Skip to main content

Nanocomposite Hydrogels Obtained by Gamma Irradiation

  • Reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Abstract

During the past decades hydrogels have gained considerable interest and reviewed from different points of view, because of their unique properties. The hydrogel 3D structure, porosity, swelling behavior, stability, gel strength, as well as biodegradability, nontoxicity, and biocompatibility are properties which are widely variable and easily adjusted, making them suitable for many versatile applications, especially in the field of medicine and biotechnology. Generally, hydrogels possess the huge potential to be used as a matrix for incorporation of different types of nanoparticles. Namely, hydrogels in the swollen state provide free space between cross-linked polymer chains, in which the nucleation and growth of nanoparticles occurs. In this way, the carrier-hydrogel system acts as a nanoreactor that also immobilizes nanoparticles and provides easy handling with obtained hydrogel nanocomposites. It is well known that the properties of nanocomposite materials are dependent on the method of synthesis. Among various techniques, the radiation-induced synthesis offers a number of advantages over the conventional physical and chemical methods. Radiolytic method is a highly suitable way for formation of three-dimensional polymer network, i.e., hydrogels, as well as for generation of nanoparticles in a solution (especially metal nanoparticles). This method provides fast, easy, and clean synthesis of hydrogel nanocomposites. Moreover, and probably the most important from the biomedical point of view, is the possibility of simultaneous formation of nanocomposite hydrogel and its sterilization in one technological step. Despite all the mentioned advantages of radiolytic method, there are not so many investigations related to nanocomposite materials based on nanoparticles incorporated in a hydrogel matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gachard E, Remita H, Khatouri J, Keita B, Nadjo L, Belloni J (1998) Radiation-induced and chemical formation of gold clusters. New J Chem 22:1257–1265

    Article  CAS  Google Scholar 

  2. Jayaramudu T, Raghavendra GM, Varaprasad K, Sadiku R, Raju KM (2013) Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria. Carbohyd Polym 92:2193–2200

    Article  CAS  Google Scholar 

  3. Krklješ A, Nedeljković JM, Kačarević-Popović ZM (2007) Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym Bul 58:271–279

    Article  CAS  Google Scholar 

  4. Krstić J, Spasojević J, Radosavljević A, Perić-Grujić A, Đurić M, Kačarević-Popović Z, Popović S (2014) In vitro silver ion release kinetics from nanosilver/poly(vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci 131:40321

    Article  CAS  Google Scholar 

  5. Radosavljević A, Krstić J, Spasojević J, Kačarević-Popović Z (2016) Radiolytic incorporation of gold nanoparticles into PVA hydrogel. In: Proceedings of 13th international conference of fundamental and applied aspects of physical chemistry, Belgrade, Serbia, 26–30 September 2016, p 589–592

    Google Scholar 

  6. Marinović-Cincović MT, Radosavljević AN, Krstić JI, Spasojević JP, Bibić NM, Mitrić MN, ZM KP (2014) Physicochemical characteristics of gamma irradiation crosslinked poly(vinyl alcohol)/magnetite ferrogel composite. Hem Ind 68(6):743–753

    Article  Google Scholar 

  7. Eid M (2013) Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation. J Polym Res 20:112

    Article  CAS  Google Scholar 

  8. Gattas-Asfura KM, Zheng Y, Micic M, Snedaker MJ, Ji X, Sui G, Orbulescu J, Andreopoulos FM, Pham SM, Wang C, Leblanc RM (2003) Immobilization of quantum dots in the photo-cross-linked poly(ethylene glycol)-based hydrogel. J Phys Chem B 107:10464–10469

    Article  CAS  Google Scholar 

  9. Kuljanin-Jakovljević JŽ, Radosavljević AN, Spasojević JP, Carević MV, Mitrić MN, Kačarević-Popović ZM (2017) Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel. Radiat Phys Chem 130:282–290

    Article  CAS  Google Scholar 

  10. Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macrom Rap Commun 27:1346–1354

    Article  CAS  Google Scholar 

  11. Mohan YM, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer 48:158–164

    Article  CAS  Google Scholar 

  12. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interf Sci 315:389–395

    Article  CAS  Google Scholar 

  13. Murthy PSK, Mohan YM, Varaprasad K, Sreedhar B, Raju KM (2008) First successful design of semi-IPN hydrogel-silver nanocomposites: a facile approach for antibacterial application. J Colloid Interf Sci 318:217–224

    Article  CAS  Google Scholar 

  14. Luo YL, Wei QB, Xu F, Chen YS, Fan LH, Zhang CH (2009) Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks. Mater Chem Phys 118:329–336

    Article  CAS  Google Scholar 

  15. Rosiak JM (1994) Radiation formation of hydrogels for drug delivery. J Control Release 31(1):9–19

    Article  CAS  Google Scholar 

  16. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19(5):375–398

    CAS  Google Scholar 

  17. Peppas NA, Sahlin JJ (1996) Hydrogels as mucoadhesive and bioadhesive materials: a review. Biomaterials 17(16):1553–1561

    Article  CAS  PubMed  Google Scholar 

  18. Hennink WE, van Nostrum CF (2002) Novel crosslinking methods to design hydrogels. Adv Drug Deliver Rev 54(1):13–36

    Article  CAS  Google Scholar 

  19. Schacht EH (2004) Polymer chemistry and hydrogel systems. J Phys Conf Ser 3:22–28

    Article  CAS  Google Scholar 

  20. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliver Rev 64:18–23

    Article  Google Scholar 

  21. Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19:3480–3484

    Article  CAS  Google Scholar 

  22. Techawanitchai P, Ebara M, Idota N, Asoh T-A, Kikuchi A, Aoyagi T (2012) Photo-switchable control of pH-responsive actuators via pH jump reaction. Soft Matter 8:2844–2851

    Article  CAS  Google Scholar 

  23. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  CAS  PubMed  Google Scholar 

  24. Idota N, Kikuchi A, Kobayashi J, Sakai K, Okano T (2005) Microfluidic valves comprising nanolayered thermoresponsive polymer-grafted capillaries. Adv Mater 17:2723–2727

    Article  CAS  Google Scholar 

  25. Hoffman AS (1987) Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. J Control Release 6:297–305

    Article  CAS  Google Scholar 

  26. Kim Y-J, Ebara M, Aoyagi T (2012) A smart nanofiber web that captures and releases cells. Angew Chem Int Edit 51:10537–10541

    Article  CAS  Google Scholar 

  27. Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y (2012) A synthetic approach toward a self-regulated insulin delivery system. Angew Chem Int Edit 51:2124–2128

    Article  CAS  Google Scholar 

  28. Miyata T, Uragami T, Nakamae K (2002) Biomolecule-sensitive hydrogels. Adv Drug Deliver Rev 54:79–98

    Article  CAS  Google Scholar 

  29. Feil H, Bae YH, Feijen J, Kim SW (1991) Molecular separation by thermosensitive hydrogel membranes. J Membr Sci 64:283–294

    Article  CAS  Google Scholar 

  30. Chmielewski AG, Haji-Saeid M (2004) Radiation technologies: past, present and future. Radiat Phys Chem 71:16–20

    Google Scholar 

  31. Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  32. Rosiak JM, Uanski P, Pajewski LA, Yoshii F, Makuuchi K (1995) Radiation formation of hydrogels for biomedical purposes. Some remarks and comments. Radiat Phys Chem 46(2):161–168

    Article  CAS  Google Scholar 

  33. Kabanov VY (1998) Preparation of polymeric biomaterials with the aid of radiation-chemical methods. Russ Chem Rev 67(9):783–816

    Article  Google Scholar 

  34. Coqueret X (2008) Obtaining high performance polymeric materials by irradiation. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Les Ulis, pp 131–150

    Google Scholar 

  35. Chapiro A (1964) Radiation chemistry of polymers. Radiat Res Suppl 4:179–191

    Article  CAS  Google Scholar 

  36. Caykara T (2004) Effect of maleic acid content on network structure and swelling properties of poly(N-isopropylacrylamide-co-maleic acid) polyelectrolyte hydrogels. J Appl Polym Sci 92:763–769

    Article  CAS  Google Scholar 

  37. Charlesby A (1960) Atomic radiation and polymers. Pergamon Press, Oxford, pp 467–491

    Book  Google Scholar 

  38. Rosiak JM, Uanski P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139–151

    Article  CAS  Google Scholar 

  39. Draganić IG, Draganić ZD (1971) The radiation chemistry of water. Academic Press, New York/London, pp 47–170

    Google Scholar 

  40. Wang B, Mukataka S, Kokofuta E, Kodama M (2000) The influence of polymer concentration on the radiation-chemical yield of intermolecular crosslinking of poly(vinyl alcohol) by γ-rays in deoxygenated aqueous solution. Radiat Phys Chem 59:91–95

    Article  CAS  Google Scholar 

  41. von Sonntag C (2006) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, Berlin/Heidelberg, pp 197–210

    Book  Google Scholar 

  42. Kadlubowski S, Grobelny J, Olejniczak W, Cichomski M, Ulanski P (2003) Pulses of fast electrons as a tool to synthesize poly(acrylic acid) nanogels. Intramolecular cross-linking of linear polymer chains in additive-free aqueous solution. Macromolecules 36:2484–2492

    Article  CAS  Google Scholar 

  43. Rosiak JM, Olejniczak J, Pekala W (1990) Fast reaction of irradiated polymers - I. Crosslinking and degradation of polyvinylpyrrolidone. Radiat Phys Chem 36:747–755

    CAS  Google Scholar 

  44. Rosiak JM, Olejniczak J (1993) Medical applications of radiation formed hydrogels. Radiat Phys Chem 42:903–906

    Article  CAS  Google Scholar 

  45. Spasojević J, Radosavljević A, Krstić J, Jovanović D, Spasojević V, Kalagasidis-Krušić M, Kačarević-Popović Z (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185

    Article  CAS  Google Scholar 

  46. Caykara T, Dogmus M, Kantoglu O (2004) Network structure and swelling-shrinking behaviors of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. J Polym Sci Pol Phys 42:2586–2594

    Article  CAS  Google Scholar 

  47. Karadag E, Saraydin D, Sahiner N, Guven O (2001) Radiation induced acrylamide/citric acid hydrogels and their swelling behaviors. J Macromol Sci A 38:1105–1121

    Article  Google Scholar 

  48. Abd El-Mohdy HL, Safrany A (2008) Preparation of fast response superabsorbent hydrogels by radiation polymerization and crosslinking of N-isopropylacrylamide in solution. Radiat Phys Chem 77:273–279

    Article  CAS  Google Scholar 

  49. Qiao ZP, Xie Y, Xu JG, Zhu YJ, Quian YT (1999) γ-Radiation synthesis of the nanocrystalline semiconductors PbS and CuS. J Colloid Interf Sci 214:459–461

    Article  CAS  Google Scholar 

  50. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ (2015) Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multi-functional materials. Adv Sci 2:1400010

    Article  CAS  Google Scholar 

  51. Hu Y, Chen J-F (2007) Synthesis and characterization of semiconductor nanomaterials and micromaterials via gamma-irradiation route. J Clust Sci 18:371–387

    Article  CAS  Google Scholar 

  52. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  53. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 112(3):788–800

    Article  Google Scholar 

  54. Karthikeyan B (2005) Spectroscopic studies on Ag–polyvinyl alcohol nanocomposite films. Physica B 364(1–4):328–332

    Article  CAS  Google Scholar 

  55. Gaddy GA, Korchev AS, McLain JL, Slaten BL, Steigerwalt ES, Mills G (2004) Light-induced formation of silver particles and clusters in crosslinked PVA/PAA films. J Phys Chem B 108(39):14850–14857

    Article  CAS  Google Scholar 

  56. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97(21):5457–5471

    Article  CAS  Google Scholar 

  57. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22(11):1239–1255

    Article  CAS  Google Scholar 

  58. Temgire MK, Joshi SS (2004) Optical and structural studies of silver nanoparticles. Rad Phys Chem 71(5):1039–1044

    Article  CAS  Google Scholar 

  59. Belloni J, Mostafavi M (2001) Radiation chemistry of nanocolloids and clusters. In: Charles Jonah CD, Madhava Rao BS (eds) Radiation chemistry present status and future trends, vol 87. Elsevier, Amsterdam, pp 411–452

    Chapter  Google Scholar 

  60. Krstić J, Spasojević J, Radosavljević A, Šiljegovć M, Kačarević-Popović Z (2014) Optical and structural properties of radiolytically in situ synthesized silver nanoparticles stabilized by chitosan/poly(vinylalcohol) blends. Radiat Phys Chem 96:158–166

    Article  CAS  Google Scholar 

  61. Mostafavi M, Liu YP, Pernot P, Belloni J (2000) Dose rate effect on size of CdS clusters induced by irradiation. Radiat Phys Chem 59:49–59

