Plant Defense and Insect Adaptation with Reference to Secondary Metabolites

  • Abdul Rasheed WarEmail author
  • Abdul Ahad Buhroo
  • Barkat Hussain
  • Tariq Ahmad
  • Ramakrishnan M. Nair
  • Hari C. Sharma
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


Insects pose a great threat to plants and plants in turn, withstand to insect attack through various morphological and biochemical traits. Among the plant defensive traits, secondary metabolites play a major role against insect herbivory as they are highly dynamic. They either occur constitutively in plants or are induced in response to insect herbivory. These metabolites include sulfur- (terpenes and flavonoids) and nitrogen-containing metabolites (alkaloids, cyanogenic glucosides, and nonprotein amino acids), which are being implicated by plants against insect pests. Plant secondary metabolites either are directly toxic to insect pests or mediate signaling pathways that produce plant toxins. Further, some of the plant secondary metabolites act through antixenosis mode by developing non-preference in host plant to the insect pests. However, some plant secondary metabolites recruit natural enemies of the insect pests, thus, indirectly defending plants against insect pests. However, insects have developed adaptations to these plant secondary metabolites. In this review, important plant secondary metabolites, their mechanism of action against insect pests, counter-adaptation by insects, and promising advances and challenges are discussed.


Plant-insect interactions Plant secondary metabolites Insect adaptation Sequestration Induced resistance 



Funding for this review was provided by the Australian Centre for International Agricultural Research (ACIAR) through the project on International Mungbean Improvement Network (CIM-2014-079) and strategic long-term donors to the World Vegetable Center: Republic of China (Taiwan), UK aid from the UK government, United States Agency for International Development (USAID), Germany, Thailand, Philippines, Korea, and Japan. Thanks are also due to Dr. Paola Sotelo-Cardona (Scientist-Entomology), World Vegetable Center, Taiwan, for her critical review on the manuscript.


  1. 1.
    Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn HT, Teal PEA (2006) Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 103:8894–8899PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Wu JQ, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66CrossRefGoogle Scholar
  4. 4.
    War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    War AR, Taggar GK, Hussain B, Taggar MS, Nair RM, Sharma HC (2018) Plant defence against herbivory and insect adaptations. AoB PLANTS 10:ply037. Scholar
  6. 6.
    Peters DJ, Constabel CP (2002) Molecular analysis of herbivore induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J: Cell Mol Biol 32:701–712CrossRefGoogle Scholar
  7. 7.
    Wink M, Schimmer O (2010) Molecular modes of action of defensive secondary metabolites. In: Wink M (ed) Functions and biotechnology of plant secondary metabolites. Wiley-Blackwell, Oxford, pp 21–161CrossRefGoogle Scholar
  8. 8.
    Wink M (2018) Plant secondary metabolites modulate insect behavior-steps toward addiction? Front Physiol 9:364. Scholar
  9. 9.
    Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Mason PA, Singer MS (2015) Defensive mixology: combining acquired chemicals towards defence. Funct Ecol 29:441–450CrossRefGoogle Scholar
  11. 11.
    Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18CrossRefGoogle Scholar
  12. 12.
    Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL et al (2008) Beta-glucosidases as detonators of plant chemical defense. Phytochemistry 69:1795–1813PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PEA (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci U S A 104:12976–12981PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hilker M, Meiners T (2006) Early herbivore alert: insect eggs induce plant defense. J Chem Ecol 32:1379–1397PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Alborn T, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949CrossRefGoogle Scholar
  16. 16.
    Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore- specific plant responses. Plant Physiol 125:711–717PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    von Dahl CC, Winz RA, Halitschke R, Kühnemann F, Gase K, Baldwin IT (2007) Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata. Plant J 51:293–307CrossRefGoogle Scholar
  18. 18.
    Consales F, Schweizer F, Erb M, Gouhier-Darimont C, Bodenhausen N, Bruessow F, Sobhy I, Reymond P (2012) Insect oral secretions suppress wound-induced responses in Arabidopsis. J Exp Bot 63:727–737PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Herbivory: caterpillar saliva beats plant defences. Nature 416:599–600PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E, Francis F, Luthe DS, Felton GW (2012) Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defenses in the tomato plant. PLoS One 7:e36168PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Louis J, Peiffer M, Ray S, Luthe DS, Felton GW (2013) Host-specific salivary elicitor(s) of European corn borer induce defenses in tomato and maize. New Phytol 199:66–73PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society for Plant Physiologists, Rockville, Maryland, USA, pp 1250–1318Google Scholar
  24. 24.
    War AR, Sharma HC, Paulraj MG, War MY, Ignacimuthu S (2011) Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal Behav 6:1973–1978PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Puttick GM, Bowers MD (1988) Effect of qualitative and quantitative variation in allelochemicals on a generalist insect: iridoid glycosides and the southern armyworm. J Chem Ecol 14:335–351PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Biere A, Marak HB, van Damme JM (2004) Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs? Oecologia 140:430–441PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Park KS, Kim BH, Chang IM (2010) Inhibitory potencies of several iridoids on cyclooxygenase-1, cyclooxygnase-2 enzymes activities, tumor necrosis factor-α and nitric oxide production in vitro. Evid Based Comp Alt Med 7:41–45CrossRefGoogle Scholar
  28. 28.
    Kim DH, Kim BR, Kim JY, Jeong YC (2000) Mechanism of covalent adduct formation of aucubin to proteins. Toxicol Lett 114:181–188PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Konno K, Hirayama C, Yasui H, Nakamura M (1999) Enzymatic activation of oleuropein: a protein crosslinker used as a chemical defense in the privet tree. Proc Natl Acad Sci U S A 96:9159–9164PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Bowers MD, Puttick GM (1988) Response of generalist and specialist insects to qualitative allelochemical variation. J Chem Ecol 14:319–334CrossRefGoogle Scholar
  31. 31.
    Niemeyer HM (2009) Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one: key defense chemicals of cereals. J Agric Food Chem 57:1677–1696PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Wouters FC, Blanchette B, Gershenzon J, Vassao DG (2016) Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochem Rev 15:1127–1151PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Maag D, Erb M, Köllner T, Gershenzon J (2015) Defensive weapons and defense signals in plants: some metabolites serve both roles. BioEssays 37:167–174PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Campos F, Atkinson J, Arnason JT, Philogéne BJR, Morand P, Werstiuk NH, Timmins G (1988) Toxicity and toxicokinetics of 6-methoxybenzoxazolinone (MBOA) in the European corn borer, Ostrinia nubilalis (Hubner). J Chem Ecol 14:989–1002PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Atkinson J, Arnason J, Campos F, Niemeyer HM, Bravo HR (1992) Synthesis and reactivity of cyclic hydroxamic acids. In: Baker DR, Fenyes JG, Steffens JJ (eds) Synthesis and chemistry of agrochemicals III. American Chemical Society, Washington, DCGoogle Scholar
  36. 36.
    Houseman JG, Campos F, Thie NMR, Philogene BJR, Atkinson J, Morand P, Arnason JT (1992) Effect of the maize derived compounds DIMBOA and MBOA on growth and digestive processes of European corn borer (Lepidoptera, Pyralidae). J Econ Entomol 85:669–674CrossRefGoogle Scholar
  37. 37.
    Maag D, Dalvit C, Thevenet D, Köhler A, Wouters FC, Vassao DG, Gershenzon J, Wolfender JL, Turlings TC, Erb M, Glauser G (2014) 3-β-D-glucopyranosyl-6-methoxy-2- benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry 102:97–105PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Argandoǹa VH, Luza JG, Niemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19:1665–1668CrossRefGoogle Scholar
  39. 39.
    Corcuera LJ, Queirolo CB, Argandoǹa VH (1985) Effects of 2-b-D-glucosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3- one on Schizaphis graminum (Rondani) (Insecta, Aphididae) feeding on artificial diets. Experientia 41:514–516CrossRefGoogle Scholar
  40. 40.
    Bohidar K, Wratten SD, Niemeyer HM (1986) Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann Appl Biol 109:193–198CrossRefGoogle Scholar
  41. 41.
    Ahmad S, Veyrat N, Gordon-Weeks R, Zhang Y, Martin J, Smart L, Glauser G, Erb M, Flors V, Frey M, Ton J (2011) Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiol 157:317–327PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cherrett JM (1972) Some factors involved in the selection of vegetable substrate by Atta cephalotes (L.) (hymenoptera: Formicidae) in tropical rain forest. J Anim Ecol 41:647–660CrossRefGoogle Scholar
  43. 43.
    Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52:689–724PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Canals D, Irurre-Santilari J, Casas J (2005) The first cytochrome P450 in ferns. FEBS J 272:4817–4825PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Cruickshank PA (1971) Insect juvenile hormone analogues: effects of some terpenoid amide derivatives. Bull World Health Org 44:395–396PubMedPubMedCentralGoogle Scholar
  46. 46.
    Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Thipyapong P, Steffens JC (1997) Tomato polyphenol oxidase: differential response of the polyphenol oxidase F promoter to injuries and wound signals. Plant Physiol 115:409–418PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Constabel CP, Bergey DR, Ryan CA (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci U S A 92:407–411PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Leszczynski B (1995) The influence of phenolic compounds on the preference of winter wheat cultivars by cereal aphids. Insect Sci Appl 6:157–158CrossRefGoogle Scholar
  50. 50.
    War AR, Paulraj MG, Ignacimuthu S, Sharma HC (2015) Induced resistance to Helicoverpa armigera through exogenous application of jasmonic acid and salicylic acid in groundnut, Arachis hypogaea. Pest Manag Sci 71:72–82PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Ruuhola T, Tikkanen O, Tahvanainen O (2001) Differences in host use efficiency of larvae of a generalist moth, Operophtera brumata on three chemically divergent Salix species. J Chem Ecol 27:1595–1615PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Luczynski A, Isman MB, Rawirth DA (1999) Strawberry foliar phenolics and their relationship to development of the two-spotted spider mite. J Econ Entomol 83:557–563CrossRefGoogle Scholar
  53. 53.
    Maxwell FG, Lafever HN, Jenkins JN (1965) Blister beetles on glandless cotton. J Econ Entomol 58:792–798CrossRefGoogle Scholar
  54. 54.
    Abou-Donia MB (1989) Gossypol. In: Cheeke PR (ed) Toxicants of plant origin, Phenolics, vol 5. CRC Press, Boca Raton, pp 2–22Google Scholar
  55. 55.
    Barbehenn RV, Constabel PC (2011) Tannins in plant-herbivore interactions. Phytochemistry 72:1551–1565PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Barbehenn RV, Martin MM, Hagerman AE (1996) Reassessment of the roles of the peritrophic envelope and hydrolysis in protecting polyphagous grasshoppers from ingested hydrolyzable tannins. J Chem Ecol 22:1901–1919PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Roitto M, Rautio P, Markkola A, Julkunen-Tiitto R, Varama M, Saravesi K, Tuomi J (2009) Induced accumulation of phenolics and sawfly performance in scots pine in response to previous defoliation. Tree Physiol 29:207–216PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Stevens MT, Lindroth RL (2005) Induced resistance in the indeterminate growth of aspen (Populus tremuloides). Oecologia 145:298–306PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Rossi AM, Stiling P, Moon DC, Cattell MV, Drake BG (2004) Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2. J Chem Ecol 30:1143–1152PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Ranga Rao DV (1992) Condensed tannin levels and resistance in groundnuts (Arachis hypogaea (L.)) against Aphis craccivora (Koch). Phytochemistry 31:3795–3800CrossRefGoogle Scholar
  61. 61.
    Bernays EA (1981) Plant tannins and insect herbivores: an appraisal. Ecol Entomol 6:353–360CrossRefGoogle Scholar
  62. 62.
    Feeny PP (1968) Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata. J Insect Physiol 14:805–817CrossRefGoogle Scholar
  63. 63.
    Simmonds MSJ (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S, Sharma HC (2013) Effect of plant secondary metabolites on Helicoverpa armigera. J Pest Sci 86:399–408CrossRefGoogle Scholar
  65. 65.
    Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157CrossRefGoogle Scholar
  66. 66.
    Simmonds MSJ, Blaney WM, Fellows LE (1990) Behavioural and electrophysiological study of antifeedant mechanisms associated with polyhydroxyalkaloids. J Chem Ecol 16:3167–3196PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Johnson ET, Dowd PF (2004) Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 52:5135–5138PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Lane GA, Sutherland ORW, Skipp RA (1987) Isoflavonoids as insect feeding deterrents and antifungal components from root of Lupinus angustifolius. J Chem Ecol 13:771–783PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol 27:965–977PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Renwick JAA, Zhang W, Haribal M, Attygalle AB, Lopez KD (2001) Dual chemical barriers protect a plant against different larval stages of an insect. J Chem Ecol 27:1575–1583PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hopkins RJ, van Dam NM, van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Karban R, Agrawal AA, Thaler JS, Adler LS (1999) Induced plant responses and information content about risk of herbivory. Trends Ecol Evol 14:443–447PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Grob K, Matile PH (1979) Vacuolar location of glucosinolates in horseradish root cells. Plant Sci Lett 14:327–335CrossRefGoogle Scholar
  74. 74.
    Bennett RN, Wallsgrove RM (1994) Tansley review no. 72. Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633CrossRefGoogle Scholar
  75. 75.
    Bodnaryk RP (1991) Developmental profile of sinalbin in mustard seedlings, Sinapis alba L., and its relationship to insect resistance. J Chem Ecol 17:1543–1556PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Li Q, Eigenbrode SD, Stringham GR, Thingarajah MR (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419CrossRefGoogle Scholar
  77. 77.
    Wink M (2012) Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 17:12771–12791PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wink M (2007) Molecular modes of action of cytotoxic alkaloids- from DNA intercalation, spindle poisoning, topoisomerase inhibition to apoptosis and multiple drug resistance. Alkaloids 64:1–48PubMedPubMedCentralGoogle Scholar
  79. 79.
    Schmeller T, Latz-Brüning B, Wink M (1997) Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257–266PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Salminen JP, Lahtinen M, Lempa K, Kapari L, Haukioja E, Pihlaja K (2004) Metabolic modifications of birch leaf phenolics by an herbivorous insect: detoxification of flavonoid aglycones via glycosylation. Zeits für Naturfor 59:437–444CrossRefGoogle Scholar
  81. 81.
    Ferreres F, Valentao P, Pereira JA, Bento A, Noites A, Seabra RM et al (2008) HPLC-DAD MS/MS-ESI screening of phenolic compounds in Pieris brassicae L. reared on Brassica rapa var. rapa L. J Agri Food Chem 56:844–853CrossRefGoogle Scholar
  82. 82.
    Schramm K, Vassao DG, Reichelt M, Gershenzon J, Wittstock U (2011) Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem Mol Biol 42:174–182PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Heckel D (2013) Insect detoxification and sequestration strategies. In: Voelckel C, Jander G (eds) Plant insect interactions. Wiley, ChichesterGoogle Scholar
  84. 84.
    Feyereisen R (2005) Insect cytochrome P450. In: Gilbert LI et al (eds) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 1–77Google Scholar
  85. 85.
    Cianfrogna JA, Zangeri AR, Berenbaum MR (2002) Dietary and developmental influences on induced detoxification in an oligophage. J Chem Ecol 28:1349–1364PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Li X, Berenbaum MR, Schular MA (2002) Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol Biol 11:343–351PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Stevens JL, Snyder MJ, Koener JF, Feyereisen R (2000) Inducible P450s of the CYP9 family from larval Manduca sexta midgut. Insect Biochem Mol Biol 30:559–568PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Li X, Schular MA, Berenbaum MR (2002) Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712–715PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Danielson PB, Frank MR, Fogleman JC (1994) Comparison of larval and adult P-450 activity levels for alkaloid metabolism in desert Drosophila. J Chem Ecol 20:1893–1906PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Yu SJ (2000) Allelochemical induction of hormone-metabolizing microsomal monooxygenases in the fall armyworm. Zool Studies 39(3):243–249Google Scholar
  91. 91.
    Berenbaum MR (1991) Comparative processing of allelochemicals in the Papilionidae (Lepidoptera). Arch Insect Biochem Physiol 17:213–221CrossRefGoogle Scholar
  92. 92.
    Ma R, Cohen MB, Berenbaum MR, Schuler MA (1994) Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins. Arch Biochem Biophys 310:332–340PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1254PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Andersen JF, Walding JK, Evans PH, Bowers WS, Feyereisen R (1997) Substrate specificity for the epoxidation of terpenoids and active site topology of house fly cytochrome P450 6A1. Chem Res Toxicol 10(2):156–164PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotech 25:1307–1313CrossRefGoogle Scholar
  96. 96.
    Chiu TL, Wen Z, Rupasinghe SG, Schuler MA (2008) Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc Natl Acad Sci U S A 105:8855–8860CrossRefGoogle Scholar
  97. 97.
    McLaughlin LA, Niazi U, Bibby J, David JP, Vontas J, Hemingway J, Ranson H, Sutcliffe MJ, Paine MJ (2008) Characterization of inhibitors and substrates of Anopheles gambiae CYP6Z2. Insect Mol Biol 17:125–135PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sutherland TD, Unnithan GC, Andersen JF, Evans PH, Murataliev MB, Szabo LZ, Mash EA, Bowers WS, Feyereisena R (1998) Cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proc Natl Acad Sci U S A 95:12884–12889PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Seybold SJ, Huber DPW, Lee JC, Graves AD, Bohlmann J (2006) Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochem Rev 5:143–178CrossRefGoogle Scholar
  100. 100.
    Yu SJ (1996) Insect glutathione S-transferases. Zool Stud 35:9–19Google Scholar
  101. 101.
    Feng Q, Davey KG, Pang ASD, Ladd TR, Retnakaran A, Tomkins BL et al (2001) Developmental expression and stress induction of glutathione S-transferase in the spruce budworm, Choristoneura fumiferana. J Insect Physiol 47:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14:3–8PubMedCrossRefGoogle Scholar
  103. 103.
    Francis F, Vanhaelen N, Haubruge E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch Insect Biochem Physiol 58:166–174PubMedCrossRefGoogle Scholar
  104. 104.
    Vanhaelen N, Haubruge E, Lognay G, Francis F (2001) Hoverfly glutathione S-transferases and effect of Brassicaceae secondary metabolites. Pestic Biochem Physiol 71:170–177CrossRefGoogle Scholar
  105. 105.
    Hu F, Ye K, Lu YJ, Thakur K, Jiang L (2018) Identification and expression profiles of twenty-six glutathione S-transferase genes from rice weevil, Sitophilus oryzae (Coleoptera: Curculionidae). Int J Biol Macromol 120:1063–1071PubMedCrossRefGoogle Scholar
  106. 106.
    Barbehenn R, Cheek S, Gasperut A, Lister E, Maben R (2005) Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars. J Chem Ecol 31:969–988PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Donkor D, Mirzahosseini Z, Bede J, Bauce E, Despland E (2018) Detoxification of host plant phenolic aglycones by the spruce budworm. bioRxiv 472308.
  108. 108.
