Skip to main content

Active Storage

  • Reference work entry
  • First Online:
Encyclopedia of Big Data Technologies

Synonyms

Active disk; Intelligent disk; Near-Data Processing; Programmable Memory/Processing In Memory (PIM)

Overview

In brief, Active Storage refers to an architectural hardware and software paradigm, based on co-location storage and compute units. Ideally, it will allow to execute application-defined data- or compute-intensive operations in situ, i.e., within (or close to) the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.

Over the last decade, we are witnessing a clear trend toward the fusion of the compute-intensive and the data-intensive paradigms on architectural, system, and application level. On the one hand, large computational tasks (e.g., simulations) tend to feed growing amounts of data into their complex computational models; on the other hand, database...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya A, Uysal M, Saltz J (1998) Active disks: Programming model, algorithms and evaluation. In: Proceedings of the eighth international conference on architectural support for programming languages and operating systems, ASPLOS VIII, pp 81–91

    Google Scholar 

  • Ahmad I, Namal S, Ylianttila M, Gurtov A (2015) Security in software defined networks: a survey. IEEE Commun Surv Tutorials 17(4):2317–2346

    Article  Google Scholar 

  • Ahn J, Yoo S, Mutlu O, Choi K (2015) PIM-enabled instructions: a low-overhead, locality-aware processing-in-memory architecture. In: Proceeding of 42nd annual international symposium on computer architecture (ISCA’15), pp 336–348

    Google Scholar 

  • Azarkhish E, Pfister C, Rossi D, Loi I, Benini L (2017) Logic-base interconnect design for near memory computing in the smart memory cube. IEEE Trans Very Large Scale Integr VLSI Syst 25:210–223

    Article  Google Scholar 

  • Babarinsa OO, Idreos S (2015) Jafar: near-data processing for databases. In: SIGMOD

    Book  Google Scholar 

  • Balasubramonian R (2016) Making the case for feature-rich memory systems: the march toward specialized systems. IEEE Solid-State Circuits Mag 8(2):57–65

    Article  Google Scholar 

  • Balasubramonian R, Chang J, Manning T, Moreno JH, Murphy R, Nair R, Swanson S (2014) Near-data processing: insights from a micro-46 workshop. IEEE Micro 34(4):36–42

    Article  Google Scholar 

  • Boral H, DeWitt DJ (1983) Database machines: an idea whose time has passed? A critique of the future of database machines. In: Leilich H-O, Missikoff M (eds) Database machines. Springer, Berlin/Heidelberg, pp 166–187

    Chapter  Google Scholar 

  • Boroumand A, Ghose S, Patel M, Hassan H, Lucia B, Hsieh K, Malladi KT, Zheng H, Mutlu O (2017) LazyPIM: an efficient cache coherence mechanism for processing-in-memory. IEEE Comput Archit Lett 16(1):46–50

    Article  Google Scholar 

  • Chen C, Chen Y (2012) Dynamic active storage for high performance I/O. In: 2012 41st international conference on Parallel Processing. IEEE, pp 379–388

    Google Scholar 

  • Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y, Xie Y (2016) PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In: Proceeding of 2016 43rd international symposium on computer architecture (ISCA 2016), pp 27–39

    Google Scholar 

  • Cho BY, Jeong WS, Oh D, Ro WW (2013a) Xsd: accelerating mapreduce by harnessing the GPU inside an SSD. In: WoNDP: 1st workshop on near-data processing in conjunction with IEEE MICRO-46

    Google Scholar 

  • Cho S, Park C, Oh H, Kim S, Yi Y, Ganger GR (2013b) Active disk meets flash: a case for intelligent SSDs. In: Proceeding of ICS, pp 91–102

    Google Scholar 

  • DeWitt D, Gray J (1992) Parallel database systems: the future of high performance database systems. Commun ACM 35(6):85–98

    Article  Google Scholar 

  • Do J, Kee YS, Patel JM, Park C, Park K, DeWitt DJ (2013) Query processing on smart SSDs: opportunities and challenges. In: Proceeding of SIGMOD, pp 1221–1230

    Google Scholar 

  • Drumond M, Daglis A, Mirzadeh N, Ustiugov D, Picorel J, Falsafi B, Grot B, Pnevmatikatos D (2017) The mondrian data engine. ACM SIGARCH Comput Archit News 45(2):639–651

    Article  Google Scholar 

  • Fan S, He Z, Tan H (2016) An active storage system with dynamic task assignment policy. In: 2016 12th international conference on natural computation fuzzy system and knowledge discovery (ICNC-FSKD 2016), pp 1421–1427