    Article  CAS  Google Scholar 

  62. Souici AH, Keghouche N, Delaire JA, Remita H, Mostafavi M (2006) Radiolytic synthesis and optical properties of ultra-small stabilized ZnS nanoparticles. Chem Phys Lett 422:25–29

    Article  CAS  Google Scholar 

  63. Souici AH, Keghouche N, Delaire JA, Remita H, Etcheberry A, Mostafavi M (2009) Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method. J Phys Chem C 113:8050–8057

    Article  CAS  Google Scholar 

  64. Mie G (1908) Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann Phys 25:377–445

    Article  CAS  Google Scholar 

  65. Liz-Marzan LM (2004) Nanometals: formation and color. Mater Today 7:26–31

    Article  CAS  Google Scholar 

  66. Gudiksen MS, Lauhon UJ, Wang J, Smith DC, Lieber CM (2002) Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415:617–620

    Article  CAS  PubMed  Google Scholar 

  67. Melosh NA, Boukai A, Diana F, Gerardot B, Badolato A, Petroff PM, Heath JR (2003) Ultrahigh-density nanowire lattices and circuits. Science 300:112–115

    Article  CAS  PubMed  Google Scholar 

  68. Rujitanaroj P, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732

    Article  CAS  Google Scholar 

  69. Agarwal S, Wendorff J, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    Article  CAS  Google Scholar 

  70. Secinti KD, Ayten M, Kahilogullari G, Kaygusuz G, Ugur HC, Attar A (2008) Antibacterial effects of electrically activated vertebral implants. J Clin Neurosci 15:434–439

    Article  PubMed  Google Scholar 

  71. Hilton JR, Williams DT, Beuker B, Miller DR, Harding KG (2004) Wound dressings in diabetic foot disease. Clin Infect Dis 39:S100–S103

    Article  PubMed  Google Scholar 

  72. Zan X, Kozlov M, Mc Carthy TJ, Su Z (2010) Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid). Biomacromolecules 11:1082–1088

    Article  CAS  PubMed  Google Scholar 

  73. Davis SC, Martinez L, Kirsner R (2006) The diabetic foot: the importance of biofilms and wound bed preparation. Curr Diabetes Rep 6:439–445

    Article  CAS  Google Scholar 

  74. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  CAS  PubMed  Google Scholar 

  75. Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4:6903–6913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Singh B (2007) Psyllium as therapeutic and drug delivery agent. Int J Pharm 334:1–14

    Article  CAS  PubMed  Google Scholar 

  77. Hardes J, Ahrens H, Gebert C, Streitberger A, Buerger H, Erre M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875

    Article  CAS  PubMed  Google Scholar 

  78. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    Article  CAS  PubMed  Google Scholar 

  79. Jovanović Ž, Radosavljević A, Kačarević-Popović Z, Stojkovska J, Perić-Grujić A, Ristić M, Matić ZM, Juranić ZD, Obradović B, Mišković-Stanković V (2013) Bioreactor validation and biocompatibility of Ag/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposites. Colloid Surface B 105:230–235

    Article  CAS  Google Scholar 

  80. Ratner B, Hoffman A (1976) Synthetic hydrogels for biomedical applications. In: Andrade JD (ed) Hydrogels for medical and related applications, vol 31. American Chemical Society, Washington DC, pp 1–36

    Chapter  Google Scholar 

  81. Kobayashi M, Hyu HS (2010) Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants. Materials 3(4):2753–2771

    Article  CAS  PubMed Central  Google Scholar 

  82. Petrović M, Mitraković D, Bugarski D, Vonwil D, Martin I, Obradović B (2009) A novel bioreactor with mechanical stimulation for skeletal tissue engineering. CI&CEQ 15:41–44

    Article  Google Scholar 

  83. Jovanović Ž, Krklješ A, Stojkovska J, Tomić S, Obradović B, Mišković-Stanković V, Kačarević-Popović Z (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215

    Article  CAS  Google Scholar 

  84. Gu ZQ, Xiao JM, Zhang XH (1998) The development of artificial articular cartilage-PVA-hydrogel. Biomed Mater Eng 8:75–81

    CAS  PubMed  Google Scholar 

  85. Yong Q, Kinam P (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64:49–60

    Google Scholar 

  86. Milašinović N, Milosavljević N, Filipović J, Knežević-Jugović Z, Kalagasidis-Krušić M (2010) Synthesis, characterization and application of poly(N-isopropylacrylamide-co-itaconic acid) hydrogels as supports for lipase immobilization. React Funct Polym 70:807–814

    Article  CAS  Google Scholar 

  87. Chanda M, Roy SK (2009) Hydrogels and smart polymers. In: Hudgin DE (ed) Industrial polymers, specialty polymers and their applications. CRC Press, Boca Raton, pp 2115–2122

    Google Scholar 

  88. Cortes J, Mendizabal E, Katime I (2008) Effect of comonomer type and concentration on the equilibrium swelling and volume phase transition temperature of N-Isopropylacrylamide-based hydrogels. J Appl Polym Sci 108:1792–1796

    Article  CAS  Google Scholar 

  89. Tasdelen B, Kayaman-Apohan N, Guven O, Baysal B (2004) Investigation of drug release from thermo- and pH-sensitive poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels. Polym Adv Technol 15:528–532

    Article  CAS  Google Scholar 

  90. Ramirez-Fuentes Y, Bucio E, Burillo G (2008) Thermo and pH sensitive copolymer based on acrylic acid and N-Isopropylacrylamide grafted onto polypropylene. Polym Bull 60:79–87

    Article  CAS  Google Scholar 

  91. Constantin M, Cristea M, Ascenzi P, Fundueanu G (2011) Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems. Express Polym Lett 5:839–848

    Article  CAS  Google Scholar 

  92. Kalagasidis-Krušić M, Ilić M, Filipović J (2009) Swelling behaviour and paracetamol release from poly(N-isopropylacrylamide-itaconic acid) hydrogel. Polym Bull 63:197–211

    Article  CAS  Google Scholar 

  93. Bhattacharyya L, Rohrer JS (2012) Applications of ion chromatography for pharmaceutical and biological products, appendix 1. Wiley, Hoboken, pp 451–453

    Book  Google Scholar 

  94. Ni Y, Liu H, Wang F, Liang Y, Hong J, Ma X, Xu Z (2004) PbS crystals with clover-like structure: preparation, characterization, optical properties and influencing factors. Cryst Res Technol 39(3):200–206

    Article  CAS  Google Scholar 

  95. Peterson JJ, Krauss TD (2006) Fluorescence spectroscopy of single lead sulfide quantum dots. Nano Lett 6(3):510–514

    Article  CAS  PubMed  Google Scholar 

  96. Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Nanoparticle-reinforced associative network hydrogels. Langmuir 24:13148–13154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Agrawal SK, Sanabria-DeLong N, Bhatia SK, Tew GN, Bhatia SR (2010) Energetics of association in poly(lactic acid)-based hydrogels with crystalline and nanoparticle-polymer junctions. Langmuir 26:17330–17338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Buso D, Falcaro P, Costacurta S, Gugliemi M, Martucci A, Innocenzi P, Malfatti L, Bello V, Mattei G, Sada C, Amenitsch H, Gerdova I, Hache A (2005) PbS-doped mesostructured silica films with high optical nonlinearity. Chem Mater 17:4965–4970

    Article  CAS  Google Scholar 

  99. Segal N, Keren-Zur S, Hendler N, Ellenbogen T (2015) Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics 9:180–184

    Article  CAS  Google Scholar 

  100. Laurent S, Forge D, Port M, Roch A, Robic C, Vander EL, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  PubMed  Google Scholar 

  101. Zrinyi M, Barsi L, Buki A (1997) Ferrogel: a new magneto-controlled elastic medium. Polym Gels Netw 5:415–427

    Article  CAS  Google Scholar 

  102. Ramanujan RV, Lao LL (2006) The mechanical behavior of smart magnet–hydrogel composites. Smart Mater Struct 15:952–956

    Article  Google Scholar 

  103. Lao LL, Ramanujan RV (2004) Magnetic and hydrogel composite materials for hyperthermia applications. J Mater Sci Mater Med 15:1061–1064

    Article  CAS  PubMed  Google Scholar 

  104. Taurin S, Nehoff H, Khaled Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164:265–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (Project No. 45005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Radosavljević .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Radosavljević, A., Spasojević, J., Krstić, J., Kačarević-Popović, Z. (2019). Nanocomposite Hydrogels Obtained by Gamma Irradiation. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-77830-3_21

Download citation

Publish with us

Policies and ethics