    Usmani KA, Knowles CO (2001) DEF sensitive esterases in homogenates of larval and adult Helicoverpa zea, Spodoptera frugiperda, and Agrotis ipsilon (Lepidoptera: Noctuidae). J Econ Entomol 94:884–891PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Yang Z, Zhang F, He Q, He G (2005) Molecular dynamics of detoxification and toxin tolerance genes in brown plant hopper (Nilaparvata lugens Stal., Homoptera: Delphacidae) feeding on resistant rice plants. Arch Insect Biochem Physiol 59:59–66PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Mackenzie PI, Bock KW, Burchell B, Guillemette C, Ikushiro S, Iyanagi T, Miners JO, Owens IS, Nebert DW (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15:677–685PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ahmad SA, Hopkins TL (1993) β-Glycosylation of plant phenolics by phenol B-glucosyltransferase in larval tissues of the tobacco hornworm, Manduca sexta (L.). Insect Biochem Mol Biol 23:581–589CrossRefGoogle Scholar
  112. 112.
    Luque T, Okano K, O’Reilly DR (2002) Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. Eur J Biochem 269:819–825PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 1960:421–425CrossRefGoogle Scholar
  114. 114.
    Gripenberg S, Roslin T (2007) Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology. Oikos 116:181–188CrossRefGoogle Scholar
  115. 115.
    Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Swain T (1977) Secondary compounds as protective agents. Ann Rev Plant Phys 28:479–501CrossRefGoogle Scholar
  117. 117.
    van Veen FJF (2015) Plant-modified trophic interactions. Curr Opin Insect Sci 8:29–33CrossRefGoogle Scholar
  118. 118.
    Marsh NA, Clarke CA, Rothschild M, Kellett DN (1977) Hypolimnas bolina (L.), a mimic of danaid butterflies, and its model Euploea core (cram.) store cardioactive substances. Nature 268:726–728PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Abe F, Yamauchi T, Minato K (1996) Presence of cardenolides and ursolic acid from oleander leaves in larvae and frass of Daphnis nerii. Phytochemistry 42:45–49CrossRefGoogle Scholar
  120. 120.
    Petschenka G, Dobler S (2009) Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: the Na+K+-ATPase of the oleander hawk moth (Daphnis nerii) is highly susceptible to cardenolides. Chemoecology 19:235–239CrossRefGoogle Scholar
  121. 121.
    Bramer C, Dobler S, Deckert J, Stemmer M, Petschenka G (2015) Na/K ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae). Proc Biol Sci 282:1805CrossRefGoogle Scholar
  122. 122.
    Aardema ML, Zhen Y, Andolfatto P (2012) The evolution of cardenolide-resistant forms of Na+, K+-ATPase in Danainae butterflies. Mol Ecol 21:340–349PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Holzinger F, Wink M (1996) Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J Chem Ecol 22:1921–1937PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Dobler S, Petschenka G, Wagschal V, Flacht L (2015) Convergent adaptive evolution — how insects master the challenge of cardiac glycoside-containing host plants. Entomol Exp Appl 157:30–39CrossRefGoogle Scholar
  125. 125.
    Groeneveld HW, Steijl H, Berg B, Elings JC (1990) Rapid, quantitative HPLC analysis of Asclepias fruticosa L. and Danaus plexippus L. cardenolides. J Chem Ecol 16:3373–3382PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333CrossRefGoogle Scholar
  127. 127.
    Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci U S A 101:4859–4864PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci U S A 99:11223–11228PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Opitz SE, Jensen SR, Müller C (2010) Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J Chem Ecol 36:148–157PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Müller C, Boevé JL, Brakefield PM (2002) Host plant derived feeding deterrence towards ants in the turnip sawfly Athalia rosae. Entomol Exp Appl 104:153–157CrossRefGoogle Scholar
  131. 131.
    Müller C, Brakefield PM (2003) Analysis of a chemical defense in sawfly larvae: easy bleeding targets predatory wasps in late summer. J Chem Ecol 29:2683–2694PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Kos M, Kabouw P, Noordam R, Hendriks K, Vet LEM, Loon JJA, Dicke M (2011) Prey-mediated effects of glucosinolates on aphid predators. Ecol Entomol 36:377–388CrossRefGoogle Scholar
  133. 133.
    Abdalsamee MK, Müller C (2012) Effects of indole glucosinolates on performance and sequestration by the sawfly Athalia rosae and consequences of feeding on the plant defense system. J Chem Ecol 38:1366–1375PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Discher S, Burse A, Tolzin-Banasch K, Heinemann SH, Pasteels JM, Boland W (2009) A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy. Chembiochem 10:2223–2229PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant– insect interactions. Phytochemistry 65:293–306PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Pentzold S, Zagrobelny M, Roelsgaard PS, Møller BL, Bak S (2014) The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence. PLoS One 9:e91337PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Glauser G, Marti G, Villard N, Doyen GA, Wolfender J, Turlings TCJ, Erb M (2011) Induction and detoxification of maize 1,4- benzoxazin-3-ones by insect herbivores. Plant J 68:901–911PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Wouters FC, Reichelt M, Glauser G, Bauer E, Erb M, Gershenzon J, Vassaão DG (2014) Reglucosylation of the benzoxazinoid DIMBOA with inversion of stereochemical configuration is a detoxification strategy in lepidopteran herbivores. Angew Chem 126:11502–11506CrossRefGoogle Scholar
  140. 140.
    Strauss AS, Peters S, Boland W, Burse A (2013) ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. elife 2:e01096PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kumar P, Pandit SS, Steppuhn A, Baldwin IT (2014) Natural history driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proc Natl Acad Sci U S A 111:1245–1252PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Morris CE (1983) Uptake and metabolism of nicotine by the CNS of a nicotine-resistant insect, the tobacco hornworm (Manduca sexta). J Insect Physiol 29:807–817CrossRefGoogle Scholar
  143. 143.
    Kojima W, Fujii T, Suwa M, Miyazawa M, Ishikawa Y (2010) Physiological adaptation of the asian corn borer Ostrinia furnacalis to chemical defenses of its host plant, maize. J Insect Physiol 56:1349–1355.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Sasai H, Ishida M, Murakami K, Tadokoro N, Ishihara A, Nishida R, Mori N (2009) Species-specific glucosylation of DIMBOA in larvae of the rice armyworm. Biosci Biotechnol Biochem 73:1333–1338PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Loayza-Muro R, Figueroa CC, Niemeyer HM (2000) Effect of two wheat cultivars differing in hydroxamic acid concentration on detoxification metabolism in the aphid Sitobion avenae. J Chem Ecol 26:2725–2736CrossRefGoogle Scholar
  146. 146.
    Miller NJ, Zhao Z (2015) Transcriptional responses of Diabrotica virgifera virgifera larvae to benzoxazinoids. J Appl Entomol 139:416–423CrossRefGoogle Scholar
  147. 147.
    Campos F, Atkinson J, Arnason JT, Philogéne BJR, Morand P, Werstiuk NH, Timmins G (1989) Toxicokinetics of 2,4- dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) in the European corn borer, Ostrinia nubilalis (Hubner). J Chem Ecol 15:1989–2001PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Eswaran SV, Jindal A (2013) Grasshoppers — generalists to specialists? Resonance 18:810–816CrossRefGoogle Scholar
  149. 149.
    Martin JS, Martin MM, Bernays EA (1987) Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: implications for theories of plant defense. J Chem Ecol 13:605–621PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Barbehenn RV (2003) Antioxidants in grasshoppers: higher levels defend the midgut tissues of a polyphagous species than a graminivorous species. J Chem Ecol 29:683–702PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Krishnan N, Sehnal F (2006) Compartmentalization of oxidative stress and antioxidant defense in the larval gut of Spodoptera littoralis. Arch Insect Biochem Physiol 63:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Henn M (1999) The changes of polyphenols as a result of the passage through the gut of the gypsy moth Lymantria dispar (Lep., Lymantriidae): influence on the growth of the larvae. J App Entomol 123:391–395CrossRefGoogle Scholar
  154. 154.
