Bhuyan MH, Bhattacharyya DK, Kalita JK (2014) Network anomaly detection: methods, systems and tools. IEEE Commun Surv Tutorials 16(1):303–336. https://doi.org/10.1109/SURV.2013.052213.00046
CrossRef
Google Scholar
Casas P, Mazel J, Owezarski P (2012) Unsupervised network intrusion detection systems: detecting the unknown without knowledge. Comput Commun 35(7):772–783. https://doi.org/10.1016/j.comcom.2012.01.016
CrossRef
Google Scholar
Dainotti A, Pescapé A, Ventre G (2007) Worm traffic analysis and characterization. In: 2007 IEEE international conference on communications, pp 1435–1442. https://doi.org/10.1109/ICC.2007.241
Dainotti A, Pescapé A, Ventre G (2009) A cascade architecture for DoS attacks detection based on the wavelet transform. J Comput Secur 17(6): 945–968
CrossRef
Google Scholar
Finamore A, Mellia M, Meo M (2011) Mining unclassified traffic using automatic clustering techniques. Springer, Berlin/Heidelberg, pp 150–163. https://doi.org/10.1007/978-3-642-20305-3_13
Google Scholar
García S, Grill M, Stiborek J, Zunino A (2014) An empirical comparison of botnet detection methods. Comput Secur 45:100–123. https://doi.org/10.1016/j.cose.2014.05.011
CrossRef
Google Scholar
Haddadi F, Zincir-Heywood AN (2016) Benchmarking the effect of flow exporters and protocol filters on botnet traffic classification. IEEE Syst J 10:1390–1401. https://doi.org/10.1109/JSYST.2014.2364743
CrossRef
Google Scholar
Ilgun K, Kemmerer RA, Porras PA (1995) State transition analysis: a rule-based intrusion detection approach. IEEE Trans Softw Eng 21(3):181–199. https://doi.org/10.1109/32.372146
CrossRef
Google Scholar
Jiang S, Song X, Wang H, Han JJ, Li QH (2006) A clustering-based method for unsupervised intrusion detections. Pattern Recogn Lett 27(7):802–810. https://doi.org/10.1016/j.patrec.2005.11.007
CrossRef
Google Scholar
Kayacik HG, Zincir-Heywood AN, Heywood MI (2007) A hierarchical SOM-based intrusion detection system. Eng Appl Artif Intell 20(4):439–451
CrossRef
Google Scholar
Khanchi S, Heywood MI, Zincir-Heywood AN (2017) Properties of a GP active learning framework for streaming data with class imbalance. In: Proceedings of the genetic and evolutionary computation conference, pp 945–952. https://doi.org/10.1145/3071178.3071213
Kohonen T (2001) Self-organizing maps. Springer series in information sciences, vol 30, 3rd edn. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-56927-2
MATH
Google Scholar
Laney D (2001) 3D data management: controlling data volume, velocity, and variety. Technical report, META Group
Google Scholar
Le DC (2017) An unsupervised learning approach for network and system analysis. Master’s thesis, Dalhousie University
Google Scholar
Le DC, Zincir-Heywood AN, Heywood MI (2016) Data analytics on network traffic flows for botnet behaviour detection. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–7. https://doi.org/10.1109/SSCI.2016.7850078
Leung K, Leckie C (2005) Unsupervised anomaly detection in network intrusion detection using clusters. In: Proceedings of the twenty-eighth Australasian conference on computer science, vol 38, pp 333–342
Google Scholar
Otey ME, Ghoting A, Parthasarathy S (2006) Fast distributed outlier detection in mixed-attribute data sets. Data Min Knowl Discov 12(2–3):203–228. https://doi.org/10.1007/s10618-005-0014-6
MathSciNet
CrossRef
Google Scholar
Perdisci R, Gu G, Lee W (2006) Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems. In: Sixth international conference on data mining (ICDM’06), pp 488–498. https://doi.org/10.1109/ICDM.2006.165
Rajashekar D, Zincir-Heywood AN, Heywood MI (2016) Smart phone user behaviour characterization based on autoencoders and self organizing maps. In: ICDM workshop on data mining for cyber security, pp 319–326. https://doi.org/10.1109/ICDMW.2016.0052
Rashid T, Agrafiotis I, Nurse JR (2016) A new take on detecting insider threats: exploring the use of hidden Markov models. In: Proceedings of the 8th ACM CCS international workshop on managing insider security threats, pp 47–56. https://doi.org/10.1145/2995959.2995964
Sequeira K, Zaki M (2002) ADMIT: anomaly-based data mining for intrusions. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, pp 386–395. https://doi.org/10.1145/775047.775103
Shabtai A, Kanonov U, Elovici Y (2010) Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method. J Syst Softw 83(8):1524–1537. https://doi.org/10.1016/j.jss.2010.03.046
CrossRef
Google Scholar
Sommer R, Paxson V (2010) Outside the closed world: on using machine learning for network intrusion detection. In: 2010 IEEE symposium on security and privacy, pp 305–316. https://doi.org/10.1109/SP.2010.25
Thottan M, Ji C (2003) Anomaly detection in IP networks. IEEE Trans Signal Process 51(8):2191–2204
CrossRef
Google Scholar
Veeramachaneni K, Arnaldo I, Korrapati V, Bassias C, Li K (2016) AIˆ2: training a big data machine to defend. In: 2016 IEEE 2nd international conference on big data security on cloud (BigDataSecurity). IEEE, pp 49–54. https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79