Skip to main content

Heart and Embolic Stroke of Undetermined Source

  • Living reference work entry
  • First Online:
  • 379 Accesses

Abstract

In 1947, Byer et al. first reported that cerebral vascular disease can cause myocardial damage and arrhythmia suggesting an interaction between heart and brain dynamics. Clinical and experimental evidence has accumulated since then, supporting the hypothesis that the brain can influence heart function and the heart can be responsible for secondary brain damage. It is crucial to determine whether heart dysfunction is triggered by stroke or vice-versa as this may influence the therapeutic strategy for secondary prevention. This is particularly true when dealing with those cryptogenic strokes whose clinical and neuroimaging characteristics suggest that their etiology is likely embolic, the so-called embolic stroke of undetermined source (ESUS). This chapter will explore the strengths and limitations of the ESUS definitions, its clinical and epidemiological aspects providing a description of patients who may fit this definition. The role of the possible sources of embolism in ESUS including arterial, minor-risk cardioembolic source such as structural abnormalities, subclinical atrial fibrillation, atrial high-rate episodes, and the influence of systemic inflammation are discussed as well. A brief review of the recent and ongoing clinical trial on this topic is also provided, highlighting the importance to validate standardized markers of atrial cardiopathy. These markers could improve the stratification of stroke recurrence risk and detect those patients with a cryptogenic stroke that are more likely to benefit from anticoagulant therapy.

This is a preview of subscription content, log in via an institution.

References

  1. Samuels MA. The brain-heart connection. Circulation. 2007;116:77–84.

    PubMed  Google Scholar 

  2. Kamel H, Healey JS. Cardioembolic stroke. Circ Res. 2017;120:514–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O’Donnell MJ, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13:429–38.

    PubMed  Google Scholar 

  4. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE III. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of ORG 10172 in acute stroke treatment. Stroke. 1993;24:35–41.

    PubMed  Google Scholar 

  5. Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embolic stroke of undetermined source: a systematic review and clinical update. Stroke. 2017;48:867–72.

    PubMed  Google Scholar 

  6. Perera KS, Vanassche T, Bosch J, Giruparajah M, Swaminathan B, Mattina KR, et al. Embolic strokes of undetermined source: prevalence and patient features in the ESUS Global Registry. Int J Stroke. 2016;11:526–33.

    PubMed  Google Scholar 

  7. Ntaios G, Papavasileiou V, Milionis H, Makaritsis K, Vemmou A, Koroboki E. Embolic strokes of undetermined source in the Athens Stroke Registry: an outcome analysis. Stroke. 2015;46:2087–93.

    PubMed  Google Scholar 

  8. Ntaios G, Lip GYH, Vemmos K, Koroboki E, Manios E, Vemmou A, et al. Age- and sex-specific analysis of patients with embolic stroke of undetermined source. Neurology. 2017;89(6):532–9.

    PubMed  PubMed Central  Google Scholar 

  9. Ntaios G, Vemmos K, Lip GY, Koroboki E, Manios E, Vemmou A, et al. Risk stratification for recurrence and mortality in embolic stroke of undetermined source. Stroke. 2016;47(9):2278–85.

    PubMed  Google Scholar 

  10. Molina CA, Santamarina E, Alvarez-Sabín J. Cryptogenic stroke, aortic arch atheroma and patent foramen ovale. Cerebrovasc Dis. 2007;24(Suppl 1):84–8.

    PubMed  Google Scholar 

  11. Ryoo S, Chung JW, Lee MJ, Kim SJ, Lee JS, Kim GM, et al. An approach to working up cases of embolic stroke of undetermined source. J Am Heart Assoc. 2016;5(3):e002975.

    PubMed  PubMed Central  Google Scholar 

  12. Jaffre A, Guidolin B, Ruidavets JB, Nasr N, Larrue V. Non-obstructive carotid atherosclerosis and patent foramen ovale in young adults with cryptogenic stroke. Eur J Neurol. 2017;24(5):663–6.

    CAS  PubMed  Google Scholar 

  13. Lattanzi S, Cagnetti C, Pulcini A, Morelli M, Maffei S, Provinciali L, Silvestrini M. The P-wave terminal force in embolic strokes of undetermined source. J Neurol Sci. 2017;375:175–8.

    PubMed  Google Scholar 

  14. Brinjikji W, Huston J 3rd, Rabinstein AA, Kim GM, Lerman A, Lanzino G. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg. 2016;124:27–42.

    CAS  PubMed  Google Scholar 

  15. Bayer-Karpinska A, Schindler A, Saam T. Detection of vulnerable plaque in patients with cryptogenic stroke. Neuroimaging Clin N Am. 2016;26:97–110.

    PubMed  Google Scholar 

  16. Gupta A, Baradaran H, Schweitzer AD, Kamel H, Pandya A, Delgado D, et al. Carotid plaque MRI and stroke risk: a systematic review and meta-analysis. Stroke. 2013;44:3071–7.

    PubMed  Google Scholar 

  17. Bulwa Z, Gupta A. Embolic stroke of undetermined source: the role of the nonstenotic carotid plaque. J Neurol Sci. 2017;382:49–52.

    PubMed  Google Scholar 

  18. Freilinger TM, Schindler A, Schmidt C, Grimm J, Cyran C, Schwarz F, et al. Prevalence of nonstenosing, complicated atherosclerotic plaques in cryptogenic stroke. JACC Cardiovasc Imaging. 2012;5:397–405.

    PubMed  Google Scholar 

  19. Hyafil F, Schindler A, Sepp D, Obenhuber T, Bayer-Karpinska A, Boeckh-Behrens T, et al. High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined (18)F-FDG PET/MR imaging. Eur J Nucl Med Mol Imaging. 2016;43(2):270–9.

    PubMed  Google Scholar 

  20. Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol. 2015;14(9):903–13.

    PubMed  PubMed Central  Google Scholar 

  21. Truijman MT, de Rotte AA, Aaslid R, van Dijk AC, Steinbuch J, Liem MI, et al. Intraplaque hemorrhage, fibrous cap status, and microembolic signals in symptomatic patients with mild to moderate carotid artery stenosis: the plaque at RISK study. Stroke. 2014;45(11):3423–6.

    PubMed  Google Scholar 

  22. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370:2478–86.

    CAS  PubMed  Google Scholar 

  23. Sposato LA, Cipriano LE, Saposnik G, Ruíz Vargas E, Riccio PM, Hachinski V. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol. 2015;14(4):377–87.

    PubMed  Google Scholar 

  24. Kasner SE, Lavados P, Sharma M, Wang Y, Wang Y, Dávalos A, et al. Characterization of patients with embolic strokes of undetermined source in the NAVIGATE ESUS randomized trial. J Stroke Cerebrovasc Dis. 2018;27:1673–82.

    PubMed  Google Scholar 

  25. De Meyer SF, Andersson T, Baxter B, Bendszus M, Brouwer P, Brinjikji W, et al. Analyses of thrombi in acute ischemic stroke: a consensus statement on current knowledge and future directions. Int J Stroke. 2017;12:606–14.

    PubMed  Google Scholar 

  26. Boeckh-Behrens T, Kleine JF, Zimmer C, Neff F, Scheipl F, Pelisek J, et al. Thrombus histology suggests cardioembolic cause in cryptogenic stroke. Stroke. 2016;47:1864–71.

    CAS  PubMed  Google Scholar 

  27. Kim SK, Yoon W, Kim TS, Kim HS, Heo TW, Park MS. Histologic analysis of retrieved clots in acute ischemic stroke: correlation with stroke etiology and gradient-echo MRI. AJNR Am J Neuroradiol. 2015;36:1756–62.

    CAS  PubMed  Google Scholar 

  28. Cho KH, Kim JS, Kwon SU, Cho AH, Kang DW. Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke. 2005;36:2379–83.

    PubMed  Google Scholar 

  29. Niesten JM, van der Schaaf IC, Biessels GJ, van Otterloo AE, van Seeters T, Horsch AD, et al. Relationship between thrombus attenuation and different stroke subtypes. Neuroradiology. 2013;55(9):1071–9.

