Skip to main content

Alkane Biosynthesis in Bacteria

  • Reference work entry
  • First Online:
Biogenesis of Hydrocarbons

Abstract

Biofuels are a commercial reality with ethanol comprising approximately 10% of the US retail fuel market, and biodiesels contributing a little under 5% to the EU retail fuel market. These biofuels are derived from the fermentation of sugars by yeast (ethanol) and from the chemical modification of animal fats and plant oils (biodiesel). However, these biofuel molecules are chemically distinct from the petroleum fuels that they are blended with. Petroleum-based fuels are predominantly composed of alkane and alkene hydrocarbons. These differences impact on fuel properties and infrastructure compatibility resulting in a “blend wall” that – without significant infrastructure realignment and associated costs – limits the use of biofuels. For this reason, there is great interest in biosynthetic routes for alkane and alkene production. Here we will review the known biological routes to alkane/alkene biosynthesis with a focus on bacterial alkane and alkene biosynthetic pathways. Specifically, we will review pathways for which the underlying genetic components have been identified. We will also investigate the development of engineered metabolic pathways that permit the production of alkanes and alkenes that are not naturally synthesized in bacteria (heterologous production) but are suitable for industrial commercial application. Finally, we will highlight some of the challenges facing this research area as it moves from proof-of-principle studies toward industrialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar MK, Turner NJ, Jones PR (2013) Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci U S A 110(1):87

    Article  CAS  PubMed  Google Scholar 

  • Albro PW, Dittmer JC (1969a) The biochemistry of long-chain, nonisoprenoid hydrocarbons. I. Characterization of the hydrocarbons of Sarcina lutea and the isolation of possible intermediates of biosynthesis. Biochemistry 8(1):394

    Article  CAS  PubMed  Google Scholar 

  • Albro PW, Dittmer JC (1969b) The biochemistry of long-chain, nonisoprenoid hydrocarbons. IV. Characteristics of synthesis by a cell-free preparation of Sarcina lutea. Biochemistry 8(8):3317

    Article  CAS  PubMed  Google Scholar 

  • Andre C, Kim SW, Yu X-H, Shanklin J (2013) Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc Natl Acad Sci U S A 110(8):3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aukema KG, Makris TM, Stoian SA, Richman JE et al (2013) Cyanobacterial aldehyde deformylase oxygenation of aldehydes yields n-1 aldehydes and alcohols in addition to alkanes. ACS Catal 3(10):2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher J, McLean KJ, Matthews S, Woodward LS et al (2014) Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem 289(10):6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beller HR, Goh EB, Keasling JD (2010) Genes involved in long-chain alkene biosynthesis in Micrococcus luteus. Appl Environ Microbiol 76(4):1212

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Domergue F, Pascal S, Jetter R et al (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24(7):3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnett SA, Papireddy K, Higgins S, del Cardayre S et al (2011) Functional characterization of an NADPH dependent 2-alkyl-3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotrophomonas maltophilia. Biochemistry 50(44):9633

    Article  CAS  PubMed  Google Scholar 

  • Bourdenx B, Bernard A, Domergue F, Pascal S et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buijs NA, Zhou YJ, Siewers V, Nielsen J (2015) Long-chain alkane production by the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 112(6):1275

    Article  CAS  PubMed  Google Scholar 

  • Cao YX, Xiao WH, Zhang JL, Xie ZX et al (2016) Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab Eng 38:19

    Article  CAS  PubMed  Google Scholar 

  • Cheesbrough TM, Kolattukudy PE (1988) Microsomal preparation from an animal tissue catalyzes release of carbon monoxide from a fatty aldehyde to generate an alkane. J Biol Chem 263(6):2738

    CAS  PubMed  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502(7472):571

    Article  CAS  PubMed  Google Scholar 

  • Choi K-H, Heath RJ, Rock CO (2000) β-ketoacyl-acyl carrier protein synthase III (FabH) is a determining factor in branched-chain fatty acid biosynthesis. J Bacteriol 182(2):365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christenson JK, Jensen MR, Goblirsch BR, Mohamed F et al (2017a) Active multienzyme assemblies for long-chain olefinic hydrocarbon biosynthesis. J Bacteriol 199(9):e00890–16

    Google Scholar 

  • Christenson JK, Richman JE, Jensen MR, Neufeld JY et al (2017b) Beta-lactone synthetase found in the olefin biosynthesis pathway. Biochemistry 56(2):348

    Article  CAS  PubMed  Google Scholar 

  • Crepin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92

    Article  CAS  PubMed  Google Scholar 

  • Das D, Eser BE, Han J, Sciore A et al (2011) Oxygen-independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem Int Ed Engl 50(31):7148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis M, Kolattukudy PE (1992) A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci U S A 89(12):5306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC et al (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol 7:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Eser BE, Das D, Han J, Jones PR et al (2011) Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 50(49):10743

    Article  CAS  PubMed  Google Scholar 

  • Frias JA, Richman JE, Wackett LP (2009) C29 olefinic hydrocarbons biosynthesized by Arthrobacter species. Appl Environ Microbiol 75(6):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frias JA, Richman JE, Erickson JS, Wackett LP (2011) Purification and characterization of OleA from Xanthomonas campestris and demonstration of a non-decarboxylative Claisen condensation reaction. J Biol Chem 286(13):10930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda H, Fujii T, Sukita E, Tazaki M et al (1994) Reconstitution of the isobutene-forming reaction catalyzed by cytochrome P450 and P450 reductase from Rhodotorula minuta: decarboxylation with the formation of isobutene. Biochem Biophys Res Commun 201(2):516

    Article  CAS  PubMed  Google Scholar 

  • Gianoulis TA, Griffin MA, Spakowicz DJ, Dunican BF et al (2012) Genomic analysis of the hydrocarbon-producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genet 8(3):e1002558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156(Pt 12):3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossi V, Raphel D, Aubert C, Rontani J-F (2000) The effect of growth temperature on the long-chain alkenes composition in the marine coccolithophorid Emiliania huxleyi. Phytochemistry 54(4):393

    Article  CAS  PubMed  Google Scholar 

  • Harger M, Zheng L, Moon A, Ager C et al (2013) Expanding the product profile of a microbial alkane biosynthetic pathway. ACS Synth Biol 2(1):59

    Article  CAS  PubMed  Google Scholar 

  • Hong KK, Nielsen J (2012) Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell Mol Life Sci 69(16):2671

    Article  CAS  PubMed  Google Scholar 

  • Howard RW (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149

    Article  CAS  Google Scholar 

  • Howard RW, McDaniel CA, Nelson DR, Blomquist GJ et al (1982) Cuticular hydrocarbons of Reticulitermes virginicus (banks) (Isoptera, Rhinotermitidae) and their role as potential species-recognition and caste-recognition cues. J Chem Ecol 8(9):1227

    Article  CAS  PubMed  Google Scholar 

  • Howard TP, Middelhaufe S, Moore K, Edner C et al (2013) Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc Natl Acad Sci U S A 110(19):7636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Diaz L, Caballero A, Perez-Hernandez N, Segura A (2017) Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microb Biotechnol 10(1):103

    Article  PubMed  Google Scholar 

  • Kallio P, Pasztor A, Thiel K, Akhtar MK et al (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun 5:4731

    Article  CAS  PubMed  Google Scholar 

  • Kancharla P, Bonnett SA, Reynolds KA (2016) Stenotrophomonas maltophilia OleC-catalyzed ATP-dependent formation of long-chain Z-olefins from 2-Alkyl-3-hydroxyalkanoic acids. Chembiochem 17(15):1426

    Article  CAS  PubMed  Google Scholar 

  • Kang MK, Zhou YJ, Buijs NA, Nielsen J (2017) Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb Cell Factories 16(1):74

    Article  CAS  Google Scholar 

  • Kato A, Takatani N, Use K, Uesaka K et al (2015) Identification of a cyanobacterial RND-type efflux system involved in export of free fatty acids. Plant Cell Physiol 56(12):2467

    Article  CAS  PubMed  Google Scholar 

  • Lennen RM, Politz MG, Kruziki MA, Pfleger BF (2012) Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 195:135–144

    Article  PubMed  CAS  Google Scholar 

  • Li N, Norgaard H, Warui DM, Booker SJ et al (2011) Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. J Am Chem Soc 133(16):6158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Chang WC, Warui DM, Booker SJ et al (2012) Evidence for only oxygenative cleavage of aldehydes to alk(a/e)nes and formate by cyanobacterial aldehyde decarbonylases. Biochemistry 51(40):7908

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang C, Yan J, Zhang W et al (2014) Hydrogen peroxide-independent production of a-alkenes by OleTJE P450 fatty acid decarboxylase. Biotechnol Biofuels 7(1):1

    Article  CAS  Google Scholar 

  • Matthews S, Tee KL, Rattray NJ, McLean KJ et al (2017) Production of alkenes and novel secondary products by P450 OleTJE using novel H2 O2 -generating fusion protein systems. FEBS Lett 591(5):737

    Article  CAS  PubMed  Google Scholar 

  • McInnes AG, Walter JA, Wright JL (1980) Biosynthesis of hydrocarbons by algae: decarboxylation of stearic acid to N-heptadecane in Anacystis nidulans determined by 13 C-and 2 H-labeling and 13 C nuclear magnetic resonance. Lipids 15(9):609

    Article  CAS  PubMed  Google Scholar 

  • Mehrer CR, Hernández Lozada NJ, Lai R-Y, Pfleger BF (2016) Production of fatty acids and derivatives by metabolic engineering of bacteria. In: Sang Yup Lee (ed) Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals. Springer, p 1. https://link.springer.com/referenceworkentry/10.1007%2F978-3-319-31421-1_385-1

  • Meighen EA (1998) Enzymes and genes from the lux operons of bioluminescent bacteria. Annu Rev Microbiol 42:151

    Article  Google Scholar 

  • Mendez-Perez D, Begemann MB, Pfleger BF (2011) Modular synthase-encoding gene involved in alpha-olefin biosynthesis in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 77(12):4264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez-Perez D, Herman NA, Pfleger BF (2014) A desaturase gene involved in the formation of 1,14-nonadecadiene in Synechococcus sp. strain PCC 7002. Appl Environ Microbiol 80(19):6073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19(3):228

    Article  CAS  PubMed  Google Scholar 

  • Nichols D, Nichols PD, McKMeekin TA (1995) A new n-C31:9 polyene hydrocarbon from Antarctic bacteria. FEMS Microbiol Lett 125(2–3):281

    Article  CAS  Google Scholar 

  • Oku H, Kaneda T (1998) Biosynthesis of branched-chain fatty acids in Bacillus subtilis. J Biol Chem 263(34):18386

    Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):1

    Article  CAS  Google Scholar 

  • Patel KG, Welch M, Gustafsson C (2016) Leveraging gene synthesis, advanced cloning techniques, and machine learning for metabolic pathway engineering. In: Van Dien S (ed) Metabolic engineering for bioprocess commercialization. Springer International Publishing Switzerland, p 53. https://doi.org/10.1007/978-3-319-41966-4_4

    Chapter  Google Scholar 

  • Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G et al (2012) An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci U S A 109(37):14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed JR, Vanderwel D, Choi S, Pomonis JG et al (1994) Unusual mechanism of hydrocarbon formation in the housefly: cytochrome P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc Natl Acad Sci U S A 91(21):10000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12(3):274

    Article  CAS  PubMed  Google Scholar 

  • Rude MA, Baron TS, Brubaker S, Alibhai M et al (2011) Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol 77(5):1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui Z, Li X, Zhu X, Liu J et al (2014) Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc Natl Acad Sci U S A 111(51):18237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumbold K, van Buijsen HJ, Overkamp KM, van Groenestijn JW et al (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Factories 8:64

    Article  CAS  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103

    Article  CAS  PubMed  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E et al (2010) Microbial biosynthesis of alkanes. Science 329(5991):559

    Article  CAS  PubMed  Google Scholar 

  • Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids, vol 148. Advances in biochemical engineering/biotechnology. Springer. http://www.springer.com/series/10

  • Sheppard MJ, Kunjapur AM, Prather KL (2016) Modular and selective biosynthesis of gasoline-range alkanes. Metab Eng 33:28

    Article  CAS  PubMed  Google Scholar 

  • Singleton C, Howard TP, Smirnoff N (2014) Synthetic metabolons for metabolic engineering. J Exp Bot 65(8):1947

    Article  CAS  PubMed  Google Scholar 

  • Sinha M, Weyda I, Sorensen A, Bruno KS et al (2017) Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express 7(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smirnova N, Reynolds KA (2001) Branched-chain fatty acid biosynthesis in Escherichia coli. J Ind Microbiol Biotechnol 27(4):246

    Article  CAS  PubMed  Google Scholar 

  • Song X, Yu H, Zhu K (2016) Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl Microbiol Biotechnol 100(2):757

    Article  CAS  PubMed  Google Scholar 

  • Sorigue D, Legeret B, Cuine S, Morales P et al (2016) Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol 171(4):2393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 99(12):4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugihara S, Hori R, Nakanowatari H, Takada Y et al (2010) Possible biosynthetic pathways for all cis-3,6,9,12,15,19,22, 25,28-hentriacontanonaene in bacteria. Lipids 45(2):167

    Article  CAS  PubMed  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA et al (2010a) Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 76(12):3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukovich DJ, Seffernick JL, Richman JE, Hunt KA et al (2010b) Structure, function, and insights into the biosynthesis of a head-to-head hydrocarbon in Shewanella oneidensis strain MR-1. Appl Environ Microbiol 76(12):3842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ (1999) Insect pheromones – an overview of biosynthesis and endocrine regulation. Insect Biochem Mol 29(6):481

    Article  CAS  Google Scholar 

  • Vickers CE, Blank LM, Kromer JO (2010) Chassis cells for industrial biochemical production. Nat Chem Biol 6(12):875

    Article  CAS  PubMed  Google Scholar 

  • Warui DM, Li N, Norgaard H, Krebs C et al (2011) Detection of formate, rather than carbon monoxide, as the stoichiometric co-product in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 133(10):3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109(3):111

    Article  Google Scholar 

  • Winters K, Parker PL, Van Baalen C (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163(3866):467

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Wang W, Zhang W, Chen L et al (2017) Versatility of hydrocarbon production in cyanobacteria. Appl Microbiol Biotechnol 101(3):905

    Article  CAS  PubMed  Google Scholar 

  • Yan H, Wang Z, Wang F, Tan TW et al (2016) Biosynthesis of chain-specific alkanes by metabolic engineering in Escherichia coli. Eng Life Sci 16(1):53

    Article  CAS  Google Scholar 

  • Yoshino T, Liang Y, Arai D, Maeda Y et al (2015) Alkane production by the marine cyanobacterium Synechococcus sp. NKBG15041c possessing the alpha-olefin biosynthesis pathway. Appl Microbiol Biotechnol 99(3):1521

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. J., Lu, X. F., Li, J. J. (2013) Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnology for Biofuels 6:86. https://doi.org/10.1186/1754-6834-6-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Liang Y, Wu W, Tan X et al (2016) Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase. Biotechnol Biofuels 9:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

J.L. would like to thank the BBSRC for PhD funding (BB/M017036/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Howard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brown, S., Loh, J., Aves, S.J., Howard, T.P. (2019). Alkane Biosynthesis in Bacteria. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-78108-2_7

Download citation

Publish with us

Policies and ethics