Skip to main content

Nicotine and Cardiovascular Function

  • Living reference work entry
  • First Online:
  • 204 Accesses

Abstract

Nicotine is a natural alkaloid of tobacco leaves that specifically interacts with a acetiylcholinergic receptor (AChR) population which is therefore pharmacologically identified as nicotinic (nAChR). By virtue of that, nicotine is able to affect the function of those tissues expressing nAChR, particularly the brain, where it develops substance dependence, and the heart. Effects on the heart depend on multiple mechanisms of action involving regulatory centers in the brainstem that control the sympathetic outflow, although most of the effects on heart rate and blood pressure depend upon the direct ganglionic stimulation leading to the release of catecholamines in blood by adrenal glands. Nonetheless, nicotine is able to interact directly with ion channels of cardiomyocytes involved in the development of the action potential, as well as with inflammatory cells involved in cardiac fibrosis and remodeling. Understanding its multiple intimate relationships with human physiology is necessary in order to develop effective pharmacological strategies based on the use of partial agonists aimed at contrasting addiction, thereby preventing nicotine toxicity.

This is a preview of subscription content, log in via an institution.

References

  1. Benowitz NL. Nicotine addiction. N Engl J Med. 2010;362(24):2295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization (WHO). WHO report on the global tobacco epidemic, 2017: monitoring tobacco use and prevention policies. Geneva; 2017. http://apps.who.int/iris/bitstream/10665/255874/1/9789241512824-eng.pdf?ua=1&ua=1

  3. Benowitz NL, Hukkanen J, Jacob P. Nicotine chemistry, metabolism, kinetics and biomarkers. In: Henningfield JE, London ED, Pogun S, editors. Nicotine psychopharmacology. Berlin/Heidelberg: Springer Berlin Heidelberg; 2009. p. 29–60.

    Chapter  Google Scholar 

  4. Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: implications for electronic cigarette use. Trends Cardiovasc Med. 2016;26(6):515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jha P, Ramasundarahettige C, Landsman V, Rostron B, Thun M, Anderson RN, et al. 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med. 2013;368(4):341–50.

    Article  CAS  PubMed  Google Scholar 

  6. American Psychiatric Association (APA). Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  7. Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol. 2015;124:3–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Südhof TC. Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol. 2012;4(1):a011353-a.

    Article  Google Scholar 

  9. Jackson KJ, Muldoon PP, De Biasi M, Damaj MI. New mechanisms and perspectives in nicotine withdrawal. Neuropharmacology. 2015;96(0 0):223–34.

    Article  CAS  PubMed  Google Scholar 

  10. Picciotto MR, Lewis AS, van Schalkwyk GI, Mineur YS. Mood and anxiety regulation by nicotinic acetylcholine receptors: a potential pathway to modulate aggression and related behavioral states. Neuropharmacology. 2015;96(Pt B):235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. La Torre G, Ferketich A, Grassi MC. Tobacco smoking: the evidence from prevention and cessation. Biomed Res Int. 2014;2014:894208.

    PubMed  PubMed Central  Google Scholar 

  12. Culbertson CS, Bramen J, Cohen MS, et al. Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers. Arch Gen Psychiatry. 2011;68(5):505–15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McGrath JJ, Racicot S, Okoli CTC, Hammond SK, O’Loughlin J. Airborne nicotine, secondhand smoke, and precursors to adolescent smoking. Pediatrics. 2018;141(Suppl 1):S63–74.

    Article  PubMed  Google Scholar 

  14. Lessov-Schlaggar CN, Wahlgren DR, Liles S, Ji M, Hughes SC, Winickoff JP, et al. Sensitivity to secondhand smoke exposure predicts future smoking susceptibility. Pediatrics. 2011;128(2):254–62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Centre for Disease Control and Prevention (CDC). Tobacco use prevention through schools. 2015. https://www.cdc.gov/healthyschools/tobacco/index.htm. Accessed July 2018.

  16. Wake Forest University Baptist Medical Center. Rates of secondhand smoke exposure high among college students. 2009. https://www.sciencedaily.com/releases/2009/07/090721091833.htm. Accessed July 2018.

  17. Grassi MC, Baraldo M, Chiamulera C, Culasso F, Raupach T. Knowledge about health effects of cigarette smoking and quitting among Italian university students: the importance of teaching nicotine dependence and treatment in the medical curriculum. Biomed Res Int. 2014;2014:321657.

    PubMed  PubMed Central  Google Scholar 

  18. Grassi MC, Chiamulera C, Baraldo M, Culasso F, Ferketich AK, Raupach T, et al. Cigarette smoking knowledge and perceptions among students in four Italian medical schools. Nicotine Tob Res. 2012; 14(9):1065–72.

    Article  PubMed  Google Scholar 

  19. Perez-Rubio G, Lopez-Flores LA, Ramirez-Venegas A, Noe-Diaz V, Garcia-Gomez L, Ambrocio-Ortiz E, et al. Genetic polymorphisms in CYP2A6 are associated with a risk of cigarette smoking and predispose to smoking at younger ages. Gene. 2017;628:205–10.

    Article  CAS  PubMed  Google Scholar 

  20. Halldén S, Sjögren M, Hedblad B, Engström G, Hamrefors V, Manjer J, et al. Gene variance in the nicotinic receptor cluster (CHRNA5-CHRNA3-CHRNB4) predicts death from cardiopulmonary disease and cancer in smokers. J Intern Med. 2016; 279(4):388–98.

    Article  PubMed  CAS  Google Scholar 

  21. Park SL, Murphy SE, Wilkens LR, Stram DO, Hecht SS, Le Marchand L. Association of CYP2A6 activity with lung cancer incidence in smokers: the multiethnic cohort study. PLoS One. 2017;12(5):e0178435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Bahl V, Shim HJ, Jacob P 3rd, Dias K, Schick SF, Talbot P. Thirdhand smoke: chemical dynamics, cytotoxicity, and genotoxicity in outdoor and indoor environments. Toxicol In Vitro. 2016;32:220–31.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas PD, Mi H, Swan GE, Lerman C, Benowitz N, Tyndale RF, et al. A systems biology network model for genetic association studies of nicotine addiction and treatment. Pharmacogenet Genomics. 2009;19(7): 538–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iskandar AR, Titz B, Sewer A, Leroy P, Schneider T, Zanetti F, et al. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res. 2017; 6(5):631–53.

    Article  CAS  Google Scholar 

  25. Cahill K, Lindson-Hawley N, Thomas KH, Fanshawe TR, Lancaster T. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev. 2016;(5):Cd006103.

    Google Scholar 

  26. Schmeltz I, Hoffmann D. Nitrogen-containing compounds in tobacco and tobacco smoke. Chem Rev. 1977;77(3):295–311.

    Article  CAS  Google Scholar 

  27. Svensson CK. Clinical pharmacokinetics of nicotine. Clin Pharmacokinet. 1987;12(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  28. Gupta S, Gandhi A, Manikonda R. Accidental nicotine liquid ingestion: emerging paediatric problem. Arch Dis Child. 2014;99(12):1149.

    Article  PubMed  Google Scholar 

  29. Centre for Disease Control and Prevention (CDC). New CDC study finds dramatic increase in e-cigarette-related calls to poison centers. 2014. https://www.cdc.gov/media/releases/2014/p0403-e-cigarette-poison.html. Accessed July 2018.

  30. Feyerabend C, Ings RM, Russel MA. Nicotine pharmacokinetics and its application to intake from smoking. Br J Clin Pharmacol. 1985;19(2):239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nakajima M, Yokoi T. Interindividual variability in nicotine metabolism: C-oxidation and glucuronidation. Drug Metab Pharmacokinet. 2005;20(4):227–35.

    Article  CAS  PubMed  Google Scholar 

  32. Kaivosaari S, Toivonen P, Hesse LM, Koskinen M, Court MH, Finel M. Nicotine glucuronidation and the human UDP-glucuronosyltransferase UGT2B10. Mol Pharmacol. 2007;72(3):761–8.

    Article  CAS  PubMed  Google Scholar 

  33. Tanner J-A, Tyndale R. Variation in CYP2A6 activity and personalized medicine. J Pers Med. 2017;7(4):18.

    Article  PubMed Central  Google Scholar 

  34. PharmGKB. Very important pharmacogene: CYP2A6. https://www.pharmgkb.org/vip/PA166169430. Accessed July 2018.

  35. Dempsey D, Tutka P, Jacob P 3rd, Allen F, Schoedel K, Tyndale RF, et al. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin Pharmacol Ther. 2004;76(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  36. Schuit E, Panagiotou OA, Munafo MR, Bennett DA, Bergen AW, David SP. Pharmacotherapy for smoking cessation: effects by subgroup defined by genetically informed biomarkers. Cochrane Database Syst Rev. 2017;9:Cd011823.

    PubMed  Google Scholar 

  37. Lessov-Schlaggar CN, Benowitz NL, Jacob P, Swan GE. Genetic influences on individual differences in nicotine glucuronidation. Twin Res Hum Genet. 2009;12(5):507–13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhu AZ, Zhou Q, Cox LS, Ahluwalia JS, Benowitz NL, Tyndale RF. Variation in trans-3′-hydroxycotinine glucuronidation does not alter the nicotine metabolite ratio or nicotine intake. PLoS One. 2013;8(8):e70938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bloom AJ, von Weymarn LB, Martinez M, Bierut LJ, Goate A, Murphy SE. The contribution of common UGT2B10 and CYP2A6 alleles to variation in nicotine glucuronidation among European Americans. Pharmacogenet Genomics. 2013;23(12):706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taghavi T, St Helen G, Benowitz NL, Tyndale RF. Effect of UGT2B10, UGT2B17, FMO3, and OCT2 genetic variation on nicotine and cotinine pharmacokinetics and smoking in African Americans. Pharmacogenet Genomics. 2017;27(4):143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benowitz NL, Lessov-Schlaggar CN, Swan GE. Genetic influences in the variation in renal clearance of nicotine and cotinine. Clin Pharmacol Ther. 2008; 84(2):243–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bergen AW, Javitz HS, Krasnow R, Michel M, Nishita D, Conti DV, et al. Organic cation transporter variation and response to smoking cessation therapies. Nicotine Tob Res. 2014;16(12):1638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haass M, Kubler W. Nicotine and sympathetic neurotransmission. Cardiovasc Drugs Ther. 1997;10(6): 657–65.

    Article  CAS  PubMed  Google Scholar 

  44. Robertson D, Tseng CJ, Appalsamy M. Smoking and mechanisms of cardiovascular control. Am Heart J. 1988;115(1 Pt 2):258–63.

    Article  CAS  PubMed  Google Scholar 

  45. Grassi G, Seravalle G, Calhoun DA, Bolla GB, Giannattasio C, Marabini M, et al. Mechanisms responsible for sympathetic activation by cigarette smoking in humans. Circulation. 1994;90(1):248–53.

    Article  CAS  PubMed  Google Scholar 

  46. Wonnacott S, Barik J, Dickinson J, Jones IW. Nicotinic receptors modulate transmitter cross talk in the CNS: nicotinic modulation of transmitters. J Mol Neurosci. 2006;30(1–2):137–40.

    Article  CAS  PubMed  Google Scholar 

  47. Marchi M, Grilli M. Presynaptic nicotinic receptors modulating neurotransmitter release in the central nervous system: functional interactions with other coexisting receptors. Prog Neurobiol. 2010;92(2): 105–11.

    Article  CAS  PubMed  Google Scholar 

  48. Aberger K, Chitravanshi VC, Sapru HN. Cardiovascular responses to microinjections of nicotine into the caudal ventrolateral medulla of the rat. Brain Res. 2001;892(1):138–46.

    Article  CAS  PubMed  Google Scholar 

  49. Li YF, LaCroix C, Freeling J. Specific subtypes of nicotinic cholinergic receptors involved in sympathetic and parasympathetic cardiovascular responses. Neurosci Lett. 2009;462(1):20–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Skok VI. Nicotinic acetylcholine receptors in autonomic ganglia. Auton Neurosci. 2002;97(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  51. Ghali MGZ. The brainstem network controlling blood pressure: an important role for pressor sites in the caudal medulla and cervical spinal cord. J Hypertens. 2017;35(10):1938–47.

    Article  CAS  PubMed  Google Scholar 

  52. Khan IM, Taylor P, Yaksh TL. Cardiovascular and behavioral responses to nicotinic agents administered intrathecally. J Pharmacol Exp Ther. 1994;270(1): 150–8.

    CAS  PubMed  Google Scholar 

  53. Khan IM, Taylor P, Yaksh TL. Stimulatory pathways and sites of action of intrathecally administered nicotinic agents. J Pharmacol Exp Ther. 1994;271(3): 1550–7.

    CAS  PubMed  Google Scholar 

  54. Tseng CJ, Appalsamy M, Robertson D, Mosqueda-Garcia R. Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther. 1993;265(3):1511–8.

    CAS  PubMed  Google Scholar 

  55. Jutkiewicz EM, Rice KC, Carroll FI, Woods JH. Patterns of nicotinic receptor antagonism II: cardiovascular effects in rats. Drug Alcohol Depend. 2013; 131(3):284–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system: mechanisms and implications for cardiovascular risk. J Am Coll Cardiol. 2014;64(16):1740–50.

    Article  CAS  PubMed  Google Scholar 

  57. Karakaya O, Barutcu I, Kaya D, Esen AM, Saglam M, Melek M, et al. Acute effect of cigarette smoking on heart rate variability. Angiology. 2007;58(5):620–4.

    Article  PubMed  Google Scholar 

  58. Adamopoulos D, van de Borne P, Argacha JF. New insights into the sympathetic, endothelial and coronary effects of nicotine. Clin Exp Pharmacol Physiol. 2008;35(4):458–63.

    Article  CAS  PubMed  Google Scholar 

  59. Moheimani RS, Bhetraratana M, Peters KM, Yang BK, Yin F, Gornbein J, et al. Sympathomimetic effects of acute e-cigarette use: role of nicotine and non-nicotine constituents. J Am Heart Assoc. 2017;6(9):e006579.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hanna ST. Nicotine effect on cardiovascular system and ion channels. J Cardiovasc Pharmacol. 2006; 47(3):348–58.

    CAS  PubMed  Google Scholar 

  61. Bebarova M, Matejovic P, Svecova O, Kula R, Simurdova M, Simurda J. Nicotine at clinically relevant concentrations affects atrial inward rectifier potassium current sensitive to acetylcholine. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(5):471–81.

    Article  CAS  PubMed  Google Scholar 

  62. Bebarova M, Horakova Z, Kula R. Addictive drugs, arrhythmias, and cardiac inward rectifiers. EP Europace. 2017;19(3):346–55.

    Google Scholar 

  63. Wang Q, Guo Y, Wu C, Yin L, Li W, Shen H, et al. Smoking as a risk factor for the occurrence of atrial fibrillation in men versus women: a meta-analysis of prospective cohort studies. Heart Lung Circ. 2018; 27(1):58–65.

    Article  PubMed  Google Scholar 

  64. Imtiaz Ahmad M, Mosley CD, O’Neal WT, Judd SE, McClure LA, Howard VJ, et al. Smoking and risk of atrial fibrillation in the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. J Cardiol. 2018;71(2):113–7.

    Article  PubMed  Google Scholar 

  65. Jensen K, Nizamutdinov D, Guerrier M, Afroze S, Dostal D, Glaser S. General mechanisms of nicotine-induced fibrogenesis. FASEB J. 2012;26(12):4778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vang A, Clements RT, Chichger H, Kue N, Allawzi A, O’Connell K, et al. Effect of alpha7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L748–59.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Goette A, Lendeckel U, Kuchenbecker A, Bukowska A, Peters B, Klein HU, et al. Cigarette smoking induces atrial fibrosis in humans via nicotine. Heart. 2007;93(9):1056–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tonnessen BH, Severson SR, Hurt RD, Miller VM. Modulation of nitric-oxide synthase by nicotine. J Pharmacol Exp Ther. 2000;295(2):601–6.

    CAS  PubMed  Google Scholar 

  69. Toda N, Toda H. Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine. Eur J Pharmacol. 2010;649(1–3):1–13.

    Article  CAS  PubMed  Google Scholar 

  70. Hom S, Chen L, Wang T, Ghebrehiwet B, Yin W, Rubenstein DA. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations. Platelets. 2016;27(7): 694–702.

    Article  CAS  PubMed  Google Scholar 

  71. Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509–15.

    Article  CAS  PubMed  Google Scholar 

  72. Rodu B, Plurphanswat N. E-cigarette use among US adults: Population Assessment of Tobacco and Health (PATH) study. Nicotine Tob Res. 2018;20(8):940–8.

    Article  PubMed  Google Scholar 

  73. Bullen C, Howe C, Laugesen M, McRobbie H, Parag V, Williman J, et al. Electronic cigarettes for smoking cessation: a randomised controlled trial. Lancet. 2013;382(9905):1629–37.

    Article  PubMed  Google Scholar 

  74. St Helen G, Havel C, Dempsey DA, Jacob P 3rd, Benowitz NL. Nicotine delivery, retention and pharmacokinetics from various electronic cigarettes. Addiction. 2016;111(3):535–44.

    Article  PubMed  Google Scholar 

  75. Marsot A, Simon N. Nicotine and cotinine levels with electronic cigarette: a review. Int J Toxicol. 2016; 35(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  76. Franzen KF, Willig J, Cayo Talavera S, Meusel M. E-cigarettes and cigarettes worsen peripheral and central hemodynamics as well as arterial stiffness: a randomized, double-blinded pilot study. Vasc Med. 2018;23(5):419–25.

    Article  PubMed  Google Scholar 

  77. Shao XM, Lopez-Valdes HE, Liang J, Feldman JL. Inhaled nicotine equivalent to cigarette smoking disrupts systemic and uterine hemodynamics and induces cardiac arrhythmia in pregnant rats. Sci Rep. 2017; 7(1):16974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Prochaska JJ, Benowitz NL. Smoking cessation and the cardiovascular patient. Curr Opin Cardiol. 2015; 30(5):506–11.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jeong SH, Newcombe D, Sheridan J, Tingle M. Pharmacokinetics of cytisine, an alpha4 beta2 nicotinic receptor partial agonist, in healthy smokers following a single dose. Drug Test Anal. 2015;7(6):475–82.

    Article  CAS  PubMed  Google Scholar 

  80. Rollema H, Shrikhande A, Ward KM, Tingley FD, Coe JW, O’Neill BT, et al. Pre-clinical properties of the α4β2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence. Br J Pharmacol. 2010;160(2):334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vinnikov D, Tutka P, Brimkulov N, Kolodziejczyk P, Courtney R. Cytisine is an effective smoking cessation medication: more evidence now than ever before. Eur Respir J. 2017;50(Suppl 61).

    Google Scholar 

  82. Leaviss J, Sullivan W, Ren S, Everson-Hock E, Stevenson M, Stevens JW, et al. What is the clinical effectiveness and cost-effectiveness of cytisine compared with varenicline for smoking cessation? A systematic review and economic evaluation. Health Technol Assess. 2014;18(33):1–120.

    Article  PubMed  PubMed Central  Google Scholar 

  83. US Food and Drug Administration (FDA). Varenicline (Chantix) tablets – drug approval package. 2006. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021928_s000_ChantixTOC.cfm. Accessed July 2018.

  84. European Medicine Agency (EMA). European public assessment report (EPAR) for Champix (varenicline). 2006. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000699/human_med_000696.jsp&mid=WC0b01ac058001d124. Accessed July 2018.

  85. Faessel HM, Obach RS, Rollema H, Ravva P, Williams KE, Burstein AH. A review of the clinical pharmacokinetics and pharmacodynamics of varenicline for smoking cessation. Clin Pharmacokinet. 2010;49(12):799–816.

    Article  CAS  PubMed  Google Scholar 

  86. Arias HR, Feuerbach D, Targowska-Duda K, Kaczor AA, Poso A, Jozwiak K. Pharmacological and molecular studies on the interaction of varenicline with different nicotinic acetylcholine receptor subtypes. Potential mechanism underlying partial agonism at human α4β2 and α3β4 subtypes. BBA Biomembranes. 2015;1848(2):731–41.

    Article  CAS  PubMed  Google Scholar 

  87. US Food and Drug Administration (FDA). FDA Drug Safety Communication: Chantix (varenicline) may increase the risk of certain cardiovascular adverse events in patients with cardiovascular disease. 2011. https://www.fda.gov/Drugs/DrugSafety/ucm259161.htm. Accessed July 2018.

  88. US Food and Drug Administration (FDA). FDA Drug Safety Communication: safety review update of Chantix (varenicline) and risk of cardiovascular adverse events. 2012. https://www.fda.gov/Drugs/DrugSafety/ucm330367.htm. Accessed July 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Caterina Grassi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ialongo, C., Sabatini, D., Grassi, M.C. (2019). Nicotine and Cardiovascular Function. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics