Skip to main content

Dry Eye Diagnosis and Management

  • Living reference work entry
  • First Online:
Albert and Jakobiec's Principles and Practice of Ophthalmology

Abstract

Dry eye disease refers to disorders of the tear film due to reduced tear production and/or excessive tear evaporation associated with symptoms of ocular discomfort. These changes can reduce quality of life for many patients. There are a wide range of pathophysiological etiologies which result in similar signs and symptoms of pain, blurry vision, and grittiness due to changes on the ocular surface. The underlying etiologies can be divided into immune-mediated, inflammatory, neurosensory, and anatomical causes of dry eye disease. The clinical evaluation for the diagnosis of dry eye disease includes a history, symptom analysis, comprehensive slit lamp examination, tear function tests, as well as more novel imaging and tear sample testing. The treatment is based largely on the underlying etiology but includes interventions such as patient education, warm compresses, lid hygiene, tear supplementation, anti-inflammatory and antibiotic therapy, as well as more invasive therapies including punctal occlusion, surgical intervention, and lid correction surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Farrand KF, Fridman M, Stillman IO, Schaumberg DA. Prevalence of diagnosed dry eye disease in the United States among adults aged 18 years and older. Am J Ophthalmol. 2017;182:90–8.

    Article  PubMed  Google Scholar 

  2. Dana R, Meunier J, Markowitz JT, Joseph C, Siffel C. Patient-reported burden of dry eye disease in the United States: results of an online cross-sectional survey. Am J Ophthalmol. 2020;216:7–17.

    Article  PubMed  Google Scholar 

  3. Shanti Y, Shehada R, Bakkar MM, Qaddumi J. Prevalence and associated risk factors of dry eye disease in 16 northern West bank towns in Palestine: a cross-sectional study. BMC Ophthalmol. 2020;20(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Siak JJ, Tong L, Wong WL, et al. Prevalence and risk factors of meibomian gland dysfunction: the Singapore Malay eye study. Cornea. 2012;31(11):1223–8.

    Article  PubMed  Google Scholar 

  5. Viso E, Rodriguez-Ares MT, Abelenda D, Oubina B, Gude F. Prevalence of asymptomatic and symptomatic meibomian gland dysfunction in the general population of Spain. Invest Ophthalmol Vis Sci. 2012;53(6):2601–6.

    Article  PubMed  Google Scholar 

  6. Ivanir Y, Shimoni A, Ezra-Nimni O, Barequet IS. Prevalence of dry eye syndrome after allogeneic hematopoietic stem cell transplantation. Cornea. 2013;32(5):e97–101.

    Article  PubMed  Google Scholar 

  7. Jacobs R, Tran U, Chen H, et al. Prevalence and risk factors associated with development of ocular GVHD defined by NIH consensus criteria. Bone Marrow Transplant. 2012;47(11):1470–3.

    Article  CAS  PubMed  Google Scholar 

  8. Bron AJ, de Paiva CS, Chauhan SK, et al. TFOS DEWS II pathophysiology report. Ocul Surf. 2017;15(3):438–510.

    Article  PubMed  Google Scholar 

  9. Willcox MDP, Argueso P, Georgiev GA, et al. TFOS DEWS II Tear film report. Ocul Surf. 2017;15(3):366–403.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Takahashi Y, Watanabe A, Matsuda H, et al. Anatomy of secretory glands in the eyelid and conjunctiva: a photographic review. Ophthalmic Plast Reconstr Surg. 2013;29(3):215–9.

    Article  PubMed  Google Scholar 

  11. Holly FJ, Lemp MA. Tear physiology and dry eyes. Surv Ophthalmol. 1977;22(2):69–87.

    Article  CAS  PubMed  Google Scholar 

  12. Iwata S, Lemp MA, Holly FJ, Dohlman CH. Evaporation rate of water from the precorneal tear film and cornea in the rabbit. Investig Ophthalmol. 1969;8(6):613–9.

    CAS  Google Scholar 

  13. Tiffany JM. The lipid secretion of the meibomian glands. Adv Lipid Res. 1987;22:1–62.

    Article  CAS  PubMed  Google Scholar 

  14. Cox SM, Nichols JJ. The neurobiology of the meibomian glands. Ocul Surf. 2014;12(3):167–77.

    Article  PubMed  Google Scholar 

  15. Jones LT. The lacrimal secretory system and its treatment. Am J Ophthalmol. 1966;62(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  16. Dilly PN, Mackie IA. Surface changes in the anaesthetic conjunctiva in man, with special reference to the production of mucus from a non-goblet-cell source. Br J Ophthalmol. 1981;65(12):833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greiner JV, Allansmith MR. Effect of contact lens wear on the conjunctival mucous system. Ophthalmology. 1981;88(8):821–32.

    Article  CAS  PubMed  Google Scholar 

  18. Gilbard JP, Rossi SR, Heyda KG. Ophthalmic solutions, the ocular surface, and a unique therapeutic artificial tear formulation. Am J Ophthalmol. 1989;107(4):348–55.

    Article  CAS  PubMed  Google Scholar 

  19. Huang AJ, Belldegrun R, Hanninen L, Kenyon KR, Tseng SC, Refojo MF. Effects of hypertonic solutions on conjunctival epithelium and mucinlike glycoprotein discharge. Cornea. 1989;8(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  20. Dartt DA, McCarthy DM, Mercer HJ, Kessler TL, Chung EH, Zieske JD. Localization of nerves adjacent to goblet cells in rat conjunctiva. Curr Eye Res. 1995;14(11):993–1000.

    Article  CAS  PubMed  Google Scholar 

  21. Kessler TL, Mercer HJ, Zieske JD, McCarthy DM, Dartt DA. Stimulation of goblet cell mucous secretion by activation of nerves in rat conjunctiva. Curr Eye Res. 1995;14(11):985–92.

    Article  CAS  PubMed  Google Scholar 

  22. Botelho SY, Hisada M, Fuenmayor N. Functional innervation of the lacrimal gland in the cat. Origin of secretomotor fibers in the lacrimal nerve. Arch Ophthalmol. 1966;76(4):581–8.

    Article  CAS  PubMed  Google Scholar 

  23. Scherz W, Dohlman CH. Is the lacrimal gland dispensable? Keratoconjunctivitis sicca after lacrimal gland removal. Arch Ophthalmol. 1975;93(4):281–3.

    Article  CAS  PubMed  Google Scholar 

  24. Mishima S, Gasset A, Klyce SD Jr, Baum JL. Determination of tear volume and tear flow. Investig Ophthalmol. 1966;5(3):264–76.

    CAS  Google Scholar 

  25. Prydal JI, Campbell FW. Study of precorneal tear film thickness and structure by interferometry and confocal microscopy. Invest Ophthalmol Vis Sci. 1992;33(6):1996–2005.

    CAS  PubMed  Google Scholar 

  26. Doane MG. Blinking and the mechanics of the lacrimal drainage system. Ophthalmology. 1981;88(8):844–51.

    Article  CAS  PubMed  Google Scholar 

  27. Gilbard JP. Human tear film electrolyte concentrations in health and dry-eye disease. Int Ophthalmol Clin. 1994;34(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  28. Lam KW, Lee P, Fox R. Aqueous ascorbate concentration in hereditary buphthalmic rabbits. Arch Ophthalmol. 1976;94(9):1565–7.

    Article  CAS  PubMed  Google Scholar 

  29. Van Haeringen NJ. Clinical biochemistry of tears. Surv Ophthalmol. 1981;26(2):84–96.

    Article  PubMed  Google Scholar 

  30. Farris RL, Stuchell RN, Mandel ID. Tear osmolarity variation in the dry eye. Trans Am Ophthalmol Soc. 1986;84:250–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wieczorek R, Jakobiec FA, Sacks EH, Knowles DM. The immunoarchitecture of the normal human lacrimal gland. Relevancy for understanding pathologic conditions. Ophthalmology. 1988;95(1):100–9.

    Article  CAS  PubMed  Google Scholar 

  32. Zoukhri D. Effect of inflammation on lacrimal gland function. Exp Eye Res. 2006;82(5):885–98.

    Article  CAS  PubMed  Google Scholar 

  33. Lin H, Liu Y, Yiu S. Three dimensional culture of potential epithelial progenitor cells in human lacrimal gland. Transl Vis Sci Technol. 2019;8(4):32.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sjogren H. Some problems concerning keratoconjunctivitis sicca and the sicca-syndrome. Acta Ophthalmol. 1951;29(1):33–47.

    Article  CAS  Google Scholar 

  35. Sjogren H. [On the question of keratoconjunctivitis sicca. 8. Survey–etiology]. Acta Ophthalmol. 1971;49(5):779–89.

    Google Scholar 

  36. Abdel-Khalek LM, Williamson J, Lee WR. Morphological changes in the human conjunctival epithelium. II. In keratoconjunctivitis sicca. Br J Ophthalmol. 1978;62(11):800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gilbard JP, Rossi SR, Gray KL. A new rabbit model for keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 1987;28(2):225–8.

    CAS  PubMed  Google Scholar 

  38. Chung CW, Tigges M, Stone RA. Peptidergic innervation of the primate meibomian gland. Invest Ophthalmol Vis Sci. 1996;37(1):238–45.

    CAS  PubMed  Google Scholar 

  39. Gilbard JP, Rossi SR, Gray KL, Hanninen LA, Kenyon KR. Tear film osmolarity and ocular surface disease in two rabbit models for keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 1988;29(3):374–8.

    CAS  PubMed  Google Scholar 

  40. Nelson JD, Havener VR, Cameron JD. Cellulose acetate impressions of the ocular surface. Dry eye states. Arch Ophthalmol. 1983;101(12):1869–72.

    Article  CAS  PubMed  Google Scholar 

  41. Meyer E, Scharf Y, Schechner R, Zonis S, Scharf Y, Nahir M. Light and electron microscopical study of the conjunctiva in sicca syndrome. Ophthalmologica. 1985;190(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  42. Ralph RA. Conjunctival goblet cell density in normal subjects and in dry eye syndromes. Investig Ophthalmol. 1975;14(4):299–302.

    CAS  Google Scholar 

  43. Sonawane S, Khanolkar V, Namavari A, et al. Ocular surface extracellular DNA and nuclease activity imbalance: a new paradigm for inflammation in dry eye disease. Invest Ophthalmol Vis Sci. 2012;53(13):8253–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schaumburg CS, Siemasko KF, De Paiva CS, et al. Ocular surface APCs are necessary for autoreactive T cell-mediated experimental autoimmune lacrimal keratoconjunctivitis. J Immunol. 2011;187(7):3653–62.

    Article  CAS  PubMed  Google Scholar 

  45. Barabino S, Chen Y, Chauhan S, Dana R. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease. Prog Retin Eye Res. 2012;31(3):271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steven P, Gebert A. Conjunctiva-associated lymphoid tissue - current knowledge, animal models and experimental prospects. Ophthalmic Res. 2009;42(1):2–8.

    Article  PubMed  Google Scholar 

  47. Nelson JD, Wright JC. Conjunctival goblet cell densities in ocular surface disease. Arch Ophthalmol. 1984;102(7):1049–51.

    Article  CAS  PubMed  Google Scholar 

  48. Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder SC. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci. 2001;42(10):2283–92.

    CAS  PubMed  Google Scholar 

  49. Kunert KS, Tisdale AS, Stern ME, Smith JA, Gipson IK. Analysis of topical cyclosporine treatment of patients with dry eye syndrome: effect on conjunctival lymphocytes. Arch Ophthalmol. 2000;118(11):1489–96.

    Article  CAS  PubMed  Google Scholar 

  50. Pflugfelder SC, Solomon A, Stern ME. The diagnosis and management of dry eye: a twenty-five-year review. Cornea. 2000;19(5):644–9.

    Article  CAS  PubMed  Google Scholar 

  51. Font RL, Yanoff M, Zimmerman LE. Benign lymphoepithelial lesion of the lacrimal gland and its relationship to Sjogren’s syndrome. Am J Clin Pathol. 1967;48(4):365–76.

    Article  CAS  PubMed  Google Scholar 

  52. Bloch KJ, Buchanan WW, Wohl MJ, Bunim JJ. Sjogren’s syndrome. A clinical, pathological, and serological study of sixty-two cases. Medicine (Baltimore). 1965;44:187–231.

    Article  CAS  Google Scholar 

  53. Williamson J, Gibson AA, Wilson T, Forrester JV, Whaley K, Dick WC. Histology of the lacrimal gland in keratoconjunctivitis sicca. Br J Ophthalmol. 1973;57(11):852–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kassan SS, Gardy M. Sjogren’s syndrome: an update and overview. Am J Med. 1978;64(6):1037–46.

    Article  CAS  PubMed  Google Scholar 

  55. Fox RI, Howell FV, Bone RC, Michelson P. Primary Sjogren syndrome: clinical and immunopathologic features. Semin Arthritis Rheum. 1984;14(2):77–105.

    Article  CAS  PubMed  Google Scholar 

  56. Pepose JS, Akata RF, Pflugfelder SC, Voigt W. Mononuclear cell phenotypes and immunoglobulin gene rearrangements in lacrimal gland biopsies from patients with Sjogren’s syndrome. Ophthalmology. 1990;97(12):1599–605.

    Article  CAS  PubMed  Google Scholar 

  57. Gilbard JP, Rossi SR, Gray KL, Hanninen LA. Natural history of disease in a rabbit model for keratoconjunctivitis sicca. Acta Ophthalmol Suppl. 1989;192:95–101.

    CAS  PubMed  Google Scholar 

  58. Gilbard JP, Dartt DA. Changes in rabbit lacrimal gland fluid osmolarity with flow rate. Invest Ophthalmol Vis Sci. 1982;23(6):804–6.

    CAS  PubMed  Google Scholar 

  59. Pflugfelder SC, Jones D, Ji Z, Afonso A, Monroy D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjogren’s syndrome keratoconjunctivitis sicca. Curr Eye Res. 1999;19(3):201–11.

    Article  CAS  PubMed  Google Scholar 

  60. Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res. 2004;78(3):409–16.

    Article  CAS  PubMed  Google Scholar 

  61. Luo L, Li DQ, Corrales RM, Pflugfelder SC. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 2005;31(5):186–93.

    Article  PubMed  Google Scholar 

  62. Li DQ, Chen Z, Song XJ, Luo L, Pflugfelder SC. Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(12):4302–11.

    Article  PubMed  Google Scholar 

  63. Gilbard JP, Rossi SR, Heyda KG. Tear film and ocular surface changes after closure of the meibomian gland orifices in the rabbit. Ophthalmology. 1989;96(8):1180–6.

    Article  CAS  PubMed  Google Scholar 

  64. Robin JB, Jester JV, Nobe J, Nicolaides N, Smith RE. In vivo transillumination biomicroscopy and photography of meibomian gland dysfunction. A clinical study. Ophthalmology. 1985;92(10):1423–6.

    Article  CAS  PubMed  Google Scholar 

  65. Mishima S, Maurice DM. The oily layer of the tear film and evaporation from the corneal surface. Exp Eye Res. 1961;1:39–45.

    Article  CAS  PubMed  Google Scholar 

  66. Mathers WD, Shields WJ, Sachdev MS, Petroll WM, Jester JV. Meibomian gland dysfunction in chronic blepharitis. Cornea. 1991;10(4):277–85.

    Article  CAS  PubMed  Google Scholar 

  67. Schein OD, Munoz B, Tielsch JM, Bandeen-Roche K, West S. Prevalence of dry eye among the elderly. Am J Ophthalmol. 1997;124(6):723–8.

    Article  CAS  PubMed  Google Scholar 

  68. Groden LR, Murphy B, Rodnite J, Genvert GI. Lid flora in blepharitis. Cornea. 1991;10(1):50–3.

    Article  CAS  PubMed  Google Scholar 

  69. Collins M, Seeto R, Campbell L, Ross M. Blinking and corneal sensitivity. Acta Ophthalmol. 1989;67(5):525–31.

    Article  CAS  Google Scholar 

  70. Millodot M. Corneal sensitivity. Int Ophthalmol Clin. 1981;21(2):47–54.

    Article  CAS  PubMed  Google Scholar 

  71. Jordan A, Baum J. Basic tear flow. Does it exist? Ophthalmology. 1980;87(9):920–30.

    Article  CAS  PubMed  Google Scholar 

  72. Gilbard JP, Rossi SR. Tear film and ocular surface changes in a rabbit model of neurotrophic keratitis. Ophthalmology. 1990;97(3):308–12.

    Article  CAS  PubMed  Google Scholar 

  73. Beuerman RW, Schimmelpfennig B. Sensory denervation of the rabbit cornea affects epithelial properties. Exp Neurol. 1980;69(1):196–201.

    Article  CAS  PubMed  Google Scholar 

  74. Markelonis GJ, Oh TH. A protein fraction from peripheral nerve having neurotrophic effects on skeletal muscle cells in culture. Exp Neurol. 1978;58(2):285–95.

    Article  CAS  PubMed  Google Scholar 

  75. Cavanagh HD, Colley AM. The molecular basis of neurotrophic keratitis. Acta Ophthalmol Suppl. 1989;192:115–34.

    CAS  PubMed  Google Scholar 

  76. Battat L, Macri A, Dursun D, Pflugfelder SC. Effects of laser in situ keratomileusis on tear production, clearance, and the ocular surface. Ophthalmology. 2001;108(7):1230–5.

    Article  CAS  PubMed  Google Scholar 

  77. Yu EY, Leung A, Rao S, Lam DS. Effect of laser in situ keratomileusis on tear stability. Ophthalmology. 2000;107(12):2131–5.

    Article  CAS  PubMed  Google Scholar 

  78. Di Pascuale MA, Liu TS, Trattler W, Tseng SC. Lipid tear deficiency in persistent dry eye after laser in situ keratomileusis and treatment results of new eye-warming device. J Cataract Refract Surg. 2005;31(9):1741–9.

    Article  PubMed  Google Scholar 

  79. Toda I, Asano-Kato N, Hori-Komai Y, Tsubota K. Laser-assisted in situ keratomileusis for patients with dry eye. Arch Ophthalmol. 2002;120(8):1024–8.

    Article  PubMed  Google Scholar 

  80. Carney LG, Hill RM. The nature of normal blinking patterns. Acta Ophthalmol. 1982;60(3):427–33.

    Article  CAS  Google Scholar 

  81. Mishima S. Some physiological aspects of the precorneal tear film. Arch Ophthalmol. 1965;73:233–41.

    Article  CAS  PubMed  Google Scholar 

  82. Gilbard JP. Tear film osmolarity and keratoconjunctivitis sicca. CLAO J. 1985;11(3):243–50.

    CAS  PubMed  Google Scholar 

  83. Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the ocular surface disease index. Arch Ophthalmol. 2000;118(5):615–21.

    Article  CAS  PubMed  Google Scholar 

  84. Mangione CM, Lee PP, Gutierrez PR, et al. Development of the 25-item National Eye Institute Visual Function Questionnaire. Arch Ophthalmol. 2001;119(7):1050–8.

    Article  CAS  PubMed  Google Scholar 

  85. Vitale S, Goodman LA, Reed GF, Smith JA. Comparison of the NEI-VFQ and OSDI questionnaires in patients with Sjogren’s syndrome-related dry eye. Health Qual Life Outcomes. 2004;2:44.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wolffsohn JS, Arita R, Chalmers R, et al. TFOS DEWS II diagnostic methodology report. Ocul Surf. 2017;15(3):539–74.

    Article  PubMed  Google Scholar 

  87. Mengher LS, Bron AJ, Tonge SR, Gilbert DJ. Effect of fluorescein instillation on the pre-corneal tear film stability. Curr Eye Res. 1985;4(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  88. Mengher LS, Bron AJ, Tonge SR, Gilbert DJ. A non-invasive instrument for clinical assessment of the pre-corneal tear film stability. Curr Eye Res. 1985;4(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  89. Xie W, Zhang X, Xu Y, Yao YF. Assessment of tear film and bulbar redness by keratograph 5M in pediatric patients after orthokeratology. Eye Contact Lens. 2018;44(Suppl 2):S382–6.

    Article  PubMed  Google Scholar 

  90. Schulze MM, Jones DA, Simpson TL. The development of validated bulbar redness grading scales. Optom Vis Sci. 2007;84(10):976–83.

    Article  PubMed  Google Scholar 

  91. Wu S, Hong J, Tian L, Cui X, Sun X, Xu J. Assessment of bulbar redness with a newly developed keratograph. Optom Vis Sci. 2015;92(8):892–9.

    Article  PubMed  Google Scholar 

  92. Feenstra RP, Tseng SC. Comparison of fluorescein and rose Bengal staining. Ophthalmology. 1992;99(4):605–17.

    Article  CAS  PubMed  Google Scholar 

  93. Lemp MA. Report of the National Eye Institute/Industry workshop on clinical trials in dry eyes. CLAO J. 1995;21(4):221–32.

    CAS  PubMed  Google Scholar 

  94. Amparo F, Wang H, Yin J, Marmalidou A, Dana R. Evaluating corneal fluorescein staining using a novel automated method. Invest Ophthalmol Vis Sci. 2017;58(6):BIO168–73.

    Article  PubMed  Google Scholar 

  95. van Bijsterveld OP. Diagnostic tests in the Sicca syndrome. Arch Ophthalmol. 1969;82(1):10–4.

    Article  PubMed  Google Scholar 

  96. Nichols KK, Mitchell GL, Zadnik K. Performance and repeatability of the NEI-VFQ-25 in patients with dry eye. Cornea. 2002;21(6):578–83.

    Article  PubMed  Google Scholar 

  97. Balik J. The lacrimal fluid in keratoconjunctivitis sicca; a quantitative and qualitative investigation. Am J Ophthalmol. 1952;35(6):1773–82.

    Article  CAS  PubMed  Google Scholar 

  98. Lamberts DW, Foster CS, Perry HD. Schirmer test after topical anesthesia and the tear meniscus height in normal eyes. Arch Ophthalmol. 1979;97(6):1082–5.

    Article  CAS  PubMed  Google Scholar 

  99. Farris RL, Gilbard JP, Stuchell RN, Mandel ID. Diagnostic tests in keratoconjunctivitis sicca. CLAO J. 1983;9(1):23–8.

    CAS  PubMed  Google Scholar 

  100. Lemp MA, Bron AJ, Baudouin C, et al. Tear osmolarity in the diagnosis and management of dry eye disease. Am J Ophthalmol. 2011;151(5):792–8.e791.

    Article  PubMed  Google Scholar 

  101. Park JY, Kim BG, Kim JS, Hwang JH. Matrix metalloproteinase 9 point-of-care immunoassay result predicts response to topical cyclosporine treatment in dry eye disease. Transl Vis Sci Technol. 2018;7(5):31.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sambursky R, Davitt WF 3rd, Friedberg M, Tauber S. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea. 2014;33(8):812–8.

    Article  PubMed  Google Scholar 

  103. Chou YB, Fan NW, Lin PY. Value of lipid layer thickness and blinking pattern in approaching patients with dry eye symptoms. Can J Ophthalmol. 2019;54(6):735–40.

    Article  PubMed  Google Scholar 

  104. Yeotikar NS, Zhu H, Markoulli M, Nichols KK, Naduvilath T, Papas EB. Functional and morphologic changes of Meibomian glands in an asymptomatic adult population. Invest Ophthalmol Vis Sci. 2016;57(10):3996–4007.

    Article  CAS  PubMed  Google Scholar 

  105. Blehm C, Vishnu S, Khattak A, Mitra S, Yee RW. Computer vision syndrome: a review. Surv Ophthalmol. 2005;50(3):253–62.

    Article  PubMed  Google Scholar 

  106. Kaswan RL, Salisbury MA, Ward DA. Spontaneous canine keratoconjunctivitis sicca. A useful model for human keratoconjunctivitis sicca: treatment with cyclosporine eye drops. Arch Ophthalmol. 1989;107(8):1210–6.

    Article  CAS  PubMed  Google Scholar 

  107. Sall K, Stevenson OD, Mundorf TK, Reis BL. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA Phase 3 Study Group. Ophthalmology. 2000;107(4):631–9.

    Article  CAS  PubMed  Google Scholar 

  108. Kunert KS, Tisdale AS, Gipson IK. Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch Ophthalmol. 2002;120(3):330–7.

    Article  CAS  PubMed  Google Scholar 

  109. Kervick GN, Pflugfelder SC, Haimovici R, Brown H, Tozman E, Yee R. Paracentral rheumatoid corneal ulceration. Clinical features and cyclosporine therapy. Ophthalmology. 1992;99(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  110. Goldberg DF, Malhotra RP, Schechter BA, Justice A, Weiss SL, Sheppard JD. A phase 3, randomized, double-masked study of OTX-101 ophthalmic solution 0.09% in the treatment of dry eye disease. Ophthalmology. 2019;126(9):1230–7.

    Article  PubMed  Google Scholar 

  111. Barber LD, Pflugfelder SC, Tauber J, Foulks GN. Phase III safety evaluation of cyclosporine 0.1% ophthalmic emulsion administered twice daily to dry eye disease patients for up to 3 years. Ophthalmology. 2005;112(10):1790–4.

    Article  PubMed  Google Scholar 

  112. Tauber J, Karpecki P, Latkany R, et al. Lifitegrast ophthalmic solution 5.0% versus placebo for treatment of dry eye disease: results of the randomized Phase III OPUS-2 study. Ophthalmology. 2015;122(12):2423–31.

    Article  PubMed  Google Scholar 

  113. Pflugfelder SC, Maskin SL, Anderson B, et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol. 2004;138(3):444–57.

    Article  CAS  PubMed  Google Scholar 

  114. Stone DU, Chodosh J. Ocular rosacea: an update on pathogenesis and therapy. Curr Opin Ophthalmol. 2004;15(6):499–502.

    Article  PubMed  Google Scholar 

  115. Golub LM, Ramamurthy N, McNamara TF, et al. Tetracyclines inhibit tissue collagenase activity. A new mechanism in the treatment of periodontal disease. J Periodontal Res. 1984;19(6):651–5.

    Article  CAS  PubMed  Google Scholar 

  116. Golub LM, Wolff M, Lee HM, et al. Further evidence that tetracyclines inhibit collagenase activity in human crevicular fluid and from other mammalian sources. J Periodontal Res. 1985;20(1):12–23.

    Article  CAS  PubMed  Google Scholar 

  117. Martin RR, Warr GA, Couch RB, Yeager H, Knight V. Effects of tetracycline on leukotaxis. J Infect Dis. 1974;129(2):110–6.

    Article  CAS  PubMed  Google Scholar 

  118. Esterly NB, Koransky JS, Furey NL, Trevisan M. Neutrophil chemotaxis in patients with acne receiving oral tetracycline therapy. Arch Dermatol. 1984;120(10):1308–13.

    Article  CAS  PubMed  Google Scholar 

  119. Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, Taplin SH. Antibiotic use in relation to the risk of breast cancer. JAMA. 2004;291(7):827–35.

    Article  CAS  PubMed  Google Scholar 

  120. Pushker N, Dada T, Vajpayee RB, Gupta V, Aggrawal T, Titiyal JS. Neurotrophic keratopathy. CLAO J. 2001;27(2):100–7.

    CAS  PubMed  Google Scholar 

  121. Vivino FB, Al-Hashimi I, Khan Z, et al. Pilocarpine tablets for the treatment of dry mouth and dry eye symptoms in patients with Sjogren syndrome: a randomized, placebo-controlled, fixed-dose, multicenter trial. P92-01 Study Group. Arch Intern Med. 1999;159(2):174–81.

    Article  CAS  PubMed  Google Scholar 

  122. Fox RI, Konttinen Y, Fisher A. Use of muscarinic agonists in the treatment of Sjogren’s syndrome. Clin Immunol. 2001;101(3):249–63.

    Article  CAS  PubMed  Google Scholar 

  123. Petrone D, Condemi JJ, Fife R, Gluck O, Cohen S, Dalgin P. A double-blind, randomized, placebo-controlled study of cevimeline in Sjogren’s syndrome patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum. 2002;46(3):748–54.

    Article  CAS  PubMed  Google Scholar 

  124. Miljanovic B, Trivedi KA, Dana MR, Gilbard JP, Buring JE, Schaumberg DA. Relation between dietary n-3 and n-6 fatty acids and clinically diagnosed dry eye syndrome in women. Am J Clin Nutr. 2005;82(4):887–93.

    Article  CAS  PubMed  Google Scholar 

  125. Giannaccare G, Pellegrini M, Sebastiani S, et al. Efficacy of omega-3 fatty acid supplementation for treatment of dry eye disease: a meta-analysis of randomized clinical trials. Cornea. 2019;38(5):565–73.

    Article  PubMed  Google Scholar 

  126. Dry Eye Assessment and Management Study Research Group, Asbell PA, et al. n-3 fatty acid supplementation for the treatment of dry eye disease. N Engl J Med. 2018;378(18):1681–90.

    Article  Google Scholar 

  127. Beetham WP. Filamentary keratitis. Trans Am Ophthalmol Soc. 1935;33:413–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tuberville AW, Frederick WR, Wood TO. Punctal occlusion in tear deficiency syndromes. Ophthalmology. 1982;89(10):1170–2.

    Article  CAS  PubMed  Google Scholar 

  129. Willis RM, Folberg R, Krachmer JH, Holland EJ. The treatment of aqueous-deficient dry eye with removable punctal plugs. A clinical and impression-cytologic study. Ophthalmology. 1987;94(5):514–8.

    Article  CAS  PubMed  Google Scholar 

  130. Dohlman CH. Punctal occlusion in keratoconjunctivitis sicca. Ophthalmology. 1978;85(12):1277–81.

    Article  CAS  PubMed  Google Scholar 

  131. Gilbard JP, Rossi SR, Azar DT, Heyda KG. Effect of punctal occlusion by Freeman silicone plug insertion on tear osmolarity in dry eye disorders. CLAO J. 1989;15(3):216–8.

    CAS  PubMed  Google Scholar 

  132. Balaram M, Schaumberg DA, Dana MR. Efficacy and tolerability outcomes after punctal occlusion with silicone plugs in dry eye syndrome. Am J Ophthalmol. 2001;131(1):30–6.

    Article  CAS  PubMed  Google Scholar 

  133. Wang Y, Carreno-Galeano JT, Singh RB, Dana R, Yin J. Long-term outcome of punctal cauterization in the management of ocular surface diseases. Cornea. 2020;40:168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Jain .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sunshine, S.B., Dhall, N., Mona, HD., Dana, R., Mun, C., Jain, S. (2021). Dry Eye Diagnosis and Management. In: Albert, D., Miller, J., Azar, D., Young, L.H. (eds) Albert and Jakobiec's Principles and Practice of Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-90495-5_214-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90495-5_214-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90495-5

  • Online ISBN: 978-3-319-90495-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics