Skip to main content

Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

Over the past century, hydrogels have emerged as an effective material for an immense variety of applications. This contribution provides a brief overview of recent progress in cellulose-based superabsorbent hydrogels, fabrication approaches, materials, and promising applications. Firstly, hydrogels fabricated directly from various polymerization processes are presented. Secondly, we review on the stimuli-responsive hydrogels such as the role of temperature, electric potential, pH, and ionic strength to control the role of hydrogel in different applications. Also, the synthesis route and its formation mechanism for the production of smart superabsorbent, macro- and nano-hydrogels are addressed. In addition, several applications and future research in cellulose-based superabsorbent hydrogels are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28(34):5185–5192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  PubMed  Google Scholar 

  3. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  4. Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51(30):7396–7417

    Article  CAS  Google Scholar 

  5. Khan S, Ullah A, Ullah K, Rehman NU (2016) Insight into hydrogels. Des Monomers Polym 19(5):456–478

    Article  CAS  Google Scholar 

  6. Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, Rijeka

    Google Scholar 

  7. Das N (2013) Preparation methods and properties of hydrogel: a review. Int J Pharm Pharm Sci 5(3):112–117

    CAS  Google Scholar 

  8. Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6

    Article  CAS  PubMed Central  Google Scholar 

  9. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  10. Ma J, Li X, Bao Y (2015) Advances in cellulose-based superabsorbent hydrogels. RSC Adv 5(73):59745–59757

    Article  CAS  Google Scholar 

  11. Hennink WE, Van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64:223–236

    Article  Google Scholar 

  12. Gibas I, Janik H (2010) Synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4(4):297–304

    Google Scholar 

  13. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol Eng 50(14):1475–1486

    Article  CAS  Google Scholar 

  14. Zhao W, Jin X, Cong Y, Liu Y, Fu J (2013) Degradable natural polymer hydrogels for articular cartilage tissue engineering. J Chem Technol Biotechnol 88(3):327–339

    Article  CAS  Google Scholar 

  15. Bel’nikevich N, Bobrova N, Elokhovskii VY, Zoolshoev Z, Smirnov M, Elyashevich G (2011) Effect of initiator on the structure of hydrogels of cross-linked polyacrylic acid. Russ J Appl Chem 84(12):2106–2113

    Article  CAS  Google Scholar 

  16. Xiao X (2007) Effect of the initiator on thermosensitive rate of poly (N-isopropylacrylamide) hydrogels. Express Polym Lett 1:232–235

    Article  CAS  Google Scholar 

  17. Kaihara S, Matsumura S, Fisher JP (2008) Synthesis and characterization of cyclic acetal based degradable hydrogels. Eur J Pharm Biopharm 68(1):67–73

    Article  CAS  PubMed  Google Scholar 

  18. Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93(1):175–188

    PubMed  PubMed Central  Google Scholar 

  19. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    Article  CAS  PubMed  Google Scholar 

  20. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23

    Article  Google Scholar 

  21. Wong RSH, Ashton M, Dodou K (2015) Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics 7(3):305–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  CAS  Google Scholar 

  23. Haraguchi K, Xu Y, Li G (2011) Poly (N-isopropylacrylamide) prepared by free-radical polymerization in aqueous solutions and in nanocomposite hydrogels. Macromol Symp 306-307:33. Wiley Online Library

    Article  CAS  Google Scholar 

  24. Jeong GT, Lee KM, Yang HS, Park SH, Park JH, Sunwoo C, Ryu HW, Kim D, Lee WT, Kim HS (2007) Synthesis of poly(sorbitan methacrylate) hydrogel by free-radical polymerization. Appl Biochem Biotechnol 137–140(1–12):935–946

    PubMed  Google Scholar 

  25. Thürmer MB, Diehl CE, Brum FJB, Santos LA (2014) Preparation and characterization of hydrogels with potential for use as biomaterials. Mater Res 17:109–113

    Article  CAS  Google Scholar 

  26. Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly(vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9(2):185–191

    Article  Google Scholar 

  27. Liu ZQ, Wei Z, Zhu XL, Huang GY, Xu F, Yang JH, Osada Y, Zrínyi M, Li JH, Chen YM (2015) Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf B Biointerfaces 128:140–148

    Article  CAS  PubMed  Google Scholar 

  28. Bakota EL, Aulisa L, Galler KM, Hartgerink JD (2011) Enzymatic cross-linking of a nanofibrous peptide hydrogel. Biomacromolecules 12(1):82–87

    Article  CAS  PubMed  Google Scholar 

  29. Bajpai S, Bajpai M, Sharma L (2007) Inverse suspension polymerization of poly(methacrylic acid-co-partially neutralized acrylic acid) superabsorbent hydrogels: synthesis and water uptake behavior. Des Monomers Polym 10(2):181–192

    Article  CAS  Google Scholar 

  30. Abd Alla SG, Said HM, El-Naggar AWM (2004) Structural properties of γ-irradiated poly(vinyl alcohol)/poly(ethylene glycol) polymer blends. J Appl Polym Sci 94(1):167–176

    Article  CAS  Google Scholar 

  31. Doria-Serrano MC, Ruiz-Treviño FA, Rios-Arciga C, Hernández-Esparza M, Santiago P (2001) Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge. Biomacromolecules 2(2):568–574

    Article  CAS  PubMed  Google Scholar 

  32. de Jong SJ, De Smedt SC, Demeester J, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE (2001) Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Control Release 72(1):47–56

    Article  PubMed  Google Scholar 

  33. Navarra MA, Dal Bosco C, Serra Moreno J, Vitucci FM, Paolone A, Panero S (2015) Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes. Membranes 5(4):810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Penco M, Marcioni S, Ferruti P, D’Antone S, Deghenghi R (1996) Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Biomaterials 17(16):1583–1590

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Liu C, Fan L, Sheng Y, Mao J, Chao G, Li J, Tu M, Qian Z (2005) Synthesis of biodegradable poly(butylene terephthalate)/poly(ethylene glycol)(PBT/PEG) multiblock copolymers and preparation of indirubin loaded microspheres. Polym Bull 53(3):147–154

    Article  CAS  Google Scholar 

  36. Patil S (2008) Crosslinking of polysaccharides: methods and applications. Latest Rev 6(2):1

    Google Scholar 

  37. Kulkarni N, Wakte P, Naik J (2015) Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharma Investig 5(2):73

    Article  CAS  Google Scholar 

  38. Francis R, Kumar DS (2016) Biomedical applications of polymeric materials and composites. Wiley, Weinheim, Germany

    Google Scholar 

  39. Zustiak SP, Wei Y, Leach JB (2012) Protein–hydrogel interactions in tissue engineering: mechanisms and applications. Tissue Eng Pt B-Rev 19(2):160–171

    Article  CAS  Google Scholar 

  40. Akhtar MF, Hanif M, Ranjha NM (2016) Methods of synthesis of hydrogels…a review. Saudi Pharm J 24(5):554–559

    Article  PubMed  Google Scholar 

  41. He M, Zhao Y, Duan J, Wang Z, Chen Y, Zhang L (2014) Fast contact of solid–liquid interface created high strength multi-layered cellulose hydrogels with controllable size. ACS Appl Mater Interface 6(3):1872–1878

    Article  CAS  Google Scholar 

  42. Bassil M, AL Moussawel J, Ibrahim M, Azzi G, El Tahchi M (2014) Electrospinning of highly aligned and covalently cross-linked hydrogel microfibers. J Appl Polym Sci 131(22):41092

    Article  CAS  Google Scholar 

  43. Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33(4):332–336

    Article  CAS  PubMed  Google Scholar 

  44. Tomšič B, Simončič B, Orel B, Vilčnik A, Spreizer H (2007) Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydr Polym 69(3):478–488

    Article  CAS  Google Scholar 

  45. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353

    Article  CAS  PubMed Central  Google Scholar 

  46. Fajardo A, Pereira A, Rubira A, Valente A, Muniz E (2015) Stimuli-responsive polysaccharide-based hydrogels. In: Polysaccharide hydrogels. Pan Stanford, Singapore, pp 325–366

    Chapter  Google Scholar 

  47. Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17(26):8062–8068

    Article  CAS  Google Scholar 

  48. Sammon C, Bajwa G, Timmins P, Melia CD (2006) The application of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the concentration and state of water in solutions of a thermally responsive cellulose ether during gelation. Polymer 47(2):577–584

    Article  CAS  Google Scholar 

  49. Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted O-methylcelluloses. Carbohydr Polym 53(2): 145–153

    Article  CAS  Google Scholar 

  50. Joshi SC, Liang CM, Lam YC (2008) Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels. J Biomater Sci Polym Ed 19(12):1611–1623

    Article  CAS  PubMed  Google Scholar 

  51. Weiss P, Gauthier O, Bouler JM, Grimandi G, Daculsi G (1999) Injectable bone substitute using a hydrophilic polymer. Bone 25(2):67S–70S

    Article  CAS  PubMed  Google Scholar 

  52. Silva SM, Pinto FV, Antunes FE, Miguel MG, Sousa JJ, Pais AA (2008) Aggregation and gelation in hydroxypropylmethyl cellulose aqueous solutions. J Colloid Interface Sci 327(2): 333–340

    Article  CAS  PubMed  Google Scholar 

  53. Vinatier C, Gauthier O, Fatimi A, Merceron C, Masson M, Moreau A, Moreau F, Fellah B, Weiss P, Guicheux J (2009) An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol Bioeng 102(4):1259–1267

    Article  CAS  PubMed  Google Scholar 

  54. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84(1):40–53

    Article  CAS  Google Scholar 

  55. Trojani C, Weiss P, Michiels JF, Vinatier C, Guicheux J, Daculsi G, Gaudray P, Carle GF, Rochet N (2005) Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26(27):5509–5517

    Article  CAS  PubMed  Google Scholar 

  56. Hirsch SG, Spontak RJ (2002) Temperature-dependent property development in hydrogels derived from hydroxypropyl cellulose. Polymer 43(1):123–129

    Article  CAS  Google Scholar 

  57. Demitri C, Scalera F, Madaghiele M, Sannino A, Maffezzoli A (2013) Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int J Polym Sci 2013:Article ID 435073. https://doi.org/10.1155/2013/435073. 6 pages

    Article  CAS  Google Scholar 

  58. Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18(1):53–75

    Article  Google Scholar 

  59. Kimura A, Nagasawa N, Taguchi M (2014) Cellulose gels produced in room temperature ionic liquids by ionizing radiation. Radiat Phys Chem 103:216–221

    Article  CAS  Google Scholar 

  60. Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Riess G (2006) Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer 47(19): 6481–6484

    Article  CAS  Google Scholar 

  61. Ebara M, Kotsuchibashi Y, Uto K, Aoyagi T, Kim YJ, Narain R, Idota N, Hoffman JM (2014) Smart hydrogels. In: Smart biomaterials. Springer, Tokyo, pp 9–65

    Google Scholar 

  62. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222

    Article  CAS  Google Scholar 

  63. Sharma K, Singh V, Arora A (2011) Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 32:85–103

    Google Scholar 

  64. Thakur A, Wanchoo R, Singh P (2011) Structural parameters and swelling behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Chem Biochem Eng Q 25(2):181–194

    CAS  Google Scholar 

  65. Onofrei M, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Polymer science: research advances, practical applications and educational aspects. Formatex, Badajoz, pp 108–120

    Google Scholar 

  66. Sakaguchi T, Nagano S, Hara M, Hyon S-H, Patel M, Matsumura K (2017) Facile preparation of transparent poly (vinyl alcohol) hydrogels with uniform microcrystalline structure by hot-pressing without using organic solvents. Polym J 49(7):535–542

    Article  CAS  Google Scholar 

  67. Karoyo AH, Wilson LD (2017) Physicochemical properties and the gelation process of supramolecular hydrogels: a review. Gels 3(1):1

    Article  CAS  PubMed Central  Google Scholar 

  68. Borzacchiello A, Ambrosio L (2009) Structure-property relationships. In: Hydrogels in hydrogels. Springer, Berlin, pp 9–20

    Chapter  Google Scholar 

  69. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18(11):1345–1360

    Article  CAS  Google Scholar 

  70. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100

    Article  CAS  Google Scholar 

  71. Pourjavadi A, Ayyari M, Amini-Fazl M (2008) Taguchi optimized synthesis of collagen-g-poly(acrylic acid)/kaolin composite superabsorbent hydrogel. Eur Polym J 44(4):1209–1216

    Article  CAS  Google Scholar 

  72. Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110(4):2453–2460

    Article  CAS  Google Scholar 

  73. Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Int 52(1):387–400

    Article  CAS  Google Scholar 

  74. Fekete T, Borsa J, Takács E, Wojnárovits L (2016) Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent. Radiat Phys Chem 118:114–119

    Article  CAS  Google Scholar 

  75. Duan J, Zhang X, Jiang J, Han C, Yang J, Liu L, Lan H, Huang D (2014) The synthesis of a novel cellulose physical gel. J Nanomater 2014:1

    Article  CAS  Google Scholar 

  76. D’Arrigo G (2013) Macro and nano shaped polysaccharide hydrogels as drug delivery systems. Northeastern University, Boston

    Google Scholar 

  77. Li L, Jiang R, Chen J, Wang M, Ge X (2017) In situ synthesis and self-reinforcement of polymeric composite hydrogel based on particulate macro-RAFT agents. RSC Adv 7(3): 1513–1519

    Article  CAS  Google Scholar 

  78. Feeney M, Giannuzzo M, Paolicelli P, Casadei MA (2007) Hydrogels of dextran containing nonsteroidal anti-inflammatory drugs as pendant agents. Drug Deliv 14(2):87–93

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Liu Y, Liu J, Guo P, Heng L (2017) Super water absorbency OMMT/PAA hydrogel materials with excellent mechanical properties. RSC Adv 7(24):14504–14510

    Article  CAS  Google Scholar 

  80. Sannino A, Esposito A, Nicolais L, Del Nobile M, Giovane A, Balestrieri C, Esposito R, Agresti M (2000) Cellulose-based hydrogels as body water retainers. J Mater Sci-Mater M 11(4):247–253

    Article  CAS  Google Scholar 

  81. Sannino A, Mensitieri G, Nicolais L (2004) Water and synthetic urine sorption capacity of cellulose-based hydrogels under a compressive stress field. J Appl Polym Sci 91(6): 3791–3796

    Article  CAS  Google Scholar 

  82. Sannino A, Esposito A, Rosa AD, Cozzolino A, Ambrosio L, Nicolais L (2003) Biomedical application of a superabsorbent hydrogel for body water elimination in the treatment of edemas. J Biomed Mater Res A 67((3):1016–1024

    Article  CAS  Google Scholar 

  83. Li X, He JZ, Hughes JM, Liu YR, Zheng YM (2014) Effects of super-absorbent polymers on a soil–wheat (Triticum aestivum L.) system in the field. Appl Soil Ecol 73:58–63

    Article  Google Scholar 

  84. Salmawi KME, El-Naggar AA, Ibrahim SM (2018) Gamma irradiation synthesis of carboxymethyl cellulose/acrylic acid/clay superabsorbent hydrogel. Adv Polym Technol 37(2), 515–521