    Kopper BJ, Jakobi VN, Osier TL, Lindroth RL (2002) Effects of paper birch condensed tannin on white marked tussock moth (Lepidoptera: Lymantriidae) performance. Env Entomol 31:10–14CrossRefGoogle Scholar
  155. 155.
    Bernays EA, Chamberlain DJ (1980) A study of tolerance of ingested tannin in Schistocerca gregaria. J Insect Physiol 26:415–420CrossRefGoogle Scholar
  156. 156.
    Peñaflor MF, Erb M, Robert CA, Miranda LA, Werneburg AG, Dossi FC, Turlings TC, Bento JM (2011) Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta 234:207–215PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Xiao Y, Wang Q, Erb M, Turlings TC, Ge L, Hu L, Li J, Han X, Zhang T, Lu J, Zhang G, Lou Y (2012) Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett 15:1130–1139PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci U S A 101:4859–4864PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Engler HS, Spencer KC, Gilbert LE (2000) Preventing cyanide release from leaves. Nature 406:144–145PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Seigler DS (1998) Plant secondary metabolism. Chapman & Hall, LondonCrossRefGoogle Scholar
  161. 161.
    Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Agrawal AA, Gorski PM, Tallamy DW (1999) Polymorphism in plant defense against herbivory: constitutive and induced resistance in Cucumis sativus. J Chem Ecol 25:2285–2304CrossRefGoogle Scholar
  163. 163.
    Siemens DH, Keck AG, Ziegenbein S (2010) Optimal defense in plants: assessment of resource allocation costs. Evol Ecol 24:1291–1305CrossRefGoogle Scholar
  164. 164.
    Bekaert M, Edger PP, Hudson CM, Pires JC, Conant GC (2012) Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol 196:596–605PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Agrawal AA, Karban R (1999) Why induced defenses may be favored over constitutive strategies in plants. In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 45–61Google Scholar
  166. 166.
    Després L, David JP, Gallet C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol Evol 22:298–307PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Schwenke RA, Lazzaro BP, Wolfner MF (2016) Reproduction–immunity trade-offs in insects. Annu Rev Entomol 61:239–256PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT (2012) Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93:981–991PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Brower LP, Moffitt CM (1974) Palatability dynamics of cardenolides in the monarch butterfly. Nature 249:280–283PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Paradise CJ, Stamp NE (1991) Prey recognition time of praying mantids (Dictyoptera: Mantidae) and consequent survivorship of unpalatable prey (Hemiptera: Lygaeidae). J Insect Behav 4:265–273CrossRefGoogle Scholar
  171. 171.
    Petschenka G, Bramer C, Pankoke H, Dobler S (2011) Evidence for a deterrent effect of cardenolides on Nephila spiders. Basic App Ecol 12:260–267CrossRefGoogle Scholar
  172. 172.
    Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE (2009) Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160:387–398PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Colvin SM, Yeargan KV (2013) Effects of milkweed host species on interactions between Aphis nerii (Hemiptera: Aphididae) and its parasitoids. J Kansas Entomol Soc 86:193–205CrossRefGoogle Scholar
  174. 174.
    War AR, Sharma HC (2014) Induced resistance in plants and counter- adaptation by insect pests. In: Chandrasekar R, Tyagi BK, Gui ZZ, Reeck GR (eds) Short views insect biochemistry and molecular biology. International Book Mission, Manhattan, Kansas State, USA, pp 533–547Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Abdul Rasheed War
    • 1
    Email author
  • Abdul Ahad Buhroo
    • 2
  • Barkat Hussain
    • 3
  • Tariq Ahmad
    • 2
  • Ramakrishnan M. Nair
    • 1
  • Hari C. Sharma
    • 4
  1. 1.World Vegetable Center, South AsiaHyderabadIndia
  2. 2.Entomology Division, Department of ZoologyUniversity of KashmirSrinagarIndia
  3. 3.Sher-e-Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
  4. 4.Division of EntomologyInternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT), PatancheruMedakIndia

Personalised recommendations