    CAS  PubMed  Google Scholar 

  30. Sacco RL, Prabhakaran S, Thompson JL, Murphy A, Sciacca RR, Levin B, et al. Comparison of warfarin versus aspirin for the prevention of recurrent stroke or death: subgroup analyses from the warfarin-aspirin recurrent stroke study. Cerebrovasc Dis. 2006;22:4–12.

    CAS  PubMed  Google Scholar 

  31. Homma S, Sacco RL, Di Tullio MR, Sciacca RR, Mohr JP, PFO in Cryptogenic Stroke Study (PICSS) Investigators. Effect of medical treatment in stroke patients with patent foramen ovale: patent foramen ovale in Cryptogenic Stroke Study. Circulation. 2002;105:2625–31.

    PubMed  Google Scholar 

  32. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2017;377:1011–21.

    CAS  PubMed  Google Scholar 

  33. The Stroke Prevention In Reversible Ischemia Trial (SPIRIT) Study Group. A randomized trial of anticoagulants versus aspirin after cerebral ischemia of presumed arterial origin. Ann Neurol. 1997;42:857–65.

    Google Scholar 

  34. ESPRIT Study Group, Halkes PH, van Gijn J, Kappelle LJ, Koudstaal PJ, Algra A. Medium intensity oral anticoagulants versus aspirin after cerebral ischaemia of arterial origin (ESPRIT): a randomised controlled trial. Lancet Neurol. 2007;6:115–24.

    Google Scholar 

  35. Caron F, Anand SS. Antithrombotic therapy in aortic diseases: a narrative review. Vasc Med. 2017;22:57–65.

    CAS  PubMed  Google Scholar 

  36. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383:955–62.

    CAS  PubMed  Google Scholar 

  37. Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med. 2018;378:2191–201.

    CAS  PubMed  Google Scholar 

  38. Hirsh BJ, Copeland-Halperin RS, Halperin JL. Fibrotic atrial cardiomyopathy, atrial fibrillation, and thromboembolism: mechanistic links and clinical inferences. J Am Coll Cardiol. 2015;65:2239–51.

    PubMed  Google Scholar 

  39. Sposato LA, Klein FR, Jáuregui A, Ferrúa M, Klin P, Zamora R, et al. Newly diagnosed atrial fibrillation after acute ischemic stroke and transient ischemic attack: importance of immediate and prolonged continuous cardiac monitoring. J Stroke Cerebrovasc Dis. 2012;21:210–6.

    PubMed  Google Scholar 

  40. Lau CP, Siu CW, Yiu KH, Lee KL, Chan YH, Tse HF. Subclinical atrial fibrillation and stroke: insights from continuous monitoring by implanted cardiac electronic devices. Europace. 2015;17(Suppl 2):ii40–6.

    PubMed  Google Scholar 

  41. Sposato LA, Cerasuolo JO, Cipriano LE, Fang J, Fridman S, Paquet M, et al. Atrial fibrillation detected after stroke is related to a low risk of ischemic stroke recurrence. Neurology. 2018;90:e924–31.

    PubMed  Google Scholar 

  42. Tomita H, Sasaki S, Hagii J, Metoki N. Covert atrial fibrillation and atrial high-rate episodes as a potential cause of embolic strokes of undetermined source: their detection and possible management strategy. J Cardiol. 2018;72:1–9.

    PubMed  Google Scholar 

  43. Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinchak R, et al. Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation. 2003;107:1614–9.

    PubMed  Google Scholar 

  44. Glotzer TV, Daoud EG, Wyse DG, Singer DE, Ezekowitz MD, Hilker C, et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol. 2009;2:474–80.

    PubMed  Google Scholar 

  45. Van Gelder IC, Healey JS, Crijns HJGM, Wang J, Hohnloser SH, Gold MR, et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J. 2017;38:1339–44.

    PubMed  Google Scholar 

  46. Daoud EG, Glotzer TV, Wyse DG, Ezekowitz MD, Hilker C, Koehler J, et al. Temporal relationship of atrial tachyarrhythmias, cerebrovascular events, and systemic emboli based on stored device data: a subgroup analysis of TRENDS. Heart Rhythm. 2011;8:1416–23.

    PubMed  Google Scholar 

  47. Brambatti M, Connolly SJ, Gold MR, Morillo CA, Capucci A, Muto C, et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation. 2014;129:2094–9.

    PubMed  Google Scholar 

  48. Turakhia MP, Ziegler PD, Schmitt SK, Chang Y, Fan J, Than CT, et al. Atrial fibrillation burden and short-term risk of stroke: casecrossover analysis of continuously recorded heart rhythm from cardiac electronic implanted devices. Circ Arrhythm Electrophysiol. 2015;8:1040–7.

    PubMed  Google Scholar 

  49. Cerasuolo JO, Cipriano LE, Sposato LA. The complexity of atrial fibrillation newly diagnosed after ischemic stroke and transient ischemic attack: advances and uncertainties. Curr Opin Neurol. 2017;30(1):28–37.

    PubMed  PubMed Central  Google Scholar 

  50. Scridon A, Şerban RC, Chevalier P. Atrial fibrillation: neurogenic or myogenic? Arch Cardiovasc Dis. 2018;111:59–69.

    PubMed  Google Scholar 

  51. Sposato LA, Fridman S, Whitehead SN, Lopes RD. Linking stroke-induced heart injury and neurogenic atrial fibrillation: a hypothesis to be proven. J Electrocardiol. 2018. pii: S0022-0736(18)30097-9. https://doi.org/10.1016/j.jelectrocard.2018.02.006. [Epub ahead of print].

    Google Scholar 

  52. González Toledo ME, Klein FR, Riccio PM, Cassará FP, Muñoz Giacomelli F, Racosta JM, et al. Atrial fibrillation detected after acute ischemic stroke: evidence supporting the neurogenic hypothesis. J Stroke Cerebrovasc Dis. 2013;22:e486–91.

    PubMed  Google Scholar 

  53. Hsieh CY, Lee CH, Wu DP, Sung SF. Characteristics and outcomes of ischemic stroke in patients with known atrial fibrillation or atrial fibrillation diagnosed after stroke. Int J Cardiol. 2018;261:68–72.

    PubMed  Google Scholar 

  54. Bisson A, Clementy N, Bodin A, Angoulvant D, Babuty D, Lip GYH, Fauchier L. Relationship of preexisting cardiovascular comorbidities to newly diagnosed atrial fibrillation after ischemic stroke. Stroke. 2017;48:2878–80.

    PubMed  Google Scholar 

  55. Ntaios G, Papavasileiou V, Lip GY, Milionis H, Makaritsis K, Vemmou A, et al. Embolic stroke of undetermined source and detection of atrial fibrillation on follow-up: how much causality is there? J Stroke Cerebrovasc Dis. 2016;25:2975–80.

    PubMed  Google Scholar 

  56. Kim Y, Lee SH. Embolic stroke and after-admission atrial fibrillation. Int J Cardiol. 2016;222:576–80.

    PubMed  Google Scholar 

  57. Scheitz JF, Erdur H, Haeusler KG, Audebert HJ, Roser M, Laufs U, et al. Insular cortex lesions, cardiac troponin, and detection of previously unknown atrial fibrillation in acute ischemic stroke: insights from the troponin elevation in acute ischemic stroke study. Stroke. 2015;46:1196–201.

    CAS  PubMed  Google Scholar 

  58. Rizos T, Bartsch AJ, Johnson TD, Dittgen F, Nichols TE, Malzahn U, Veltkamp R. Voxelwise distribution of acute ischemic stroke lesions in patients with newly diagnosed atrial fibrillation: trigger of arrhythmia or only target of embolism? PLoS One. 2017;12:e0177474.

    PubMed  PubMed Central  Google Scholar 

  59. Paquet M, Cerasuolo JO, Thorburn V, Fridman S, Alsubaie R, Lopes RD, et al. Pathophysiology and risk of atrial fibrillation detected after ischemic stroke (PARADISE): a translational, integrated, and transdisciplinary approach. J Stroke Cerebrovasc Dis. 2018;27:606–19.