    Google Scholar 

  85. Li J, Jiang M, Wu H, Li Y (2009) Addition of modified bentonites in polymer gel formulation of 2, 4-D for its controlled release in water and soil. J Agric Food Chem 57(7):2868–2874

    Article  CAS  PubMed  Google Scholar 

  86. Kołodyńska D, Skiba A, Be G, Hubicki Z (2016) Hydrogels from fundaments to application. In: Emerging concepts in analysis and applications of hydrogels. InTech, Vienna

    Google Scholar 

  87. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119(1):5–24

    Article  CAS  PubMed  Google Scholar 

  88. Xiaoyu N, Yuejin W, Zhengyan W, Lin W, Guannan Q, Lixiang Y (2013) A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosyst Eng 115(3):274–282

    Article  Google Scholar 

  89. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  90. Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439

    Article  CAS  PubMed  Google Scholar 

  91. Davidson DW, Verma MS, Gu FX (2013) Controlled root targeted delivery of fertilizer using an ionically crosslinked carboxymethyl cellulose hydrogel matrix. Springerplus 2(1):318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davidson DGu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60(4):870–876

    Article  CAS  Google Scholar 

  93. Zohuriaan-Mehr MJ, Kabiri K (2008) Superabsorbent polymer materials: a review. Iran Polym J 17(6):451

    CAS  Google Scholar 

  94. Spagnol C, Rodrigues FH, Pereira AG, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87(3):2038–2045

    Article  CAS  Google Scholar 

  95. Liu H, Zhang Y, Yao J (2014) Preparation and properties of an eco-friendly superabsorbent based on flax yarn waste for sanitary napkin applications. Fibers Polym 15(1):145

    Article  CAS  Google Scholar 

  96. Zhang Y, Wu F, Liu L, Yao J (2013) Synthesis and urea sustained-release behavior of an eco-friendly superabsorbent based on flax yarn wastes. Carbohydr Polym 91(1):277–283

    Article  CAS  PubMed  Google Scholar 

  97. Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68(2):367–374

    Article  CAS  Google Scholar 

  98. Marcì G, Mele G, Palmisano L, Pulito P, Sannino A (2006) Environmentally sustainable production of cellulose-based superabsorbent hydrogels. Green Chem 8(5):439–444

    Article  CAS  Google Scholar 

  99. Zhou Y, Fu S, Zhang L, Zhan H, Levit MV (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb (II). Carbohydr Polym 101:75–82

    Article  CAS  PubMed  Google Scholar 

  100. Tripathy J, Mishra DK, Behari K (2009) Graft copolymerization of N-vinylformamide onto sodium carboxymethylcellulose and study of its swelling, metal ion sorption and flocculation behaviour. Carbohydr Polym 75(4):604–611

    Article  CAS  Google Scholar 

  101. Kamel S, Hassan E, El-Sakhawy M (2006) Preparation and application of acrylonitrile-grafted cyanoethyl cellulose for the removal of copper (II) ions. J Appl Polym Sci 100(1):329–334

    Article  CAS  Google Scholar 

  102. Abdel-Aal S, Gad Y, Dessouki A (2006) The use of wood pulp and radiation-modified starch in wastewater treatment. J Appl Polym Sci 99(5):2460–2469

    Article  CAS  Google Scholar 

  103. Hashem A, Ahmad F, Fahad R (2008) Application of some starch hydrogels for the removal of mercury (II) ions from aqueous solutions. Adsorpt Sci Technol 26(8):563–579

    Article  CAS  Google Scholar 

  104. Rohrbach K, Li Y, Zhu H, Liu Z, Dai J, Andreasen J, Hu L (2014) A cellulose based hydrophilic, oleophobic hydrated filter for water/oil separation. Chem Commun 50(87): 13296–13299

