A determination of the velocity of ultrasound in cataractous lenses. Bibl Ophthalmol. 1975;83:246.

    Google Scholar 

  130. Ossoinig KC. Standardized echography: basic principles, clinical applications and results. Int Ophthalmol Clin. 1979;19:127.

    CrossRef  CAS  PubMed  Google Scholar 

  131. Haigis W, Lege B, Miller N, et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238:765–73.

    CrossRef  CAS  PubMed  Google Scholar 

  132. Kiss B, Findl O, Menapace R, et al. Biometry of cataractous eyes using partial coherence interferometry: clinical feasibility study of a commercial prototype I. J Cataract Refract Surg. 2002;28:224–9.

    CrossRef  PubMed  Google Scholar 

  133. Packer M, Fine IH, Hoffman RS, et al. Immersion A-scan compared with partial coherence interferometry: outcomes analysis. J Cataract Refract Surg. 2002;28:239–42.

    CrossRef  PubMed  Google Scholar 

  134. Rose LT, Moshegov CN. Comparison of the Zeiss IOL master and applanation A-scan ultrasound: biometry for intraocular lens calculation. Clin Exp Ophthalmol. 2003;31:121–4.

    CrossRef  PubMed  Google Scholar 

  135. Kielhorn I, Rajan MS, Tesha PM, et al. Clinical assessment of the Zeiss IOL master. J Cataract Refract Surg. 2003;29:518–22.

    CrossRef  PubMed  Google Scholar 

  136. Verhulst E, Vrijghem JC. Accuracy of intraocular lens power calculations using the Zeiss IOL master. A prospective study. Bull Soc Belge Ophtalmol. 2001;281:61–5.

    Google Scholar 

  137. Habibabadi HF, Hashemi H, Jalali KH, et al. Refractive outcome of silicone oil removal and intraocular lens implantation using laser interferometry. Retina. 2005;25:162–6.

    CrossRef  PubMed  Google Scholar 

  138. Lege BA, Haigis W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefes Arch Clin Exp Ophthalmol. 2004;242:8–12.

    CrossRef  CAS  PubMed  Google Scholar 

  139. Manning CA, Kloess PM. Comparison of portable automated keratometry and manual keratometry for IOL calculation. J Cataract Refract Surg. 1997;23:1213–6.

    CrossRef  CAS  PubMed  Google Scholar 

  140. Cuaycong MJ, Gay CA, Emery J, et al. Comparison of the accuracy of computerized videokeratography and keratometry for use in intraocular lens calculations. J Cataract Refract Surg. 1993;19(Suppl):178–81.

    CrossRef  PubMed  Google Scholar 

  141. Husain SE, Kohnen T, Maturi R, et al. Computerized videokeratography and keratometry in determining intraocular lens calculations. J Cataract Refract Surg. 1996;22:362–6.

    CrossRef  CAS  PubMed  Google Scholar 

  142. Goudie C, Pronin S, Court H, Pooley J, Tatham AJ. The effect of the timing of the cessation of contact lens use on the results of biometry. Eye (Lond). 2018;32(6):1048–54.

    CrossRef  Google Scholar 

  143. Holladay JT, Gills JP, Leidlein J, et al. Achieving emmetropia in extremely short eyes with two piggyback posterior chamber intraocular lenses. Ophthalmology. 1996;103:1118–23.

    CrossRef  CAS  PubMed  Google Scholar 

  144. Holladay JT. Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations. J Cataract Refract Surg. 1997;23:1356–70.

    CrossRef  CAS  PubMed  Google Scholar 

  145. Olsen T, Corydon L, Gimbel H. Intraocular lens power calculation with an improved anterior chamber depth prediction algorithm. J Cataract Refract Surg. 1995;21:313–9.

    CrossRef  CAS  PubMed  Google Scholar 

  146. Nemeth J, Fekete O, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg. 2003;29:85–8.

    CrossRef  PubMed  Google Scholar 

  147. Rabsilber TM, Becker KA, Frisch IB, et al. Anterior chamber depth in relation to refractive status measured with the Orbscan II topography system. J Cataract Refract Surg. 2003;29(11):2115–21.

    CrossRef  PubMed  Google Scholar 

  148. Baumeister M, Terzi E, Ekici Y, et al. Comparison of manual and automated methods to determine horizontal corneal diameter. J Cataract Refract Surg. 2004;30:374–80.

    CrossRef  PubMed  Google Scholar 

  149. Thompson HW CR, Romero C, Kaufman HE. Reproducibility and agreement of caliper, ultrasound and Orbscan measurement of anterior chamber width. In International society of refractive surgery meeting. 2001. New Orleans.

    Google Scholar 

  150. Huber C. Planned myopic astigmatism as a substitute for accommodation in pseudophakia. J Am Intraocul Implant Soc. 1981;7:244.

    CrossRef  CAS  PubMed  Google Scholar 

  151. Datiles MB, Gancayco T. Low myopia with low astigmatic correction gives cataract surgery patients good depth of focus. Ophthalmology. 1990;97:922.

    CrossRef  CAS  PubMed  Google Scholar 

  152. Nakazawa M, Ohtsuki K. Apparent accommodation in pseudophakic eyes after implantation of posterior chamber intraocular lenses. Am J Ophthalmol. 1983;96:435–8.

    CrossRef  CAS  PubMed  Google Scholar 

  153. Highman VN. Stereopsis and aniseikonia in uniocular aphakia. Br J Ophthalmol. 1977;61:30.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  154. Armstrong TA, Lichtenstein SB. Intraocular lenses in myopes. Ophthalmic Surg. 1984;15:653.

    CAS  PubMed  Google Scholar 

  155. Saunders RA, Ellis FD. Empirical fitting of hard contact lenses in infants and young children. Ophthalmology. 1981;88:127.

    CrossRef  CAS  PubMed  Google Scholar 

  156. Holladay JT, Rubin ML. Avoiding refractive problems in cataract surgery. Surv Ophthalmol. 1988;32:357–60.

    CrossRef  CAS  PubMed  Google Scholar 

  157. Hamed LM. Strabismus presenting after cataract surgery. Ophthalmology. 1991;98:247.

    CrossRef  CAS  PubMed  Google Scholar 

  158. Zaldivar R, Shultz MC, Davidorf JM, et al. Intraocular lens power calculations in patients with extreme myopia. J Cataract Refract Surg. 2000;26:668–74.

    CrossRef  CAS  PubMed  Google Scholar 

  159. Singh K, Sommer A, Jensen AD, et al. Intraocular lens power calculations. Arch Ophthalmol. 1987;105:1046.

    CrossRef  CAS  PubMed  Google Scholar 

  160. Shoch D. Cataracts and macular degeneration. Am J Ophthalmol. 1979;88(3 Pt 1):499–501.

    CrossRef  CAS  PubMed  Google Scholar 

  161. Iizuka M, Gorfinkel J, Mandelcorn M, Lam WC, Devenyi R, Markowitz SN. Modified cataract surgery with telescopic magnification for patients with age-related macular degeneration. Can J Ophthalmol. 2007;42(6):854–9.

    CrossRef  PubMed  Google Scholar 

  162. Gordon RA, Donzis PB. Refractive development of the human eye. Arch Ophthalmol. 1985;103:785.

    CrossRef  CAS  PubMed  Google Scholar 

  163. Arffa RC, Donzis PB, Morgan KS, et al. Prediction of aphakic refractive error in children. Ophthalmic Surg. 1987;18:581–4.

    CAS  PubMed  Google Scholar 

  164. Inatomi M, Ishii K, Koide R, et al. Intraocular lens power calculation for microphthalmos. J Cataract Refract Surg. 1997;23:1208–12.

    CrossRef  CAS  PubMed  Google Scholar 

  165. Andreo LK, Wilson ME, Saunders RA. Predictive value of regression and theoretical IOL formulas in pediatric intraocular lens implantation. J Pediatr Ophthalmol Strabismus. 1997;34:240–3.

    CrossRef  CAS  PubMed  Google Scholar 

  166. Mezer E, Rootman DS, Abdolell M, et al. Early postoperative refractive outcomes of pediatric intraocular lens implantation. J Cataract Refract Surg. 2004;30:603–10.

    CrossRef  PubMed  Google Scholar 

  167. Neely DE, Plager DA, Borger SM, et al. Accuracy of intraocular lens calculations in infants and children undergoing cataract surgery. J AAPOS. 2005;9:160–5.

    CrossRef  PubMed  Google Scholar 

  168. Tromans C, Haigh PM, Biswas S, et al. Accuracy of intraocular lens power calculation in paediatric cataract surgery. Br J Ophthalmol. 2001;85:939–41.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dahan E, Salmenson BD. Pseudophakia in children: precautions, technique and feasibility. J Cataract Refract Surg. 1990;16:75.

    CrossRef  CAS  PubMed  Google Scholar 

  170. O’Gallagher MK, Lagan MA, Mulholland CP, Parker M, McGinnity G, McLoone EM. Paediatric intraocular lens implants: accuracy of lens power calculations. Eye (Lond). 2016;30(9):1215–20.

    CrossRef  Google Scholar 

  171. Plager DA, Lynn MJ, Buckley EG, Wilson ME, Lambert SR, Infant Aphakia Treatment Study Group. Complications, adverse events, and additional intraocular surgery 1 year after cataract surgery in the infant Aphakia Treatment Study. Ophthalmology. 2011;118(12):2330–4.

    CrossRef  PubMed  Google Scholar 

  172. Drews-Botsch CD, Celano M, Kruger S, Hartmann EE, Infant Aphakia Treatment Study. Adherence to occlusion therapy in the first six months of follow-up and visual acuity among participants in the Infant Aphakia Treatment Study (IATS). Invest Ophthalmol Vis Sci. 2012;53(7):3368–75.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  173. Poole ZB, Trivedi RH, Wilson ME. Primary IOL implantation in children: the effect of the Infant Aphakia Treatment Study on practice patterns. J AAPOS. 2019;23(4):228–30.

    CrossRef  PubMed  Google Scholar 

  174. Bothun ED, Wilson ME, Vanderveen DK, et al. Outcomes of bilateral cataracts removed in infants 1 to 7 months of age using the Toddler Aphakia and Pseudophakia Treatment Study Registry. Ophthalmology. 2020;127(4):501–10.

    CrossRef  PubMed  Google Scholar 

  175. Bothun ED, Wilson ME, Traboulsi EI, Toddler Aphakia and Pseudophakia Study Group (TAPS), et al. Outcomes of unilateral cataracts in infants and Toddlers 7 to 24 months of age: Toddler Aphakia and Pseudophakia Study (TAPS). Ophthalmology. 2019;126(8):1189–95.

    CrossRef  PubMed  Google Scholar 

  176. Nihalani BR, VanderVeen DK. Benchmarks for outcome indicators in pediatric cataract surgery. Eye (Lond). 2017;31(3):417–21.

    CrossRef  CAS  Google Scholar 

  177. Hoffer KJ. Intraocular lens power calculation for eyes after refractive keratotomy. J Refract Surg. 1995;11:490–3.

    CrossRef  CAS  PubMed  Google Scholar 

  178. Odenthal MT, Eggink CA, Melles G, et al. Clinical and theoretical results of intraocular lens power calculation for cataract surgery after photorefractive keratectomy for myopia. Arch Ophthalmol. 2002;120:431–8.

    CrossRef  PubMed  Google Scholar 

  179. Hoffer KJ. Calculating intraocular lens power after refractive corneal surgery. Arch Ophthalmol. 2002;120:500–1.

    CrossRef  PubMed  Google Scholar 

  180. Argento C, Cosentino MJ, Badoza D. Intraocular lens power calculation after refractive surgery. J Cataract Refract Surg. 2003;29:1346–51.

    CrossRef  PubMed  Google Scholar 

  181. Aramberri J. Intraocular lens power calculation after corneal refractive surgery: double-K method. J Cataract Refract Surg. 2003;29(11):2063–8.

    CrossRef  PubMed  Google Scholar 

  182. Rosa N, Capasso L, Lanza M. Double-K method to calculate IOL power after refractive surgery. J Cataract Refract Surg. 2005;31:254–5; author reply 255–6.

    CrossRef  PubMed  Google Scholar 

  183. Wang L, Booth MA, Koch DD. Comparison of intraocular lens power calculation methods in eyes that have undergone LASIK. Ophthalmology. 2004;111(10):1825–31.

    CrossRef  PubMed  Google Scholar 

  184. Feiz V, Moshirfar M, Mannis MJ, et al. Nomogram-based intraocular lens power adjustment after myopic photorefractive keratectomy and LASIK: a new approach. Ophthalmology. 2005;112:1381–7.

    CrossRef  PubMed  Google Scholar 

  185. Feiz V, Mannis MJ, Garcia-Ferrer F. Intraocular lens power calculation after laser in situ keratomileusis for myopia and hyperopia a standardized approach. Cornea. 2001;20:792–7.

    CrossRef  CAS  PubMed  Google Scholar 

  186. Hamed AM, Wang L, Misra M, et al. A comparative analysis of five methods of determining corneal refractive power in eyes that have undergone myopic laser in situ keratomileusis. Ophthalmology. 2002;109:651–8.

    CrossRef  PubMed  Google Scholar 

  187. Latkany RA, Chokshi AR, Speaker MG, Abramson J, Soloway BD, Yu G. IOL calculations after refractive surgery. J Cataract Refract Surg. 2005;31(3):562–70.

    CrossRef  PubMed  Google Scholar 

  188. Masket S, Masket SE. Simple regression formula for intraocular lens power adjustment in eyes requiring cataract surgery after excimer laser photoablation. J Cataract Refract Surg. 2006;32(3):430–4.

    CrossRef  PubMed  Google Scholar 

  189. Hill WE. IOL power calculations following keratorefractive surgery. Presented at Cornea Day of the annual meeting of the American Society of Cataract and Refractive Surgery, San Francisco, California, March 17, 2006.

    Google Scholar 

  190. Zeh WG, Koch DD. Comparison of contact lens overrefraction and standard keratometry for measuring corneal curvature in eyes with lenticular opacity. J Cataract Refract Surg. 1999;25:898–903.

    CrossRef  CAS  PubMed  Google Scholar 

  191. Speicher L. Intra-ocular lens calculation status after corneal refractive surgery. Curr Opin Ophthalmol. 2001;12:17–29.

    CrossRef  CAS  PubMed  Google Scholar 

  192. Sonego-Krone S, Lopez-Moreno G, Beaujon-Balbi OV, et al. A direct method to measure the power of the central cornea after myopic laser in situ keratomileusis. Arch Ophthalmol. 2004;122:159–66.

    CrossRef  PubMed  Google Scholar 

  193. Cheng AC, Ho T, Rao SK, Lau S, Lam DS. Posterior corneal curvature measurements with peripheral fitting zones before and after myopic LASIK using Orbscan II. J Refract Surg. 2008;24(8):807–10.9.

    CrossRef  PubMed  Google Scholar 

  194. Savini G, Hoffer KJ, Carbonelli M, Barboni P. Scheimpflug analysis of corneal power changes after myopic excimer laser surgery. J Cataract Refract Surg. 2013;39(4):605–10.

    CrossRef  PubMed  Google Scholar 

  195. Rosa N, Capasso L, Romano A. A new method of calculating intraocular lens power after photorefractive keratectomy. J Refract Surg. 2002;18:720–4.

    CrossRef  PubMed  Google Scholar 

  196. Rosa N, Capasso L. Intraocular lens power calculation after photorefractive keratectomy for myopia. Arch Ophthalmol. 2003;121:584.

    CrossRef  PubMed  Google Scholar 

  197. Rosa N, Capasso L, Lanza M, et al. Reliability of a new correcting factor in calculating intraocular lens power after refractive corneal surgery. J Cataract Refract Surg. 2005;31:1020–4.

    CrossRef  PubMed  Google Scholar 

  198. Maloney RK, Smith RJ. Measuring corneal refractive power after LASIK. J Refract Surg. 2000;16:756–7.

    CrossRef  CAS  PubMed  Google Scholar 

  199. Shammas HJ, Shammas MC, Garabet A, Kim JH, Shammas A, LaBree L. Correcting the corneal power measurements for intraocular lens power calculations after myopic laser in situ keratomileusis. Am J Ophthalmol. 2003;136(3):426–32.

    CrossRef  PubMed  Google Scholar 

  200. Haigis W. Intraocular lens calculation after refractive surgery for myopia: Haigis-L formula. JCRS. 2008;34(10):1658–63.

    Google Scholar 

  201. Ianchulev T, Salz J, Hoffer K, Albini T, Hsu H, Labree L. Intraoperativeoptical refractive biometry for intraocular lens power estimation without axiallength and keratometry measurements. J Cataract Refract Surg. 2005;31(8):1530–6.

    CrossRef  PubMed  Google Scholar 

  202. Wong AC, Mak ST, Tse RK. Clinical evaluation of the intraoperative refraction technique for intraocular lens power calculation. Ophthalmology. 2010;117(4):711–6.

    CrossRef  PubMed  Google Scholar 

  203. Savini G, Barboni P, Zanini M. Intraocular lens power calculation after myopic refractive surgery: theoretical comparison of different methods. Ophthalmology. 2006;113(8):1271–82.

    CrossRef  PubMed  Google Scholar 

  204. Hoffer KJ. Ultrasound velocities for axial eye length measurement. J Cataract Refract Surg. 1994;20:554–62.

    CrossRef  CAS  PubMed  Google Scholar 

  205. Tester R, Pace NL, Samore M, et al. Dysphotopsia in phakic and pseudophakic patients: incidence and relation to intraocular lens type(2). J Cataract Refract Surg. 2000;26:810–6.

    CrossRef  CAS  PubMed  Google Scholar 

  206. Masket S. Truncated edge design, dysphotopsia, and inhibition of posterior capsule opacification. J Cataract Refract Surg. 2000;26:145–7.

    CrossRef  CAS  PubMed  Google Scholar 

  207. Erie JC, Bandhauer MH, McLaren JW. Analysis of postoperative glare and intraocular lens design. J Cataract Refract Surg. 2001;27:614–21.

    CrossRef  CAS  PubMed  Google Scholar 

  208. Ohara K, Abe K. Role of positioning holes in intraocular lens glare. J Cataract Refract Surg. 1989;15:647.

    CrossRef  CAS  PubMed  Google Scholar 

  209. Friedberg HL, Kline OR, Friedberg AH. Comparison of the unwanted optical images produced by 6-mm and 7-mm intraocular lenses. J Cataract Refract Surg. 1989;15:541.

    CrossRef  CAS  PubMed  Google Scholar 

  210. Ellis MF. Sharp-edged intraocular lens design as a cause of permanent glare. J Cataract Refract Surg. 2001;27:1061–4.

    CrossRef  CAS  PubMed  Google Scholar 

  211. Holladay JT, Lang A, Portney V. Analysis of edge glare phenomena in intraocular lens edge designs. J Cataract Refract Surg. 1999;25:748–52.

    CrossRef  CAS  PubMed  Google Scholar 

  212. Zhang Z, Zheng D, Lin Y, et al. [A clinical study of posterior capsular opacification after implantation of foldable intraocular lenses with different edges of optics]. Zhonghua Yan Ke Za Zhi. 2002; 38(10):606–9.

    Google Scholar 

  213. Radmall BR, Floyd A, Oakey Z, Olson RJ. Refractive index and its impact on pseudophakic dysphotopsia. Clin Ophthalmol. 2015;9:1353–8.

    PubMed  PubMed Central  Google Scholar 

  214. Sivak JG, Kreuzer RO, Hildebrand T. Intraocular lenses, tilt, and astigmatism. Ophthalmic Res. 1985;17:54.

    CrossRef  CAS  PubMed  Google Scholar 

  215. Weikert MP, Golla A, Wang L. Astigmatism induced by intraocular lens tilt evaluated via ray tracing. J Cataract Refract Surg. 2018;44(6):745–9.

    CrossRef  PubMed  Google Scholar 

  216. Lakshminarayanan V, Enoch JM, Raasch T, et al. Refractive changes induced by intraocular lens tilt and longitudinal displacement. Arch Ophthalmol. 1986;104:90.

    CrossRef  CAS  PubMed  Google Scholar 

  217. Maltzman BA, Cinotti DJ, Horan CA, et al. Posterior chamber implants and post-operative refractive astigmatism. CLAO J. 1983;9:229.

    CAS  PubMed  Google Scholar 

  218. Jolson AS, Seidl FJ. Postoperative astigmatism induced by intraocular lens tilt. J Am Intraocul Implant Soc J. 1984;10:213.

    CrossRef  CAS  Google Scholar 

  219. Woo GC, Cullen AP. Optical management of posterior chamber lens tilt. Am J Optom Physiol Optic. 1987;64(7):556–7.

    CrossRef  CAS  Google Scholar 

  220. Halpern BL, Gallagher SP. Refractive error consequences of reversed-optic AMO SI-40NB intraocular lens. Ophthalmology. 1999;106:901–3.

    CrossRef  CAS  PubMed  Google Scholar 

  221. Nawa Y, Okamoto M, Tsuji H, Ueda T, Kanzaki M, Hara Y. Dioptric changes in eyes with reversed intraocular lenses. J Cataract Refract Surg. 2005;31(3):586–9.

    CrossRef  PubMed  Google Scholar 

  222. Zhang X, Soni N, Alexander J, Kalarn S, Saeedi O. Pupillary block due to reverse implantation of a sulcus intraocular lens. JCRS Online Case Rep. 2016;4(3):41–4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wong, A.C.M. (2020). Optics of Intraocular Lenses. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_239-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_239-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine