Advertisement

Field Dodder Life Cycle and Interaction with Host Plants

  • Marija Sarić-KrsmanovićEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Cuscuta as a generalist type of holoparasitic plant interacts with various host plants in different manners, and all Cuscuta species depend (absolutely) on host plants to complete their life cycle. Field dodder is a parasitic plant that attaches to stems and leaves of broadleaf plants, including weeds, field crops, vegetables, and ornamentals, across most agricultural regions of the world. Most hosts of Cuscuta plants are passive, only a few hosts are known to show clear resistance (e.g., Ipomoea sp.). Unlike other weeds occurring in anthropogenic habitats that have been well-studied in their taxonomic, biological, and ecological aspects, as well as their anatomical and physiological properties to some extent, the parasitic flowering species of the genus Cuscuta have been examined very scarcely despite the great damage that they are able to cause. More extensive research is required in order to develop new means for parasitic weed control. A basic research should identify new targets for control within the life cycle of the parasites and among their metabolic activities.

Keywords

Field dodder Host plant Life cycle Metabolic activities 

Abbreviations

chl a/b

Ratio of chlorophyll a to b

DAI

Days after infestation

Fm

Maximal fluorescence

Fo

Minimum fluorescence

Fv

Variable fluorescence

Fv/Fm

Maximum quantum efficiency of photosystem II

HLR

Hypersensitive-like response

IF

Intensity of fluorescence

RCC

Relative chlorophyll content

TCC

Total chlorophyll content

ФPSII

Effective fluorescence yield of photosystem II

Notes

Acknowledgment

We acknowledge the funding of the Ministry of Education, Science and Technology of the Republic of Serbia, Project III 46008.

References

  1. 1.
    Dawson JH, Musselman LJ, Wolswinkel P, Dörr I (1994) Biology and control of Cuscuta. Rev Weed Sci 6:265–317Google Scholar
  2. 2.
    Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751CrossRefPubMedGoogle Scholar
  3. 3.
    Albert M, Belastegui-Macadam X, Bleischwitz M, Kaldenhoff R (2008) Cuscuta spp.: parasitic plants in the spotlight of plant physiology, economy, and ecology. Prog Bot 69:267–277CrossRefGoogle Scholar
  4. 4.
    Heide-Jorgensen HS (2013) The parasitic syndrome in higher plants. In: Joel DM, Gressel J, Musselman LJ (eds) Parasitic Orobanchaceae. Springer, Berlin/Heidelberg, pp 1–18Google Scholar
  5. 5.
    Hibberd JM, Bungard RA, Press MC, Jeschke WD, Scholes JD, Quick WP (1998) Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205:506–513CrossRefGoogle Scholar
  6. 6.
    Garcia MA, Costea M, Kuzmina M, Stefanovic S (2014) Phylogeny, character evolution, and biogeography of Cuscuta (dodders; Convolvulaceae) inferred from coding plastid and nuclear sequences. Am J Bot 101:670–690CrossRefPubMedGoogle Scholar
  7. 7.
    Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2011) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987CrossRefPubMedGoogle Scholar
  8. 8.
    Kadioglu A, Terzi R, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48CrossRefPubMedGoogle Scholar
  9. 9.
    Furuhashi T, Furuhashi K, Weckwerth W (2011) The parasitic mechanism of the holostemparasitic plant Cuscuta. J Plant Interact 6:207–219.  https://doi.org/10.1080/17429145.2010.541945CrossRefGoogle Scholar
  10. 10.
    Jeschke WD, Baig A, Hilpert A (1997) Sink-stimulated photosynthesis, increased transpiration and increased demand-dependent stimulation of nitrate uptake: nitrogen and carbon relations in the parasitic association Cuscuta reflexa-Coleus blumei. J Exp Bot 48:915–925CrossRefGoogle Scholar
  11. 11.
    Jeschke WD, Hilpert A (1997) Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa-Ricinus communis. Plant Cell Environ 20:47–56CrossRefGoogle Scholar
  12. 12.
    Lӧffler C, Czygan FC, Proksch P (1999) Role of lndole-3-acetic acid in the interaction of the phanerogamic parasite Cuscuta and host plants. Plant Biol 1:613–617CrossRefGoogle Scholar
  13. 13.
    Runyon JB, Mescher MC, Moraes CMD (2008) Parasitism by Cuscuta pentagona attenuates host plant defenses against insect herbivores. Plant Physiol 146:987–995CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bringmann G, Schlauer J, Rückert M, Wiesen B, Ehrenfeld K, Proksch P, Czygan FC (1999) Host-derived acetogenins involved in the incompatible parasitic relationship between Cuscuta reflexa (Convolvulaceae) and Ancistrocladus heyneanus (Ancistrocladaceae). Plant Biol 1:581–584CrossRefGoogle Scholar
  15. 15.
    Borsics T, Lados M (2002) Dodder infection induces the expression of a pathogenesis-related gene of the family PR-10 in alfalfa. J Exp Bot 53:1831–1832CrossRefPubMedGoogle Scholar
  16. 16.
    Ihl B, Tutakhil N, Hagen A, Jacob F (1988) Studies on Cuscuta reflexa Roxb. 7. Defense mechanisms of Lycopersicon esculentum Mill. Flora 181:383–393CrossRefGoogle Scholar
  17. 17.
    Sahm A, Pfanz H, Grunsfelder M, Czygan FC, Proksch P (1995) Anatomy and phenylpropanoid metabolism in the incompatible interaction of Lycopersicon esculentum and Cuscuta reflexa. Plant Biol 108:358–364Google Scholar
  18. 18.
    Nickrent DL (2002) Plantas parásitas en el mundo. In: López-Sáez JA, Catalán P, Sáez L (eds) Plantas Parásitas de la Península Ibérica e Islas Balears, part 2. Mundi-Prensa Libros, S.A, Madrid, pp 7–27Google Scholar
  19. 19.
    Yuncker TG (1932) The genus Cuscuta. Mem Torrey Bot Club 18:109–331Google Scholar
  20. 20.
    Stefanovic S, Kuzmina M, Costea M (2007) Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. Am J Bot 94:568–589CrossRefPubMedGoogle Scholar
  21. 21.
    Garcia MA, Martin MP (2007) Phylogeny of Cuscuta subgenus Cuscuta (Convolvulaceae) based on nrDNA ITS and chloroplast trnL intron sequences. Syst Bot 32:899–916CrossRefGoogle Scholar
  22. 22.
    Swift C (1996) Cuscuta and Gramica species – dodder a plant parasite. In: Colorado State University cooperative extensionGoogle Scholar
  23. 23.
    Kujit J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley, pp 45–51Google Scholar
  24. 24.
    Sarić-Krsmanović M, Božić D, Pavlović D, Radivojević LJ, Vrbničanin S (2013) Temperature effects on Cuscuta campestris Yunk. seed germination. Pestic Phytomed 28:187–193CrossRefGoogle Scholar
  25. 25.
    Benvenuti S, Dinelli G, Bonetti A, Catizone P (2005) Germination ecology, emergence and host detection in Cuscuta campestris. Weed Res 45:270–278CrossRefGoogle Scholar
  26. 26.
    Parker C (1991) Protection of crops against parasitic weeds. Crop Prot 10:6–22CrossRefGoogle Scholar
  27. 27.
    Stewart GR, Press MC (1990) The physiology and biochemistry of parasitic angiosperms. Annu Rev Plant Physiol Plant Mol Biol 41:127–151CrossRefGoogle Scholar
  28. 28.
    Yoder JI (1999) Parasitic plant responses to host plant signals: a model for subterranean plant-plant interactions. Curr Opin Plant Biol 2:65–70CrossRefPubMedGoogle Scholar
  29. 29.
    Runyon JB, Mescher MC, Moraes CD (2006) Volatile chemical cues guide host location and host selection by parasitic plants. Science 313:1964–1967CrossRefPubMedGoogle Scholar
  30. 30.
    Hutchison JM, Ashton FM (1980) Germination of field dodder (Cuscuta campestris). Weed Sci 28:330–333CrossRefGoogle Scholar
  31. 31.
    Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic, San DiegoGoogle Scholar
  32. 32.
    Lyshede OB (1992) Studies on mature seeds of Cuscuta pedicellata and C. campestris by electron microscopy. Ann Bot 69:365–371CrossRefGoogle Scholar
  33. 33.
    Hutchison JM, Ashton FM (1979) Effect of desiccation and scarification on the permeability and structure of the seed coat of Cuscuta campestris. Am J Bot 66:40–46CrossRefGoogle Scholar
  34. 34.
    Marambe B, Wijesundara S, Tennekoon K, Pindeniya D, Jayasinghe C (2002) Growth and development of Cuscuta chinensis lam. And its impact on selected crops. Weed Biol Manag 2:79–83CrossRefGoogle Scholar
  35. 35.
    Haidar MA, Iskandarani N, Siahemed M, Baalbaki R (1999) Response of field dodder (Cuscuta campestris) seed to soil solarization and chicken manure. Crop Protect 18:253–258CrossRefGoogle Scholar
  36. 36.
    Lados M (1999) Effect of temperature, pH and host plant extract on the germination of Cuscuta trifolii and C. campestris seeds. Novenytermeles 48:367–376Google Scholar
  37. 37.
    Salimi H, Shahraeen N (2000) Study on comparison of seed dormancy and germination of three species of dodder. Rostaniha 1:33–36Google Scholar
  38. 38.
    Costea M, Tardif FJ (2006) The biology of Canadian weeds. 133. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Can J Plant Sci 86:293–316CrossRefGoogle Scholar
  39. 39.
    Lyshede OB (1984) Seed structure and germination in Cuscuta pedicellata with some notes on C. campestris. Nord J Bot 4:669–674.  https://doi.org/10.1111/j.1756-1051.1984.tb01992.xCrossRefGoogle Scholar
  40. 40.
    Vail SL, Dailey OD, Blanchard EJ, Pepperman AB, Riopel JL (1990) Terpenoid precursors of strigol as a seed germination stimulant of broomrape (Orobanche ramosa) and witchweed (Striga asiatica). J Plant Growth Regul 9:77–83CrossRefGoogle Scholar
  41. 41.
    Benvenuti S, Pompeiano A, Macchia M, Miele S (2002) Orobanche seed bank dynamics in tobacco by using a germination stimulant. In: 12th European Weed Research Society Symposium, Wageningen, 24–27 July 2002. Academic, Dordrecht, pp 380–381Google Scholar
  42. 42.
    Orr GL, Haidar MA, Orr DA (1996) Small seed dodder (Cuscuta planiflora) phototropism toward far-red when in white light. Weed Sci 44:233–240CrossRefGoogle Scholar
  43. 43.
    Tada Y, Sugai M, Furuhashi K (1996) Haustoria of Cuscuta japonica, a Holoparasitic flowering plant, are induced by the cooperative effects of far-red light and tactile stimuli. Plant Cell Physiol 37:1049–1053CrossRefGoogle Scholar
  44. 44.
    Haidar MA (2003) Characterization of the interaction between cryptochromes and phytochromes in blue light-induced coiling and prehaustoria development of dodder (Cuscuta campestris) seedlings. Ann Appl Biol 143:57–62CrossRefGoogle Scholar
  45. 45.
    Haidar MA, Orr GL, Westra P (1997) Effects of light and mechanical stimulation on coiling and prehaustoria formation in Cuscuta spp. Weed Res 37:219–228CrossRefGoogle Scholar
  46. 46.
    Srivastava S, Nighojkar A, Kumar A (1994) Multiple forms of pectin methylesterase from Cuscuta reflexa filaments. Phytochemistry 37:1233–1236.  https://doi.org/10.1016/S0031-9422(00)90390-XCrossRefGoogle Scholar
  47. 47.
    Vaughn KC (2002) Attachment of the parasitic weed dodder to the host. Protoplasma 219:227–237.  https://doi.org/10.1007/s007090200024CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Vaughn KC (2003) Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasma 220:189–200.  https://doi.org/10.1007/s00709-002-0038-3CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sarić-Krsmanović M, Božić D, Radivojević LJ, Gajić Umiljendić J, Šantrić L, Vrbničanin S (2017) Effects of plant growth promoting rhizobacteria (PGPR) and cover crops on seed germination and early establishment of field dodder (Cuscuta campestris Yunk.). Pestic Phytomed 32:105–111Google Scholar
  50. 50.
    Hibberd JM, Jeschke WD (2001) Solute flux into parasitic plants. J Exp Bot 52:2043–2049CrossRefPubMedGoogle Scholar
  51. 51.
    Tsivion Y (1981) Suppression of axillary buds of its host by parasitic Cuscuta I. Competition among sinks and indirect inhibition. New Phytol 87:91–99CrossRefGoogle Scholar
  52. 52.
    Ihl B, Wiese K (2000) Studien an Cuscuta reflexa Roxb.: VIII. Mechanische Haustorien-induktion an nichtwindenden Achsen des Parasiten. Flora 195:1–8CrossRefGoogle Scholar
  53. 53.
    Rath GC, Mohanty SS (1987) Production of haustoria of Cuscuta chinensis in contact with glass surface. Indian Phytopathol 40:415–416Google Scholar
  54. 54.
    Fritsché E, Bouillenne-Walrand M, Bouillenne R (1958) Quelques observations sur la biologie de Cuscuta europaea L. Acad Roy Belg Bull Cl Sci 44:163–197Google Scholar
  55. 55.
    Beliz T (1986) A revision of Cuscuta sect. Cleistogrammica using phenetic and cladistic analyses with a comparison of reproductive mechanisms and host preferences in species from California, Mexico, and Central America. PhD diss., University of California, Berkeley, 181 ppGoogle Scholar
  56. 56.
    Piehl MA (1963) Mode of attachment, haustorium structure, and hosts of Pedicularis canadensis. Am J Bot 50:978–985CrossRefGoogle Scholar
  57. 57.
    Losner-Goshen D, Portnoy VH, Mayer AM, Joel DM (1998) Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann Bot 81:319–326CrossRefGoogle Scholar
  58. 58.
    Jeschke WD, Rath N, Baumel P, Czygan F, Proksch P (1994) Modeling flow and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus L. I. Flows between and within the parasitized host. J Exp Bot 45:801–812CrossRefGoogle Scholar
  59. 59.
    Dörr I (1968) Localization of cell contacts between Cuscuta odorata and different higher hostplants. Protoplasma 65:435–448CrossRefGoogle Scholar
  60. 60.
    Heidejorgensen HS (1991) Anatomy and ultrastructure of the haustorium of Cassytha-Pubescens R Br I the adhesive disk. Bot Gaz 152:321–334CrossRefGoogle Scholar
  61. 61.
    Runyon JB, Mescher MC, Felton GW, De Moraes CM (2010) Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato. Plant Cell Environ 33:290–303CrossRefPubMedGoogle Scholar
  62. 62.
    Albert M, Belastegui-Macadam X, Kaldenhoff R (2006) An attack of the plant parasite Cuscuta reflexa induces the expression of attAGP, an attachment protein of the host tomato. Plant J 48:548–556CrossRefPubMedGoogle Scholar
  63. 63.
    Dörr I (1969) Fine structure of intracellular growing Cuscuta-Hyphae. Protoplasma 67:123–137CrossRefGoogle Scholar
  64. 64.
    Haupt S, Oparka KJ, Sauer N, Neumann S (2001) Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. J Exp Bot 52:173–177CrossRefPubMedGoogle Scholar
  65. 65.
    Birschwilks M, Haupt S, Hofius D, Neumann S (2006) Transfer of phloemmobile substances from the host plants to the holoparasite Cuscuta sp. J Exp Bot 57:911–921CrossRefPubMedGoogle Scholar
  66. 66.
    Dörr I (1972) Contact of Cuscuta-Hyphae with sieve tubes of its host plants. Protoplasma 75:167–187CrossRefGoogle Scholar
  67. 67.
    Hibberd JM, Quick WP, Press MC, Scholes JD, Jeschke WD (1999) Solute fluxes from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ 22:937–947CrossRefGoogle Scholar
  68. 68.
    Fry SC (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 161:641–675.  https://doi.org/10.1111/j.1469-8137.2004.00980.xCrossRefGoogle Scholar
  69. 69.
    Nagar R, Singh M, Sanwal GG (1984) Cell wall degrading enzymes in Cuscuta reflexa and its hosts. J Exp Bot 35:1104–1112.  https://doi.org/10.1093/jxb/35.8.1104CrossRefGoogle Scholar
  70. 70.
    Albert M, Werner M, Proksch P, Fry SC, Kaldenhoff R (2004) The cell wall-modifying xyloglucan endotransglycosylase/hydrolase LeXTH1 is expressed during the defense reaction of tomato against the plant parasite Cuscuta reflexa. Plant Biol 6:402–407.  https://doi.org/10.1055/s-2004-817959CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Roney JK, Khatibi PA, Westwood JH (2007) Cross-species translocation of mRNA from host plants into the parasitic plant dodder. Plant Physiol 143:1037–1043.  https://doi.org/10.1104/pp.106.088369CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Turgeon R, Wolf S (2009) Phloem transport:cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221CrossRefPubMedGoogle Scholar
  73. 73.
    Furuhashi T, Fragner L, Furuhashi K, Valledor L, Sun X, Weckwerth W (2012) Metabolite changes with induction of Cuscuta Haustorium and translocation from host plants. J Plant Interact 7:84–93CrossRefGoogle Scholar
  74. 74.
    Pennings S, Callaway RM (2002) Parasitic plants: parallels and contrasts with herbivores. Oecologia 131:479–489CrossRefPubMedGoogle Scholar
  75. 75.
    Prider J, Watling J, Facelli JM (2009) Impacts of a native parasitic plant on an introduced and a native host species: implications for the control of an invasive weed. Ann Bot 103:107–115CrossRefPubMedGoogle Scholar
  76. 76.
    Vurro M, Boari A, Evidente A, Andolfi A, Zermane N (2009) Natural metabolites for parasitic weed management. Pest Manag Sci 65:566–571CrossRefPubMedGoogle Scholar
  77. 77.
    Van der Kooij TA, Krupinska K, Krause K (2005) Tocochromanol content and composition in different species of the parasitic flowering plant genus Cuscuta. J Plant Physiol 162:777–781CrossRefPubMedGoogle Scholar
  78. 78.
    Sarić-Krsmanović M, Božić D, Radivojević LJ, Gajić Umiljendić J, Vrbničanin S (2018) Impact of field dodder (Cuscuta campestris Yunk.) on chlorophyll fluorescence and chlorophyll content of alfalfa and sugar beet plants. Russ J Plant Physiol 65:726–731CrossRefGoogle Scholar
  79. 79.
    Sarić-Krsmanović M, Božić D, Radivojević LJ, Gajić Umiljendić J, Vrbničanin S (2018) Response of alfalfa and sugar beet to field fodder (Cuscuta campestris Yunck.) parasitism: physiological and anatomical approach. Can J Plant Sci e-First Article.  https://doi.org/10.1139/CJPS-2018-0050CrossRefGoogle Scholar
  80. 80.
    Fathoulla CN, Duhoky MMS (2008) Biological and anatomical study of different Cuscuta species (Kurdistan 1st conference on biological sciences). J Dohuk University 11:22–39Google Scholar
  81. 81.
    Frost A, Lopes-Gutierrez C, Purrington B (2003) Cuscuta sahina (Convolvulaceae) parasitizing Beta vulgaris (Chenopodiaceae). Am J Bot 90:1032–1037CrossRefPubMedGoogle Scholar
  82. 82.
    Duraes FOM, Gama EEG, Magalhaes PC, Mariel IE, Casela CR, Oliveira AC, Luchiari Junior A, Shanahan JF (2001) The usefulness of chlorophyll fluorescence in screening for disease resistance, water stress tolerance, aluminum toxicity tolerance, and N use efficiency in maize. In: Proceedings of 7th Eastern and Southern Africa Regional Maize Conference, Nairobi, Kenya, 11–15 Feb, pp 356–360Google Scholar
  83. 83.
    Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540CrossRefGoogle Scholar
  84. 84.
    Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Pavlovic D, Vrbnicanin S, Bozic D, Fischer JA (2008) Morphophysiological traits and atrazine sensitivity in Chenopodium album L. Pest Manag Sci 64:101–107CrossRefPubMedGoogle Scholar
  86. 86.
    Vrbničanin S, Sarić-Krsmanović M, Božić D (2013) The effect of field dodder (Cuscuta campestris Yunck.) on morphological and fluorescence parameters of giant ragweed (Ambrosia trifida L.). Pestic Phytomed (Belgrade) 28:57–62CrossRefGoogle Scholar
  87. 87.
    Furuhashi T, Kojima M, Sakakibara H, Fukushima A, Hirai MY, Furuhashi K (2014) Morphological and plant hormonal changes during parasitization by Cuscuta japonica on Momordica charantia. J Plant Interact 9:220–232CrossRefGoogle Scholar
  88. 88.
    Klem K, Špundova M, Hrabalova H, Nauš J, Vanova M, Masojidek J, Tomek P (2002) Comparison of chlorophyll fluorescence and whole plant bioassays of isoproturon. Weed Res 42:335–341CrossRefGoogle Scholar
  89. 89.
    Abbaspoor M, Teicher HB, Streibig JC (2006) The effect of root-absorbed PSII inhibitors on Kautsky curve parameters in sugar beet. Weed Res 46:226–235CrossRefGoogle Scholar
  90. 90.
    Wolswinkel P (1974) Complete inhibition of setting and growth of fruits of Vicia faba L. resulting from the draining of phloem system by Cuscuta species. Acta Bot Neerl 23:48–60CrossRefGoogle Scholar
  91. 91.
    Press MC, Scholes JD, Watling JR (1999) Parasitic plants: physiological and ecological interactions with their hosts. In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Science, Oxford, UK, pp 175–197Google Scholar
  92. 92.
    Yu H, He WM, Liu J, Miao SL, Dong M (2009) Native Cuscuta campestris restrains exotic Mikania micrantha and enhances soil resources beneficial to natives in the invaded communities. Biol Invasions 11:835–844CrossRefGoogle Scholar
  93. 93.
    De Deyn GB, Raijmakers CE, Van der Putten WH (2004) Plant community development is affected by nutrients and soil biota. J Ecol 92:824–834CrossRefGoogle Scholar
  94. 94.
    Sarić-Krsmanović M, Božić D, Radivojević LJ, Gajić Umiljendić J, Vrbničanin S (2016) Impact of field dodder (Cuscuta campestris Yunk.) on physiological and anatomical changes in untreated and herbicide-treated alfalfa plants. Pestic Phytomed (Belgrade) 3:115–120CrossRefGoogle Scholar
  95. 95.
    Sarić-Krsmanović M, Božić D, Radivojević LJ, Gajić Umiljendić J, Vrbničanin S (2017) Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet. J Environ Sci Health B 52:812–816.  https://doi.org/10.1080/03601234.2017.1356167CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Werner M, Uehlein N, Proksch P, Kaldenhoff R (2001) Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite Cuscuta reflexa. Planta 213:550–555CrossRefPubMedGoogle Scholar
  97. 97.
    Tsivion Y (1981) Suppression of axillary buds of its host by parasitic Cuscuta I. Competition among sinks and indirect inhibition. New Phytol 87:91–99CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Pesticides and Environmental ProtectionBelgradeSerbia

Personalised recommendations