    CAS  Google Scholar 

  105. Mulyadi A, Zhang Z, Deng Y (2016) Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Appl Mater Interfaces 8(4):2732–2740

    Article  CAS  PubMed  Google Scholar 

  106. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  107. Lloyd AW, Faragher RG, Denyer SP (2001) Ocular biomaterials and implants. Biomaterials 22(8):769–785

    Article  CAS  PubMed  Google Scholar 

  108. Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5(4):2054–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  110. Lin C-CMetters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev 58(12):1379–1408

    Google Scholar 

  111. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    Article  CAS  PubMed  Google Scholar 

  112. Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromolecules 14(12):4447–4455

    Article  CAS  PubMed  Google Scholar 

  113. Leone G, Fini M, Torricelli P, Giardino R, Barbucci R (2008) An amidated carboxymethylcellulose hydrogel for cartilage regeneration. J Mater Sci-Mater M 19(8):2873–2880

    Article  CAS  Google Scholar 

  114. Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80((1):66–74

    Article  CAS  Google Scholar 

  115. Zohuriaan-Mehr M, Omidian H, Doroudiani S, Kabiri K (2010) Advances in non-hygienic applications of superabsorbent hydrogel materials. J Mater Sci 45(21):5711–5735

    Article  CAS  Google Scholar 

  116. Jones V, Grey JE, Harding KG (2006) ABC of wound healing: wound dressings. BMJ- Brit Med J 332(7544):777

    Article  PubMed  Google Scholar 

  117. Dabiri G, Damstetter E, Phillips T (2016) Choosing a wound dressing based on common wound characteristics. Adv Wound Care 5(1):32–41

    Article  Google Scholar 

  118. Stashak TS, Farstvedt E, Othic A (2004) Update on wound dressings: indications and best use. Clin Tech Equine Pract 3(2):148–163

    Article  Google Scholar 

  119. Winter GD (1962) Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193:293–294

    Article  CAS  PubMed  Google Scholar 

  120. Murphy PS, Evans GR (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int 2012:190436

    PubMed  PubMed Central  Google Scholar 

  121. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    Article  CAS  PubMed  Google Scholar 

  122. Liu X, Ma PX (2009) Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30(25):4094–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bukhari SMH, Khan S, Rehanullah M, Ranjha NM (2015) Synthesis and characterization of chemically cross-linked acrylic acid/gelatin hydrogels: effect of pH and composition on swelling and drug release. Int J Polym Sci 2015:Article ID 187961. https://doi.org/10.1155/2015/187961. 15 pages

    Article  CAS  Google Scholar 

  124. Saini K (2017) Preparation method, properties and crosslinking of hydrogel: a review. PharmaTutor 5(1):27–36

    CAS  Google Scholar 

  125. Hatefi A, Amsden B (2002) Biodegradable injectable in situ forming drug delivery systems. J Control Release 80(1):9–28

    Article  CAS  PubMed  Google Scholar 

  126. Park SA, Lee SH, Kim W (2011) Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. Macromol Res 19(7):694–698

    Article  CAS  Google Scholar 

  127. Bakarich SE, Pidcock GC, Balding P, Stevens L, Calvert P (2012) Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. Soft Matter 8(39):9985–9988

    Article  CAS  Google Scholar 

  128. Jin KM, Kim YH (2008) Injectable, thermo-reversible and complex coacervate combination gels for protein drug delivery. J Control Release 127(3):249–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the University of Malaya: SATU Joint Research Scheme (ST015-2017) and Postgraduate Research Grant Scheme (PPP) (PG249-2016A, PG253-2016A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwei Voon Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, Y.W., Binti Hassan, S.H., Yahya, M., Lee, H.V. (2019). Novel Superabsorbent Cellulose-Based Hydrogels: Present Status, Synthesis, Characterization, and Application Prospects. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_9

Download citation

Publish with us

Policies and ethics