    Google Scholar 

  • Gao M, Ayers G, Kozyrakis C (2016a) Practical near-data processing for in-memory analytics frameworks. Parallel architecture and compilation techniques – Conference proceedings, PACT 2016-March, pp 113–124

    Google Scholar 

  • Gao M, Delimitrou C, Niu D, Malladi KT, Zheng H, Brennan B, Kozyrakis C (2016b) DRAF: a low-power DRAM-based reconfigurable acceleration fabric. In: 2016 ACM/IEEE 43rd annual international symposium on computer architecture. IEEE, pp 506–518

    Google Scholar 

  • Gao M, Pu J, Yang X, Horowitz M, Kozyrakis C (2017) TETRIS: scalable and efficient neural network acceleration with 3D memory. ASPLOS 51(2):751–764

    Article  Google Scholar 

  • Hall M, Kogge P, Koller J, Diniz P, Chame J, Draper J, LaCoss J, Granacki J, Brockman J, Srivastava A, Athas W, Freeh V, Shin J, Park J (1999) Mapping irregular applications to DIVA, a PIM-based data-intensive architecture. In: ACM/IEEE conference on supercomputing (SC 1999), p 57

    Google Scholar 

  • Hardavellas N, Ferdman M, Falsafi B, Ailamaki A (2011) Toward dark silicon in servers. IEEE Micro 31(4):6–15

    Article  Google Scholar 

  • Hsieh K, Ebrahim E, Kim G, Chatterjee N, O’Connor M, Vijaykumar N, Mutlu O, Keckler SW (2016) Transparent offloading and mapping (TOM): enabling programmer-transparent near-data processing in GPU systems. In: Proceeding of 2016 43rd international symposium on computer architecture (ISCA 2016), pp 204–216

    Google Scholar 

  • István Z, Sidler D, Alonso G (2017) Caribou: intelligent distributed storage. Proc VLDB Endow 10(11): 1202–1213

    Article  Google Scholar 

  • Jo I, Bae DH, Yoon AS, Kang JU, Cho S, Lee DDG, Jeong J (2016) Yoursql: a high-performance database system leveraging in-storage computing. Proc VLDB Endow 9:924–935

    Article  Google Scholar 

  • Keeton K, Patterson DA, Hellerstein JM (1998) A case for intelligent disks (idisks). SIGMOD Rec 27(3):42–52

    Article  Google Scholar 

  • Kim G, Chatterjee N, O’Connor M, Hsieh K (2017a) Toward standardized near-data processing with unrestricted data placement for GPUs. In: Proceeding of international conference on high performance computing networking, storage and analysis (SC’17), pp 1–12

    Google Scholar 

  • Kim NS, Chen D, Xiong J, Hwu WMW (2017b) Heterogeneous computing meets near-memory acceleration and high-level synthesis in the post-moore era. IEEE Micro 37(4):10–18

    Article  Google Scholar 

  • Kim S, Oh H, Park C, Cho S, Lee SW, Moon B (2016) In-storage processing of database scans and joins. Inf Sci 327(C):183–200

    Article  Google Scholar 

  • Korinth J, Chevallerie Ddl, Koch A (2015) An open-source tool flow for the composition of reconfigurable hardware thread pool architectures. In: Proceedings of the 2015 IEEE 23rd annual international symposium on field-programmable custom computing machines (FCCM’15). IEEE Computer Society, Washington, DC, pp 195–198

    Chapter  Google Scholar 

  • Kotra JB, Guttman D, Chidambaram Nachiappan N, Kandemir MT, Das CR (2017) Quantifying the potential benefits of on-chip near-data computing in manycore processors. In: 2017 IEEE 25th international symposium on modeling, analysis, and simulation of computer and telecommunication system, pp 198–209

    Google Scholar 

  • Lim H, Park G (2017) Triple engine processor (TEP): a heterogeneous near-memory processor for diverse kernel operations. ACM Ref ACM Trans Arch Code Optim Artic 14(4):1–25

    Google Scholar 

  • Muramatsu B, Gierschi S, McMartin F, Weimar S, Klotz G (2004) If you build it, will they come? In: Proceeding of 2004 joint ACM/IEEE Conference on digital libraries (JCDL’04) p 396

    Google Scholar 

  • Najafi M, Sadoghi M, Jacobsen HA (2013) Flexible query processor on FPGAs. Proc VLDB Endow 6(12):1310–1313

    Article  Google Scholar 

  • Patterson D, Anderson T, Cardwell N, Fromm R, Keeton K, Kozyrakis C, Thomas R, Yelick K (1997) A case for intelligent ram. IEEE Micro 17(2):34–44

    Article  Google Scholar 

  • Petrov I, Almeida G, Buchmann A, Ulrich G (2010) Building large storage based on flash disks. In: Proceeding of ADMS’10

    Google Scholar 

  • Picorel J, Jevdjic D, Falsafi B (2017) Near-Memory Address Translation. In: 2017 26th international conference on Parallel architectures and compilation techniques, pp 303–317, 1612.00445

    Google Scholar 

  • Ren Y, Wu X, Zhang L, Wang Y, Zhang W, Wang Z, Hack M, Jiang S (2017) iRDMA: efficient use of RDMA in distributed deep learning systems. In: IEEE 19th international conference on high performance computing and communications, pp 231–238

    Google Scholar 

  • Riedel E, Gibson GA, Faloutsos C (1998) Active storage for large-scale data mining and multimedia. In: Proceedings of the 24rd international conference on very large data bases (VLDB’98), pp 62–73

    Google Scholar 

  • Sadoghi M, Javed R, Tarafdar N, Singh H, Palaniappan R, Jacobsen HA (2012) Multi-query stream processing on FPGAs. In: 2012 IEEE 28th international conference on data engineering, pp 1229–1232

    Google Scholar 

  • Samsung (2015) In-storage computing. http://www.flash- memorysummit.com/English/Collaterals/Proceedings/ 2015/20150813_S301D_Ki.pdf

  • Seshadri S, Gahagan M, Bhaskaran S, Bunker T, De A, Jin Y, Liu Y, Swanson S (2014) Willow: a user-programmable SSD. In: Proceeding of OSDI’14

    Google Scholar 

  • Sivathanu M, Bairavasundaram LN, Arpaci-Dusseau AC, Arpaci-Dusseau RH (2005) Database-aware semantically-smart storage. In: Proceedings of the 4th conference on USENIX conference on file and storage technologies (FAST’05), vol 4, pp 18–18

    Google Scholar 

  • Sykora J, Koutny T (2010) Enhancing performance of networking applications by IP tunneling through active networks. In: 9th international conference on networks (ICN 2010), pp 361–364

    Google Scholar 

  • Szalay A, Gray J (2006) 2020 computing: science in an exponential world. Nature 440:413–414

    Article  Google Scholar 

  • Tennenhouse DL, Wetherall DJ (1996) Towards an active network architecture. ACM SIGCOMM Comput Commun Rev 26(2):5–17

    Article  Google Scholar 

  • Tiwari D, Boboila S, Vazhkudai SS, Kim Y, Ma X, Desnoyers PJ, Solihin Y (2013) Active flash: towards energy-efficient, in-situ data analytics on extreme-scale machines. In: Proceeding of FAST, pp 119–132

    Google Scholar 

  • Vermij E, Fiorin L, Jongerius R, Hagleitner C, Lunteren JV, Bertels K (2017) An architecture for integrated near-data processors. ACM Trans Archit Code Optim 14(3):30:1–30:25

    Article  Google Scholar 

  • Wang Y, Zhang M, Yang J (2017) Towards memory-efficient processing-in-memory architecture for convolutional neural networks. In: Proceeding 18th ACM SIGPLAN/SIGBED conference on languages compilers, and tools for embedded systems (LCTES 2017), pp 81–90

    Google Scholar 

  • Woods L, Teubner J, Alonso G (2013) Less watts, more performance: an intelligent storage engine for data appliances. In: Proceeding of SIGMOD, pp 1073–1076

    Google Scholar 

  • Woods L, István Z, Alonso G (2014) Ibex: an intelligent storage engine with support for advanced sql offloading. Proc VLDB Endow 7(11):963–974

    Article  Google Scholar 

  • Wulf WA, McKee SA (1995) Hitting the memory wall: implications of the obvious. SIGARCH CAN 23(1):20–24

    Google Scholar 

  • Xi SL, Babarinsa O, Athanassoulis M, Idreos S (2015) Beyond the wall: near-data processing for databases. In: Proceeding of DaMoN, pp 2:1–2:10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Petrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Petrov, I., Vinçon, T., Koch, A., Oppermann, J., Hardock, S., Riegger, C. (2019). Active Storage. In: Sakr, S., Zomaya, A.Y. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-77525-8_309

Download citation

Publish with us

Policies and ethics