    PubMed  Google Scholar 

  60. Gorenek B, Bax J, Boriani G, Chen SA, Dagres N, Glotzer TV, et al. Device-detected subclinical atrial tachyarrhythmias: definition, implications and management-an European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardíaca y Electrofisiología (SOLEACE). Europace. 2017;19:1556–78.

    Google Scholar 

  61. Lopes RD, Alings M, Connolly SJ, Beresh H, Granger CB, Mazuecos JB, et al. Rationale and design of the Apixaban for the reduction of thrombo-embolism in patients with device-detected sub-clinical atrial fibrillation (ARTESiA) trial. Am Heart J. 2017;189:137–45.

    PubMed  Google Scholar 

  62. Kirchhof P, Blank BF, Calvert M, Camm AJ, Chlouverakis G, Diener HC, et al. Probing oral anticoagulation in patients with atrial high rate episodes: rationale and design of the non-vitamin K antagonist oral anticoagulants in patients with atrial high rate episodes (NOAH-AFNET 6) trial. Am Heart J. 2017;190:12–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Zimetbaum P, Waks JW, Ellis ER, Glotzer TV, Passman RS. Role of atrial fibrillation burden in assessing thromboembolic risk. Circ Arrhythm Electrophysiol. 2014;7:1223–9.

    PubMed  Google Scholar 

  64. Kamel H, Okin PM, Elkind MS, Iadecola C. Atrial fibrillation and mechanisms of stroke: time for a new model. Stroke. 2016;47:895–900.

    PubMed  PubMed Central  Google Scholar 

  65. Goldberger JJ, Arora R, Green D, Greenland P, Lee DC, Lloyd-Jones DM, et al. Evaluating the atrial myopathy underlying atrial fibrillation: identifying the arrhythmogenic and thrombogenic substrate. Circulation. 2015;132:278–91.

    PubMed  PubMed Central  Google Scholar 

  66. Fonseca AC, Alves P, Inácio N, Marto JP, Viana-Baptista M, Pinho-E-Melo T, et al. Patients with undetermined stroke have increased atrial fibrosis: a cardiac magnetic resonance imaging study. Stroke. 2018;49:734–7.

    PubMed  Google Scholar 

  67. Tsang TS, Barnes ME, Bailey KR, Leibson CL, Montgomery SC, Takemoto Y, et al. Left atrial volume: important risk marker of incident atrial fibrillation in 1655 older men and women. Mayo Clin Proc. 2001;76:467–75.

    CAS  PubMed  Google Scholar 

  68. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D. Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation. 1995;92:835–41.

    CAS  PubMed  Google Scholar 

  69. Yaghi S, Moon YP, Mora-McLaughlin C, Willey JZ, Cheung K, Di Tullio MR, et al. Left atrial enlargement and stroke recurrence: the Northern Manhattan Stroke Study. Stroke. 2015;46:1488–93.

    PubMed  PubMed Central  Google Scholar 

  70. Yaghi S, Song C, Gray WA, Furie KL, Elkind MS, Kamel H. Left atrial appendage function and stroke risk. Stroke. 2015;46:3554–9.

    PubMed  PubMed Central  Google Scholar 

  71. Kim D, Shim CY, Hong GR, Kim MH, Seo J, Cho IJ, et al. Clinical implications and determinants of left atrial mechanical dysfunction in patients with stroke. Stroke. 2016;47:1444–51.

    PubMed  Google Scholar 

  72. Larsen BS, Kumarathurai P, Falkenberg J, Nielsen OW, Sajadieh A. Excessive atrial ectopy and short atrial runs increase the risk of stroke beyond incident atrial fibrillation. J Am Coll Cardiol. 2015;66:232–41.

    PubMed  Google Scholar 

  73. Marinheiro R, Parreira L, Amador P, Sá C, Duarte T, Caria R. Excessive atrial ectopic activity as an independent risk factor for ischemic stroke. Int J Cardiol. 2017;249:226–30.

    PubMed  Google Scholar 

  74. Pinho J, Braga CG, Rocha S, Santos AF, Gomes A, Cabreiro A, et al. Atrial ectopic activity in cryptogenic ischemic stroke and TIA: a risk factor for recurrence. J Stroke Cerebrovasc Dis. 2015;24:507–10.

    PubMed  Google Scholar 

  75. Kamel H, Elkind MS, Bhave PD, Navi BB, Okin PM, Iadecola C, et al. Paroxysmal supraventricular tachycardia and the risk of ischemic stroke. Stroke. 2013;44:1550–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kamel H, Soliman EZ, Heckbert SR, Kronmal RA, Longstreth WT Jr, Nazarian S, Okin PM. P-wave morphology and the risk of incident ischemic stroke in the multi-ethnic study of atherosclerosis. Stroke. 2014;45:2786–8.

    PubMed  PubMed Central  Google Scholar 

  77. Maheshwari A, Norby FL, Soliman EZ, Koene RJ, Rooney MR, O’Neal WT, et al. Abnormal P-wave axis and ischemic stroke: the ARIC Study (atherosclerosis risk in communities). Stroke. 2017;48:2060–5.

    PubMed  PubMed Central  Google Scholar 

  78. He J, Tse G, Korantzopoulos P, Letsas KP, Ali-Hasan-Al-Saegh S, Kamel H, et al. P-wave indices and risk of ischemic stroke: a systematic review and meta-analysis. Stroke. 2017;48:2066–72.

    PubMed  Google Scholar 

  79. Kamel H, Bartz TM, Longstreth WT Jr, Okin PM, Thacker EL, Patton KK, et al. Association between left atrial abnormality on ECG and vascular brain injury on MRI in the Cardiovascular Health Study. Stroke. 2015;46:711–6.

    PubMed  PubMed Central  Google Scholar 

  80. Acampa M, Lazzerini PE, Guideri F, Tassi R, Lo Monaco A, Martini G. Inflammation and atrial electrical remodeling in patients with embolic strokes of undetermined source. Heart Lung Circ. 2018. pii: S1443-9506(18)30465-7. https://doi.org/10.1016/j.hlc.2018.04.294. [Epub ahead of print].

    PubMed  Google Scholar 

  81. Jalife J, Kaur K. Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 2015;25:475–84.

    CAS  PubMed  Google Scholar 

  82. Akoum N. New perspectives on atrial fibrillation and stroke. Heart. 2016;102:1788–92.

    CAS  PubMed  Google Scholar 

  83. Yaghi S, Chang AD, Ricci BA, Jayaraman MV, McTaggart RA, Hemendinger M, et al. Early elevated troponin levels after ischemic stroke suggests a cardioembolic source. Stroke. 2018;49:121–6.

    CAS  PubMed  Google Scholar 

  84. Kamel H, Bartz TM, Elkind MSV, Okin PM, Thacker EL, Patton KK, et al. Atrial cardiopathy and the risk of ischemic stroke in the CHS (Cardiovascular Health Study). Stroke. 2018;49:980–6.

    PubMed  PubMed Central  Google Scholar 

  85. Acampa M, Lazzerini PE, Martini G. Atrial cardiopathy and sympatho-vagal imbalance in cryptogenic stroke: pathogenic mechanisms and effects on electrocardiographic markers. Front Neurol. 2018;9:469.

    PubMed  PubMed Central  Google Scholar 

  86. Geisler T, Poli S, Meisner C, Schreieck J, Zuern CS, Nägele T, et al. Apixaban for treatment of embolic stroke of undetermined source (ATTICUS randomized trial): rationale and study design. Int J Stroke. 2017;12(9):985–90.

    PubMed  Google Scholar 

  87. Eklind MS et al. Atrial cardiopathy and antithrombotic drugs in prevention after cryptogenic stroke (ARCADIA) https://clinicaltrials.gov/ct2/show/study/NCT03192215?show_locs=Y#locn. Accessed 06 July 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Cavallini .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cavallini, A., Magno, S., Persico, A., Morotti, A. (2019). Heart and Embolic Stroke of Undetermined Source. In: Govoni, S., Politi, P., Vanoli, E. (eds) Brain and Heart Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-319-90305-7_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90305-7_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90305-7

  • Online ISBN: 978-3-319-90305-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics