Skip to main content

Cognitive Decline in Elderly Patients with Hypertensive Heart Disease

Role of Atrial Fibrillation

  • Living reference work entry
  • First Online:
  • 335 Accesses

Abstract

The elderly population is increasing worldwide together with the incidence and prevalence of cardiovascular diseases, including hypertension, coronary artery disease, atrial fibrillation, and chronic heart failure. In particular, aging is considered a risk factor for the development of hypertension, due to functional and structural changes induced in blood vessels (e.g., endothelial dysfunction and vascular remodeling), which widely overlap the functional and structural changes induced by hypertension. At the same time, both hypertension and aging predispose to the development of other cardiovascular diseases, in particular, atrial fibrillation and heart failure, but also of neurocognitive disorders. However, the pathophysiological mechanisms underlying the relationship between increased blood pressure and cognitive impairment are not fully understood. This chapter aims to analyze the role of atrial fibrillation in the development of cognitive decline in elderly patients with hypertensive heart disease, underlining the role of atrial fibrillation in determining both these conditions and suggesting the hypothesis of a heart-brain continuum among hypertensive heart disease, atrial fibrillation, and cognitive impairment.

This is a preview of subscription content, log in via an institution.

References

  1. Virdis A, Bruno RM, Fritsch Neves M, Bernini G, Taddei S, Ghiadoni L. Hypertension in the elderly: an evidence-based review. Curr Pharm Des. 2011;17:3020–31.

    Article  CAS  Google Scholar 

  2. Abete P, Della-Morte D, Gargiulo G, Basile C, Langellotto A, Galizia G, Testa G, Canonico V, Bonaduce D, Cacciatore F. Cognitive impairment and cardiovascular diseases in the elderly. A heart–brain continuum hypothesis. Ageing Res Rev. 2014;18:41–52.

    Article  Google Scholar 

  3. Harvey A, Montezano AC, Touyz RM. Vascular biology of ageing—implications in hypertension. J Mol Cell Cardiol. 2015;83:112–21.

    Article  CAS  Google Scholar 

  4. Santos CY, Snyder PJ, Wu W-C, Zhang M, Echeverria A, Alber J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: a review and synthesis. Alzheimers Dement Diagn Assess Dis Monit. 2017;7:69–87.

    Google Scholar 

  5. Tadic M, Cuspidi C, Hering D. Hypertension and cognitive dysfunction in elderly: blood pressure management for this global burden. BMC Cardiovasc Disord. 2016;16:208. https://doi.org/10.1186/s12872-016-0386-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spiering W, Burnier M, Clement DL, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. J Hypertens. 2018;36:89.

    Google Scholar 

  7. Russo G, Liguori I, Aran L, et al. Impact of SPRINT results on hypertension guidelines: implications for “frail” elderly patients. J Hum Hypertens. 2018;32:633–8.

    Article  Google Scholar 

  8. Fryar CD, Zhang G. Hypertension prevalence and control among adults: United States, 2015–2016. NCHS Data Brief. 2017;289:1–8.

    Google Scholar 

  9. Izzo JL, Gradman AH. Mechanisms and management of hypertensive heart disease: from left ventricular hypertrophy to heart failure. Med Clin North Am. 2004;88:1257–71.

    Article  Google Scholar 

  10. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123:e18. https://doi.org/10.1161/CIR.0b013e3182009701.

    Article  PubMed  Google Scholar 

  11. Franklin SS, Gustin W, Wong ND, Larson MG, Weber MA, Kannel WB, Levy D. Hemodynamic patterns of age-related changes in blood pressure. The Framingham heart study. Circulation. 1997;96:308–15.

    Article  CAS  Google Scholar 

  12. Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res. 2012;35:1039–47.

    Article  CAS  Google Scholar 

  13. Collins C, Tzima E. Hemodynamic forces in endothelial dysfunction and vascular aging. Exp Gerontol. 2011;46:185–8.

    Article  CAS  Google Scholar 

  14. Veerasamy M, Ford GA, Neely D, Bagnall A, MacGowan G, Das R, Kunadian V. Association of Aging, arterial stiffness, and cardiovascular disease: a review. Cardiol Rev. 2014;22:223–32.

    Article  Google Scholar 

  15. McEniery CM, McDonnell BJ, So A, et al. Aortic calcification is associated with aortic stiffness and isolated systolic hypertension in healthy individuals. Hypertension. 2009;53:524–31.

    Article  CAS  Google Scholar 

  16. Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol. 2016;32:659–68.

    Article  Google Scholar 

  17. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  Google Scholar 

  18. Messerli FH, Rimoldi SF, Bangalore S. The transition from hypertension to heart failure. JACC Heart Fail. 2017;5:543–51.

    Article  Google Scholar 

  19. Nadruz W. Myocardial remodeling in hypertension. J Hum Hypertens. 2015;29:1–6.

    Article  CAS  Google Scholar 

  20. Lip G. Hypertensive heart disease. A complex syndrome or a hypertensive “cardiomyopathy”? Eur Heart J. 2000;21:1653–65.

    Article  CAS  Google Scholar 

  21. Nadruz W, Shah AM, Solomon SD. Diastolic dysfunction and hypertension. Med Clin North Am. 2017;101:7–17.

    Article  Google Scholar 

  22. Gaasch WH, Zile MR. Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med. 2004;55:373–94.

    Article  CAS  Google Scholar 

  23. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation. 2003;107:346–54.

    Article  Google Scholar 

  24. Mitter SS, Shah SJ, Thomas JD. A test in context. J Am Coll Cardiol. 2017;69:1451–64.

    Article  Google Scholar 

  25. Iriarte M, Murga N, Sagastagoitia D, Morillas M, Boveda J, Molinero E, Etxebeste J, Salcedo A, Rodriguez E, Ormaetxe JM. Classification of hypertensive cardiomyopathy. Eur Heart J. 1993;14(Suppl J):95–101.

    PubMed  Google Scholar 

  26. Vlasseros I, Katsi V, Vyssoulis G, Pylarinos I, Richter D, Gialernios T, Souretis G, Tousoulis D, Stefanadis C, Kallikazaros I. Aggravation of left ventricular diastolic dysfunction in hypertensives with coronary artery disease. Hypertens Res. 2013;36:885–8.

    Article  CAS  Google Scholar 

  27. Tsioufis C, Georgiopoulos G, Oikonomou D, Thomopoulos C, Katsiki N, Kasiakogias A, Chrysochoou C, Konstantinidis D, Kalos T, Tousoulis D. Hypertension and heart failure with preserved ejection fraction: connecting the dots. Curr Vasc Pharmacol. 2017;16:15. https://doi.org/10.2174/1570161115666170414120532.

    Article  CAS  PubMed  Google Scholar 

  28. Teo LYL, Chan LL, Lam CSP. Heart failure with preserved ejection fraction in hypertension. Curr Opin Cardiol. 2016;31:410–6.

    Article  Google Scholar 

  29. Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S. Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol. 2014;6:213.

    Article  Google Scholar 

  30. Go AS, Hylek EM, Phillips KA, Chang Y, Henault LE, Selby JV, Singer DE. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the Anticoagulation and risk factors in atrial fibrillation (ATRIA) study. JAMA. 2001;285:2370.

    Article  CAS  Google Scholar 

  31. Hakim FA, Shen W-K. Atrial fibrillation in the elderly: a review. Futur Cardiol. 2014;10:745–58.

    Article  CAS  Google Scholar 

  32. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham heart study. JAMA. 1994;271:840–4.

    Article  CAS  Google Scholar 

  33. Nieuwlaat R, Capucci A, Camm AJ, et al. Atrial fibrillation management: a prospective survey in ESC member countries. Eur Heart J. 2005;26:2422–34.

    Article  Google Scholar 

  34. Kistler PM, Sanders P, Fynn SP, Stevenson IH, Spence SJ, Vohra JK, Sparks PB, Kalman JM. Electrophysiologic and electroanatomic changes in the human atrium associated with age. J Am Coll Cardiol. 2004;44:109–16.

    Article  Google Scholar 

  35. Tadic M, Ivanovic B, Cuspidi C. What do we actually know about the relationship between arterial hypertension and atrial fibrillation? Blood Press. 2014;23:81–8.

    Article  CAS  Google Scholar 

  36. Manolis AJ, Rosei EA, Coca A, et al. Hypertension and atrial fibrillation: diagnostic approach, prevention and treatment. Position paper of the working group ‘hypertension arrhythmias and thrombosis’ of the European Society of Hypertension. J Hypertens. 2012;30:239–52.

    Article  CAS  Google Scholar 

  37. Allessie M. Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res. 2002;54:230–46.

    Article  CAS  Google Scholar 

  38. Bosch R. Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res. 1999;44:121–31.

    Article  CAS  Google Scholar 

  39. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624–31.

    Article  Google Scholar 

  40. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21:500–8.

    Article  Google Scholar 

  41. Goette A, Staack T, Röcken C, Arndt M, Geller JC, Huth C, Ansorge S, Klein HU, Lendeckel U. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol. 2000;35:1669–77.

    Article  CAS  Google Scholar 

  42. Ogunsua AA, Shaikh AY, Ahmed M, McManus DD. Atrial fibrillation and hypertension: mechanistic, epidemiologic, and treatment parallels. Methodist Debakey Cardiovasc J. 2015;11:228–34.

    Article  Google Scholar 

  43. Borson S. Cognition, aging, and disabilities: conceptual issues. Phys Med Rehabil Clin N Am. 2010;21:375–82.

    Article  Google Scholar 

  44. Hugo J, Ganguli M. Dementia and cognitive impairment. Clin Geriatr Med. 2014;30:421–42.

    Article  Google Scholar 

  45. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed; 2013. https://doi.org/10.1176/appi.books.9780890425596.

    Book  Google Scholar 

  46. Cacciatore F, Abete P, Mazzella F, et al. Frailty predicts long-term mortality in elderly subjects with chronic heart failure. Eur J Clin Investig. 2005;35:723–30.

    Article  CAS  Google Scholar 

  47. Alzheimer’s Association. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc. 2013;9:208–45.

    Article  Google Scholar 

  48. Helzner EP, Scarmeas N, Cosentino S, Tang MX, Schupf N, Stern Y. Survival in Alzheimer disease: a multiethnic, population-based study of incident cases. Neurology. 2008;71:1489–95.

    Article  CAS  Google Scholar 

  49. Sneed JR, Culang-Reinlieb ME. The vascular depression hypothesis: an update. Am J Geriatr Psychiatry. 2011;19:99–103.

    Article  Google Scholar 

  50. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium. Neurology. 2005;65:1863–72.

    Article  CAS  Google Scholar 

  51. Rabinovici GD, Miller BL. Frontotemporal lobar degeneration. CNS Drugs. 2010;24:375.

    Article  CAS  Google Scholar 

  52. Kalaria RN. Cerebrovascular disease and mechanisms of cognitive impairment: evidence from clinicopathological studies in humans. Stroke. 2012;43:2526–34.

    Article  Google Scholar 

  53. Murman DL. The impact of age on cognition. Semin Hear. 2015;36:111–21.

    Article  Google Scholar 

  54. Della-Morte D, Guadagni F, Palmirotta R, et al. Genetics and genomics of ischemic tolerance: focus on cardiac and cerebral ischemic preconditioning. Pharmacogenomics. 2012;13:1741–57.

    Article  CAS  Google Scholar 

  55. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16:754–60.

    Article  Google Scholar 

  56. Pannese E. Morphological changes in nerve cells during normal aging. Brain Struct Funct. 2011;216:85–9.

    Article  Google Scholar 

  57. Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD. Quantitative synaptic alterations in the human neocortex during normal aging. Neurology. 1993;43:192–7.

    Article  CAS  Google Scholar 

  58. Rivard L, Khairy P. Mechanisms, clinical significance, and prevention of cognitive impairment in patients with atrial fibrillation. Can J Cardiol. 2017;33:1556–64.

    Article  Google Scholar 

  59. Ding M, Qiu C. Atrial fibrillation, cognitive decline, and dementia: an epidemiologic review. Curr Epidemiol Rep. 2018;5:252–61.

    Article  Google Scholar 

  60. Cacciatore F, Gallo C, Ferrara N, et al. Morbidity patterns in aged population in southern Italy. A survey sampling. Arch Gerontol Geriatr. 1998;26:201–13.

    Article  CAS  Google Scholar 

  61. Cacciatore F, Testa G, Langellotto A, et al. Role of ventricular rate response on dementia in cognitively impaired elderly subjects with atrial fibrillation: a 10-year study. Dement Geriatr Cogn Disord. 2012;34:143–8.

    Article  Google Scholar 

  62. Takeda S, Sato N, Morishita R. Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front Aging Neurosci. 2014;6. https//doi.org/10.3389/fnagi.2014.00171

    Google Scholar 

  63. Wersching H, Duning T, Lohmann H, et al. Serum C-reactive protein is linked to cerebral microstructural integrity and cognitive function. Neurology. 2010;74:1022–9.

    Article  CAS  Google Scholar 

  64. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701.

    Article  Google Scholar 

  65. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–38.

    Article  Google Scholar 

  66. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MMB. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348:1215–22.

    Article  Google Scholar 

  67. Stefansdottir H, Arnar DO, Aspelund T, Sigurdsson S, Jonsdottir MK, Hjaltason H, Launer LJ, Gudnason V. Atrial fibrillation is associated with reduced brain volume and cognitive function independent of cerebral infarcts. Stroke. 2013;44:1020–5.

    Article  Google Scholar 

  68. Saito T, Kawamura Y, Tanabe Y, Asanome A, Takahashi K, Sawada J, Katayama T, Sato N, Aizawa H, Hasebe N. Cerebral microbleeds and asymptomatic cerebral infarctions in patients with atrial fibrillation. J Stroke Cerebrovasc Dis. 2014;23:1616–22.

    Article  Google Scholar 

  69. Rollo J, Knight S, May HT, Anderson JL, Muhlestein JB, Bunch TJ, Carlquist J. Incidence of dementia in relation to genetic variants at PITX2, ZFHX3, and ApoE ε4 in Atrial Fibrillation patients: ATRIAL FIBRILLATION AND DEMENTIA. Pacing Clin Electrophysiol. 2015;38:171–7.

    Article  Google Scholar 

  70. Deneke T, Jais P, Scaglione M, et al. Silent cerebral events/lesions related to atrial fibrillation ablation: a clinical review: silent cerebral events/lesions related to AF ablation. J Cardiovasc Electrophysiol. 2015;26:455–63.

    Article  Google Scholar 

  71. Medi C, Evered L, Silbert B, Teh A, Halloran K, Morton J, Kistler P, Kalman J. Subtle post-procedural cognitive dysfunction after atrial fibrillation ablation. J Am Coll Cardiol. 2013;62:531–9.

    Article  Google Scholar 

  72. Bunch TJ, Crandall BG, Weiss JP, et al. Patients treated with catheter ablation for atrial fibrillation have long-term rates of death, stroke, and dementia similar to patients without atrial fibrillation. J Cardiovasc Electrophysiol. 2011;22:839–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Testa .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Liguori, I., Curcio, F., Abete, P., Testa, G. (2019). Cognitive Decline in Elderly Patients with Hypertensive Heart Disease. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_8-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_8-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics