Skip to main content

Vascular Risk Factors and Cognitive Function

The Effect of Aging Process

  • Living reference work entry
  • First Online:
Brain and Heart Dynamics

Abstract

During the last 20 years, several epidemiological and experimental studies have linked vascular risk factors with cognitive decline and dementia, including Alzheimer’s disease, in old age. Yes, this association changes across lifetime. In fact, high blood pressure and obesity at midlife have been associated with greater age-associated cognitive decline, while dementia onset in old age is often heralded by lowering of blood pressure and body mass index. Part of this seemingly paradoxical association can be explained by reverse causation, as damage of specific brain areas can impair blood pressure (insula, amygdala) and fat mass (hypothalamus) control. On the other hand, autonomic nervous system dysfunction, mainly age-associated baroreflex response impairment and orthostatic hypotension, may have a pathogenic role in brain damage. Other vascular risk factors maintain their cognitive prognostic role lifelong, harmful for insulin resistance and protective for aerobic physical activity. Age-associated loss of muscle mass (sarcopenia) can contribute to insulin resistance, resulting in faster neurodegeneration, and, conversely, accumulation of neuropathological lesion has been associated with muscle mass decline over time. Pharmacological treatment of vascular risk factors at midlife is warranted to prevent cognitive decline, but should be less aggressive in older, cognitively impaired patients, more vulnerable to adverse events. Physical activity should be recommended lifelong, both as primary prevention and as adjuvant treatment in dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. International AsD. World Alzheimer report. London: Alzheimer’s Disease International; 2015.

    Google Scholar 

  2. Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol. 2018;25(1):59–70.

    Article  PubMed  CAS  Google Scholar 

  3. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94.

    Article  PubMed  Google Scholar 

  4. Wu YT, Beiser AS, Breteler MMB, Fratiglioni L, Helmer C, Hendrie HC, et al. The changing prevalence and incidence of dementia over time – current evidence. Nat Rev Neurol. 2017;13(6): 327–39.

    Article  PubMed  Google Scholar 

  5. Roberts RO, Knopman DS, Przybelski SA, Mielke MM, Kantarci K, Preboske GM, et al. Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology. 2014;82(13): 1132–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–204.

    Article  PubMed  Google Scholar 

  7. Kloppenborg RP, van den Berg E, Kappelle LJ, Biessels GJ. Diabetes and other vascular risk factors for dementia: which factor matters most? A systematic review. Eur J Pharmacol. 2008;585(1):97–108.

    Article  PubMed  CAS  Google Scholar 

  8. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5(9):735–41.

    Article  PubMed  Google Scholar 

  9. O’Callaghan S, Kenny RA. Neurocardiovascular instability and cognition. Yale J Biol Med. 2016;89(1): 59–71.

    PubMed  PubMed Central  Google Scholar 

  10. Vos SJB, van Boxtel MPJ, Schiepers OJG, Deckers K, de Vugt M, Carrière I, et al. Modifiable risk factors for prevention of dementia in midlife, late life and the oldest-old: validation of the LIBRA index. J Alzheimers Dis. 2017;58(2):537–47.

    Article  PubMed  CAS  Google Scholar 

  11. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA. 2014;312(23):2551–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4(8):487–99.

    Article  PubMed  Google Scholar 

  14. Launer LJ, Ross GW, Petrovitch H, Masaki K, Foley D, White LR, et al. Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging. 2000;21:49–55.

    Article  PubMed  CAS  Google Scholar 

  15. Kivipelto M, Helkala EL, Laakso MP, Hanninen T, Hallikainen M, Alhainen K, et al. Midlife vascular risk factors and Alzheimer’s disease in later life: longitudinal, population based study. BMJ. 2001;322: 1447–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gottesman RF, Schneider AL, Albert M, Alonso A, Bandeen-Roche K, Coker L, et al. Midlife hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive study. JAMA Neurol. 2014;71(10):1218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Skoog I, Lernfelt B, Landahl S, Palmertz B, Andreasson LA, Nilsson L, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996;347:1141–5.

    Article  PubMed  CAS  Google Scholar 

  18. Skoog I, Andreasson LA, Landahl S, Lernfelt B. A population-based study on blood pressure and brain atrophy in 85-year-olds. Hypertension. 1998;32(3): 404–9.

    Article  PubMed  CAS  Google Scholar 

  19. Joas E, Backman K, Gustafson D, Ostling S, Waern M, Guo X, et al. Blood pressure trajectories from midlife to late life in relation to dementia in women followed for 37 years. Hypertension. 2012;59:796–801.

    Article  PubMed  CAS  Google Scholar 

  20. Power MC, Weuve J, Gagne JJ, McQueen MB, Viswanathan A, Blacker D. The association between blood pressure and incident Alzheimer disease: a systematic review and meta-analysis. Epidemiology. 2011;22(5):646–59.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Euser SM, van Bemmel T, Schram MT, Gussekloo J, Hofman A, Westendorp RG, et al. The effect of age on the association between blood pressure and cognitive function later in life. J Am Geriatr Soc. 2009;57: 1232–7.

    Article  PubMed  Google Scholar 

  22. Sabayan B, Oleksik AM, Maier AB, van Buchem MA, Poortvliet RK, de Ruijter W, et al. High blood pressure and resilience to physical and cognitive decline in the oldest old: the Leiden 85-plus study. J Am Geriatr Soc. 2012;60:2014–9.

    Article  PubMed  Google Scholar 

  23. Benetos A, Bulpitt CJ, Petrovic M, Ungar A, Agabiti Rosei E, Cherubini A, et al. An expert opinion from the European Society of Hypertension-European Union Geriatric Medicine Society working group on the management of hypertension in very old. Frail Subjects Hypertens. 2016;67(5):820–5.

    CAS  Google Scholar 

  24. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5(1):64–74.

    Article  PubMed  Google Scholar 

  25. Koekkoek PS, Kappelle LJ, van den Berg E, Rutten GE, Biessels GJ. Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol. 2015;14(3):329–40.

    Article  PubMed  Google Scholar 

  26. Manschot SM, Biessels GJ, de Valk H, Algra A, Rutten GE, van der Grond J, et al. Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes. Diabetologia. 2007;50(11):2388–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Haroon NN, Austin PC, Shah BR, Wu J, Gill SS, Booth GL. Risk of dementia in seniors with newly diagnosed diabetes: a population-based study. Diabetes Care. 2015;38(10):1868–75.

    Article  PubMed  CAS  Google Scholar 

  28. Li JQ, Tan L, Wang HF, Tan MS, Xu W, Zhao QF, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatry. 2016;87(5): 476–84.

    Article  PubMed  Google Scholar 

  29. Reijmer YD, van den Berg E, Ruis C, Kappelle LJ, Biessels GJ. Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab Res Rev. 2010;26(7):507–19.

    Article  PubMed  Google Scholar 

  30. Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, Wing K, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol. 2015;3(6):431–6.

    Article  PubMed  Google Scholar 

  31. Kivimäki M, Luukkonen R, Batty GD, Ferrie JE, Pentti J, Nyberg ST, et al. Body mass index and risk of dementia: analysis of individual-level data from 1.3 million individuals. Alzheimers Dement. 2018;14(5): 601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pedditzi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45(1):14–21.

    Article  PubMed  Google Scholar 

  33. Alhurani RE, Vassilaki M, Aakre JA, Mielke MM, Kremers WK, Machulda MM, et al. Decline in weight and incident mild cognitive impairment: Mayo Clinic study of aging. JAMA Neurol. 2016;73(4):439–46.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vidoni ED, Townley RA, Honea RA, Burns JM, Initiative ADN. Alzheimer disease biomarkers are associated with body mass index. Neurology. 2011;77(21):1913–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Jimenez A, Pegueroles J, Carmona-Iragui M, Vilaplana E, Montal V, Alcolea D, et al. Weight loss in the healthy elderly might be a non-cognitive sign of preclinical Alzheimer’s disease. Oncotarget. 2017;8(62):104706–16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Macpherson H, Teo WP, Schneider LA, Smith AE. A life-long approach to physical activity for brain health. Front Aging Neurosci. 2017;9:147.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Blondell SJ, Hammersley-Mather R, Veerman JL. Does physical activity prevent cognitive decline and dementia?: a systematic review and meta-analysis of longitudinal studies. BMC Public Health. 2014;14:510.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stephen R, Hongisto K, Solomon A, Lönnroos E. Physical activity and Alzheimer’s disease: a systematic review. J Gerontol A Biol Sci Med Sci. 2017;72(6):733–9.

    PubMed  Google Scholar 

  39. Rovio S, Kareholt I, Helkala EL, Viitanen M, Winblad B, Tuomilehto J, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4(11): 705–11.

    Article  PubMed  Google Scholar 

  40. Tolppanen AM, Solomon A, Kulmala J, Kåreholt I, Ngandu T, Rusanen M, et al. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers Dement. 2015;11(4): 434–443.e6.

    Article  PubMed  Google Scholar 

  41. Sabia S, Dugravot A, Dartigues JF, Abell J, Elbaz A, Kivimäki M, et al. Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. BMJ. 2017;357:j2709.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Erickson KI, Leckie RL, Weinstein AM. Physical activity, fitness, and gray matter volume. Neurobiol Aging. 2014;35(Suppl 2):S20–8.

    Article  PubMed  Google Scholar 

  43. Schultz SA, Boots EA, Darst BF, Zetterberg H, Blennow K, Edwards DF, et al. Cardiorespiratory fitness alters the influence of a polygenic risk score on biomarkers of AD. Neurology. 2017;88(17): 1650–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43(2):250–60.

    Article  PubMed  Google Scholar 

  45. Blacher J, Safar ME. Large-artery stiffness, hypertension and cardiovascular risk in older patients. Nat Clin Pract Cardiovasc Med. 2005;2(9):450–5.

    Article  PubMed  Google Scholar 

  46. Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson Ó, et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the age, gene/environment susceptibility–Reykjavik study. Brain. 2011;134(Pt 11):3398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol (1985). 2008;105(5):1652–60.

    Article  Google Scholar 

  48. Hughes TM, Kuller LH, Barinas-Mitchell EJ, McDade EM, Klunk WE, Cohen AD, et al. Arterial stiffness and β-amyloid progression in nondemented elderly adults. JAMA Neurol. 2014;71(5):562–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hughes TM, Wagenknecht LE, Craft S, Mintz A, Heiss G, Palta P, et al. Arterial stiffness and dementia pathology: Atherosclerosis Risk in Communities (ARIC)-PET study. Neurology. 2018;90(14):e1248–e56.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pase MP, Beiser A, Himali JJ, Tsao C, Satizabal CL, Vasan RS, et al. Aortic stiffness and the risk of incident mild cognitive impairment and dementia. Stroke. 2016;47(9):2256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Charkoudian N, Rabbitts JA. Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc. 2009;84(9):822–30.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(1):R3–R12.

    Article  PubMed  CAS  Google Scholar 

  53. Saint Martin M, Roche F, Thomas-Anterion C, Barthélémy JC, Sforza E, Group POcaces. Eight-year parallel change in baroreflex sensitivity and memory function in a sample of healthy older adults. J Am Geriatr Soc. 2015;63(2):270–5.

    Article  PubMed  Google Scholar 

  54. Meel-van den Abeelen AS, Lagro J, Gommer ED, Reulen JP, Claassen JA. Baroreflex function is reduced in Alzheimer’s disease: a candidate biomarker? Neurobiol Aging. 2013;34(4):1170–6.

    Article  PubMed  Google Scholar 

  55. Zeki Al Hazzouri A, Elfassy T, Carnethon MR, Lloyd-Jones DM, Yaffe K. Heart rate variability and cognitive function in middle-age adults: the coronary artery risk development in young adults. Am J Hypertens. 2017;31(1):27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mahinrad S, Jukema JW, van Heemst D, Macfarlane PW, Clark EN, de Craen AJ, et al. 10-second heart rate variability and cognitive function in old age. Neurology. 2016;86(12):1120–7.

    Article  PubMed  Google Scholar 

  57. Ogliari G, Mahinrad S, Stott DJ, Jukema JW, Mooijaart SP, Macfarlane PW, et al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ. 2015;187(15):E442–9.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zulli R, Nicosia F, Borroni B, Agosti C, Prometti P, Donati P, et al. QT dispersion and heart rate variability abnormalities in Alzheimer’s disease and in mild cognitive impairment. J Am Geriatr Soc. 2005;53(12): 2135–9.

    Article  PubMed  Google Scholar 

  59. Nonogaki Z, Umegaki H, Makino T, Suzuki Y, Kuzuya M. Relationship between cardiac autonomic function and cognitive function in Alzheimer’s disease. Geriatr Gerontol Int. 2017;17(1):92–8.

    Article  PubMed  Google Scholar 

  60. Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens. 2010;4(4):174–82.

    Article  PubMed  Google Scholar 

  61. Engelhardt E, Laks J. Alzheimer disease neuropathology: understanding autonomic dysfunction. Dement Neuropsychol. 2008;2(3):183–91.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Peters R, Anstey KJ, Booth A, Beckett N, Warwick J, Antikainen R, et al. Orthostatic hypotension and symptomatic subclinical orthostatic hypotension increase risk of cognitive impairment: an integrated evidence review and analysis of a large older adult hypertensive cohort. Eur Heart J. 2018;39:3135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rawlings AM, Juraschek SP, Heiss G, Hughes T, Meyer ML, Selvin E, et al. Association of orthostatic hypotension with incident dementia, stroke, and cognitive decline. Neurology. 2018;91:e759.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wolters FJ, Mattace-Raso FU, Koudstaal PJ, Hofman A, Ikram MA, Group HBCCR. Orthostatic hypotension and the long-term risk of dementia: a population-based study. PLoS Med. 2016;13(10):e1002143.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Raz L, Knoefel J, Bhaskar K. The neuropathology and cerebrovascular mechanisms of dementia. J Cereb Blood Flow Metab. 2016;36(1):172–86.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Laosiripisan J, Tarumi T, Gonzales MM, Haley AP, Tanaka H. Association between cardiovagal baroreflex sensitivity and baseline cerebral perfusion of the hippocampus. Clin Auton Res. 2015;25(4): 213–8.

    Article  PubMed  Google Scholar 

  67. Xing CY, Tarumi T, Meijers RL, Turner M, Repshas J, Xiong L, et al. Arterial pressure, heart rate, and cerebral hemodynamics across the adult life span. Hypertension. 2017;69(4):712–20.

    Article  PubMed  CAS  Google Scholar 

  68. Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10(3):143–55.

    Article  PubMed  Google Scholar 

  69. Nagai M, Dote K, Kato M, Sasaki S, Oda N, Kagawa E, et al. Visit-to-visit blood pressure variability and Alzheimer’s disease: links and risks. J Alzheimers Dis. 2017;59(2):515–26.

    Article  PubMed  Google Scholar 

  70. Nagai M, Dote K, Kato M, Sasaki S, Oda N, Kagawa E, et al. Visit-to-visit blood pressure variability, average BP level and carotid arterial stiffness in the elderly: a prospective study. J Hum Hypertens. 2017;31(4):292–8.

    Article  PubMed  CAS  Google Scholar 

  71. Monahan KD, Tanaka H, Dinenno FA, Seals DR. Central arterial compliance is associated with age- and habitual exercise-related differences in cardiovagal baroreflex sensitivity. Circulation. 2001;104(14):1627–32.

    Article  PubMed  CAS  Google Scholar 

  72. Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2014;9(10):e110034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tarumi T, Zhang R. Cerebral blood flow in normal aging adults: cardiovascular determinants, clinical implications, and aerobic fitness. J Neurochem. 2018;144(5):595–608.

    Article  PubMed  CAS  Google Scholar 

  74. Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375(9718):906–15.

    Article  PubMed  CAS  Google Scholar 

  75. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18(7):419–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004;5(5):347–60.

    Article  PubMed  CAS  Google Scholar 

  77. Alosco ML, Gunstad J, Xu X, Clark US, Labbe DR, Riskin-Jones HH, et al. The impact of hypertension on cerebral perfusion and cortical thickness in older adults. J Am Soc Hypertens. 2014;8(8):561–70.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jefferson AL, Cambronero FE, Liu D, Moore EE, Neal JE, Terry JG, et al. Higher aortic stiffness is related to lower cerebral blood flow and preserved cerebrovascular reactivity in older adults. Circulation. 2018;138:1951.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844–66.

    Article  PubMed  CAS  Google Scholar 

  80. den Abeelen AS, Lagro J, van Beek AH, Claassen JA. Impaired cerebral autoregulation and vasomotor reactivity in sporadic Alzheimer’s disease. Curr Alzheimer Res. 2014;11(1):11–7.

    Article  CAS  Google Scholar 

  81. Hajjar I, Sorond F, Lipsitz LA. Apolipoprotein E, carbon dioxide vasoreactivity, and cognition in older adults: effect of hypertension. J Am Geriatr Soc. 2015;63(2):276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  82. van Opstal AM, van Rooden S, van Harten T, Ghariq E, Labadie G, Fotiadis P, et al. Cerebrovascular function in presymptomatic and symptomatic individuals with hereditary cerebral amyloid angiopathy: a case-control study. Lancet Neurol. 2017;16(2):115–22.

    Article  PubMed  Google Scholar 

  83. Wolters FJ, Zonneveld HI, Hofman A, van der Lugt A, Koudstaal PJ, Vernooij MW, et al. Cerebral perfusion and the risk of dementia: a population-based study. Circulation. 2017;136(8):719–28.

    Article  PubMed  Google Scholar 

  84. de Heus RAA, de Jong DLK, Sanders ML, van Spijker GJ, Oudegeest-Sander MH, Hopman MT, et al. Dynamic regulation of cerebral blood flow in patients with Alzheimer disease. Hypertension. 2018;72(1):139–50.

    Article  PubMed  CAS  Google Scholar 

  85. Ye J. Mechanisms of insulin resistance in obesity. Front Med. 2013;7(1):14–24.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96(9):2898–903.

    Article  PubMed  CAS  Google Scholar 

  87. Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, et al. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011;59(7):1217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mittal K, Katare DP. Shared links between type 2 diabetes mellitus and Alzheimer’s disease: a review. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S144–9.

    Article  PubMed  Google Scholar 

  89. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31(2):224–43.

    Article  PubMed  CAS  Google Scholar 

  90. Spielman LJ, Little JP, Klegeris A. Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J Neuroimmunol. 2014;273(1–2):8–21.

    Article  PubMed  CAS  Google Scholar 

  91. Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer’s disease: a comparative overview. Mol Neurobiol. 2014;50(2):534–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol. 2010;67(4):428–33.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Buchman AS, Yu L, Wilson RS, Schneider JA, Bennett DA. Association of brain pathology with the progression of frailty in older adults. Neurology. 2013;80(22):2055–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ishii M, Wang G, Racchumi G, Dyke JP, Iadecola C. Transgenic mice overexpressing amyloid precursor protein exhibit early metabolic deficits and a pathologically low leptin state associated with hypothalamic dysfunction in arcuate neuropeptide Y neurons. J Neurosci. 2014;34(27):9096–106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. McGregor G, Harvey J. Food for thought: Leptin regulation of hippocampal function and its role in Alzheimer$s disease. Neuropharmacology. 2018;136(Pt B):298–306.

    Article  PubMed  CAS  Google Scholar 

  96. Nation DA, Hong S, Jak AJ, Delano-Wood L, Mills PJ, Bondi MW, et al. Stress, exercise, and Alzheimer’s disease: a neurovascular pathway. Med Hypotheses. 2011;76(6):847–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S, et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162:2046–52.

    Article  PubMed  Google Scholar 

  98. Peters R, Beckett N, Forette F, Tuomilehto J, Clarke R, Ritchie C, et al. Incident dementia and blood pressure lowering in the Hypertension in the Very Elderly Trial cognitive function assessment (HYVET-COG): a double-blind, placebo controlled trial. Lancet Neurol. 2008;7:683–9.

    Article  PubMed  CAS  Google Scholar 

  99. Li NC, Lee A, Whitmer RA, Kivipelto I, Lawler E, Kazis LE, et al. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 2010;340:b5465.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhuang S, Wang HF, Li J, Wang HY, Wang X, Xing CM. Renin-angiotensin system blockade use and risks of cognitive decline and dementia: a meta-analysis. Neurosci Lett. 2016;624:53–61.

    Article  PubMed  CAS  Google Scholar 

  101. Peters R, Booth A, Peters J. A systematic review of calcium channel blocker use and cognitive decline/dementia in the elderly. J Hypertens. 2014;32(10): 1945–57; discussion 57–58.

    Article  PubMed  CAS  Google Scholar 

  102. Mossello E, Desideri G, Ungar A. Hypertension in the oldest old, beyond guidelines. In: Cardiac management in the frail elderly patient and the oldest old [Internet]. Cham: Springer Nature; 2017.

    Google Scholar 

  103. Li J, Wang YJ, Zhang M, Xu ZQ, Gao CY, Fang CQ, et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology. 2011;76(17):1485–91.

    Article  PubMed  CAS  Google Scholar 

  104. Mossello E, Pieraccioli M, Nesti N, Bulgaresi M, Lorenzi C, Caleri V, et al. Effects of low blood pressure in cognitively impaired elderly patients treated with antihypertensive drugs. JAMA Intern Med. 2015;175(4):578–85.

    Article  PubMed  Google Scholar 

  105. Moonen JE, Foster-Dingley JC, de Ruijter W, van der Grond J, Bertens AS, van Buchem MA, et al. Effect of discontinuation of antihypertensive treatment in elderly people on cognitive functioning-the DANTE study Leiden: a randomized clinical trial. JAMA Intern Med. 2015;175:1622.

    Article  PubMed  Google Scholar 

  106. Mossello E, Pieraccioli MC, Zanieri S, Fedeli A, Belladonna M, Nesti N, et al. Ambulatory blood pressure monitoring in older nursing home residents: diagnostic and prognostic role. J Am Med Dir Assoc. 2012;13(8):760.e1–5.

    Article  Google Scholar 

  107. Seitz DP, Gill SS, Gruneir A, Austin PC, Anderson GM, Bell CM, et al. Effects of dementia on postoperative outcomes of older adults with hip fractures: a population-based study. J Am Med Dir Assoc. 2014;15(5):334–41.

    Article  PubMed  Google Scholar 

  108. Tinetti ME, Han L, Lee DS, McAvay GJ, Peduzzi P, Gross CP, et al. Antihypertensive medications and serious fall injuries in a nationally representative sample of older adults. JAMA Intern Med. 2014;174(4):588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Naschitz JE. Blood pressure management in older people: balancing the risks. Postgrad Med J. 2018;94(1112):348–53.

    Article  PubMed  Google Scholar 

  110. Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 2011;10(11):969–77.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Murray AM, Hsu FC, Williamson JD, Bryan RN, Gerstein HC, Sullivan MD, et al. ACCORDION MIND: results of the observational extension of the ACCORD MIND randomised trial. Diabetologia. 2017;60(1):69–80.

    Article  PubMed  CAS  Google Scholar 

  112. Tuligenga RH. Intensive glycaemic control and cognitive decline in patients with type 2 diabetes: a meta-analysis. Endocr Connect. 2015;4(2):R16–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Yaffe K, Falvey CM, Hamilton N, Harris TB, Simonsick EM, Strotmeyer ES, et al. Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med. 2013;173(14):1300–6.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mossello E, Ceccofiglio A, Rafanelli M, Riccardi A, Mussi C, Bellelli G, et al. Differential diagnosis of unexplained falls in dementia: results of “Syncope & Dementia” registry. Eur J Intern Med. 2018;50:41–6.

    Article  PubMed  Google Scholar 

  115. Patrone C, Eriksson O, Lindholm D. Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol. 2014;2(3):256–62.

    Article  PubMed  CAS  Google Scholar 

  116. Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J Alzheimers Dis. 2016;51(2):501–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Lu CH, Yang CY, Li CY, Hsieh CY, Ou HT. Lower risk of dementia with pioglitazone, compared with other second-line treatments, in metformin-based dual therapy: a population-based longitudinal study. Diabetologia. 2018;61(3):562–73.

    Article  PubMed  CAS  Google Scholar 

  118. Mossello E, Ballini E, Boncinelli M, Monami M, Lonetto G, Mello AM, et al. Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities. Exp Diabetes Res. 2011;2011:281674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Gejl M, Gjedde A, Egefjord L, Møller A, Hansen SB, Vang K, et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front Aging Neurosci. 2016;8:108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Novak V, Milberg W, Hao Y, Munshi M, Novak P, Galica A, et al. Enhancement of vasoreactivity and cognition by intranasal insulin in type 2 diabetes. Diabetes Care. 2014;37(3):751–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Avgerinos KI, Kalaitzidis G, Malli A, Kalaitzoglou D, Myserlis PG, Lioutas VA. Intranasal insulin in Alzheimer’s dementia or mild cognitive impairment: a systematic review. J Neurol. 2018;265(7):1497–510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci. 2006;61(11):1166–70.

    Article  PubMed  Google Scholar 

  123. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chapman SB, Aslan S, Spence JS, Defina LF, Keebler MW, Didehbani N, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5:75.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Sink KM, Espeland MA, Castro CM, Church T, Cohen R, Dodson JA, et al. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the LIFE randomized trial. JAMA. 2015;314(8):781–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Ó Hartaigh B, Lovato LC, Pahor M, Buford TW, Dodson JA, Forman DE, et al. Effect of a long-term physical activity intervention on resting pulse rate in older persons: results from the lifestyle interventions and independence for elders study. J Am Geriatr Soc. 2016;64(12):2511–6.

    Article  PubMed  Google Scholar 

  127. Groot C, Hooghiemstra AM, Raijmakers PG, van Berckel BN, Scheltens P, Scherder EJ, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23.

    Article  PubMed  CAS  Google Scholar 

  128. Zheng G, Xia R, Zhou W, Tao J, Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2016;50(23):1443–50.

    Article  PubMed  Google Scholar 

  129. Forbes D, Forbes SC, Blake CM, Thiessen EJ, Forbes S. Exercise programs for people with dementia. Cochrane Database Syst Rev. 2015;4:CD006489.

    Google Scholar 

  130. Chan WC, Yeung JW, Wong CS, Lam LC, Chung KF, Luk JK, et al. Efficacy of physical exercise in preventing falls in older adults with cognitive impairment: a systematic review and meta-analysis. J Am Med Dir Assoc. 2015;16(2):149–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Mossello .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mossello, E., Marchionni, N. (2020). Vascular Risk Factors and Cognitive Function. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics