Advertisement

Diversity of Floral Glands and Their Secretions in Pollinator Attraction

  • Elisabeth Dantas TölkeEmail author
  • Natalie do Valle Capelli
  • Tamara Pastori
  • Ana Cláudia Alencar
  • Theodor C. H. Cole
  • Diego Demarco
Living reference work entry

Latest version View entry history

Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Floral glands that produce substances related to the attraction and reward of pollinators are crucial for the reproductive success of angiosperms. These structures may include nectaries, osmophores, elaiophores, and resin glands and are quite diverse in flowering plants. This chapter presents the diversity of morphologies and substances produced by the floral glands and how they improve the pollinator’s attraction. We also describe how some angiosperms and floral visitors may have coevolved leading to specific pollination systems in some groups of plants. The integration of morphological, chemical, and ecological studies allows for a better understanding of the relationships that evolved between flowers and pollinators along their evolutionary histories. These comprehensive approaches provide opportunities to dissect the evolution of secondary metabolites produced by specialized secretory structures in flowers, including the origin and subsequent modification of these glands and their produced compounds.

Keywords

Elaiophores Flowering plants Nectaries Osmophores Pollination Resin glands Secretory structures 

List of Abbreviations

CRC

Crabs claw

ER

Endoplasmic reticulum

TS

Transversal section

Notes

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil (CAPES), Finance Code 001. ACA is grateful to FAPESP for funding research assistance under process No. 2012/51781-0. We thank K. B. Gagliardi, N. Streher, R. Jahn, D. L. Borges, and L. Eggers for contributing photos.

References

  1. 1.
    Glover BJ (2007) Understanding flowers and flowering: an integrated approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. 2.
    Wilcock C, Neiland R (2002) Pollination failure in plants: why it happens and when it matters. Trends Plant Sci 7:270–277.  https://doi.org/10.1016/S1360-1385(02)02258-6CrossRefPubMedGoogle Scholar
  3. 3.
    Westercamp C (1996) Pollen in bee-flower relations: some considerations on melittophily. Bot Acta 109:325–332.  https://doi.org/10.1111/j.1438-8677.1996.tb00580.xCrossRefGoogle Scholar
  4. 4.
    Varassin IG, Amaral-Neto LP (2014) Atrativos. In: Rech AR, Agostini K, Oliveira PE, Machado IC (eds) Biologia da polinização. Editora Projeto Cultural, Rio de JaneiroGoogle Scholar
  5. 5.
    Renner SS, Ricklefs RE (1995) Dioecy and its correlates in the flowering plants. Am J Bot 82:596–606.  https://doi.org/10.2307/2445418CrossRefGoogle Scholar
  6. 6.
    Westercamp C (2004) Flores e abelhas na disputa. Ciência Hoje 34:66–68Google Scholar
  7. 7.
    Lunau K (2006) Stamens and mimic stamens as components of floral colour patterns. Bot Jahrb Syst 127:13–41.  https://doi.org/10.1127/0006-8152/2006/0127-0013CrossRefGoogle Scholar
  8. 8.
    Vogel S (1990) The role of scent glands in pollination: on the structure and function of osmophores. Amerind, New DelhiGoogle Scholar
  9. 9.
    Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, New YorkGoogle Scholar
  10. 10.
    Fahn A (1979) Secretory tissue in plants. Academic, LondonGoogle Scholar
  11. 11.
    Fahn A (2002) Functions and location of secretory tissues in plants and their possible evolutionary trends. Isr J Plant Sci 50:S59–S64.  https://doi.org/10.1560/LJUT-M857-TCB6-3FX5CrossRefGoogle Scholar
  12. 12.
    Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  13. 13.
    Gonçalves-Souza P, Schlindwein C, Paiva EAS (2018) Floral resins of Philodendron adamantium (Araceae): secretion, release and synchrony with pollinator. Acta Bot Bras 32(3):392–401.  https://doi.org/10.1590/0102-33062018abb0115CrossRefGoogle Scholar
  14. 14.
    Bernardello G (2007) A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, DordrechtGoogle Scholar
  15. 15.
    Durkee LT (1983) The ultrastructure of floral and extrafloral nectaries. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New YorkGoogle Scholar
  16. 16.
    Nepi M (2007) Nectary structure and ultrastructure. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, DordrechtGoogle Scholar
  17. 17.
    Smets EF, Cresens EM (1988) Types of floral nectaries and the concept of “character” and “character state” – a reconsideration. Acta Bot Neerl 37:121–128.  https://doi.org/10.1111/j.1438-8677.1988.tb01586.xCrossRefGoogle Scholar
  18. 18.
    Davis AR, Gunning BES (1992) The modified stomata of the floral nectary of Vicia faba L. I. Development, anatomy and ultrastructure. Protoplasma 166:134–152.  https://doi.org/10.1007/BF01322777CrossRefGoogle Scholar
  19. 19.
    Davis AR, Gunning BES (1993) The modified stomata of the floral nectary of Vicia faba L. III. Physiological aspects, including comparison with foliar stomata. Bot Acta 106:241–253.  https://doi.org/10.1111/j.1438-8677.1993.tb00747.xCrossRefGoogle Scholar
  20. 20.
    Razem FA, Davis AR (1999) Anatomical and ultrastructural changes of the floral nectary of Pisum sativum L. during flower development. Protoplasma 206:57–72.  https://doi.org/10.1007/BF01279253CrossRefGoogle Scholar
  21. 21.
    Tölke ED, Bachelier JB, Lima EA, Galetto L, Demarco D, Carmello-Guerreiro SM (2018) Diversity of floral nectary secretions and structure, and implications for their evolution in Anacardiaceae. Bot J Linn Soc 187:209–231.  https://doi.org/10.1093/botlinnean/boy016CrossRefGoogle Scholar
  22. 22.
    Stpiczyńska M, Davies KL, Gregg A (2003) Nectary structure and nectar secretion in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge (Orchidaceae). Ann Bot 93:87–95.  https://doi.org/10.1093/aob/mch008CrossRefPubMedGoogle Scholar
  23. 23.
    Paiva EAS (2016) How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. Ann Bot 117:533–540.  https://doi.org/10.1093/aob/mcw012CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Paiva EAS (2017) How does the nectar of stomata-free nectaries cross the cuticle? Acta Bot Bras 31:525–530.  https://doi.org/10.1590/0102-33062016abb0444CrossRefGoogle Scholar
  25. 25.
    Sawidis TH, Eleftheriou EP, Tsekos I (1987) The floral nectaries of Hibiscus rosasinensis. I. Development of the secretory hairs. Ann Bot 59:643–652Google Scholar
  26. 26.
    Leitão CAE, Meira RMSA, Azevedo AA, Araújo JM, Silva KLFS, Collevatti RG (2005) Anatomy of the floral, bract and foliar nectaries of Triumfetta semitriloba (Tiliaceae). Can J Bot 83:279–286.  https://doi.org/10.1139/b05-001CrossRefGoogle Scholar
  27. 27.
    Leitão CAE, Dolder MAH, Cortelazzo AL (2014) Anatomy and histochemistry of the nectaries of Rodriguezia venusta (Lindl.) Rchb. f. (Orchidaceae). 209:233–243.  https://doi.org/10.1016/j.flora.2014.03.002CrossRefGoogle Scholar
  28. 28.
    Gama TSS, Aguiar-Dias ACA, Demarco D (2016) Transfer cells in trichomatous nectary in Adenocalymma magnificum (Bignoniaceae). An Acad Bras Ciênc 88:527–537.  https://doi.org/10.1590/0001-3765201620140606CrossRefPubMedGoogle Scholar
  29. 29.
    Machado SR, Souza CV, Guimarães E (2017) A reduced, yet functional, nectary disk integrates a complex system of floral nectar secretion in the genus Zeyheria (Bignoniaceae). Acta Bot Bras 31:344–357.  https://doi.org/10.1590/0102-33062016abb0279CrossRefGoogle Scholar
  30. 30.
    Gunning BES, Pate JS (1969) “Transfer cells”: plant cells with wall ingrowths, specialized in relation to short distance transport of solutes – their occurrence, structure, and development. Protoplasma 68:107–133.  https://doi.org/10.1007/BF01247900CrossRefGoogle Scholar
  31. 31.
    Sawidis T, Eleftheriou EP, Tsekos I (1989) The floral nectaries of Hibiscus rosa-sinensis III. A morphometric and ultrastructural approach. Nord J Bot 9:63–71.  https://doi.org/10.1111/j.1756-1051.1989.tb00987.xCrossRefGoogle Scholar
  32. 32.
    Horner HT, Healy RA, Ren G, Fritz D, Klyne A, Seames C, Thornburg RW (2007) Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. Am J Bot 94:12–24.  https://doi.org/10.3732/ajb.94.1.12CrossRefPubMedGoogle Scholar
  33. 33.
    Ren G, Healy RA, Klyne AM, Horner HT, James MG, Thornburg RW (2007) Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Sci 173:277–290.  https://doi.org/10.1016/j.plantsci.2007.05.008CrossRefGoogle Scholar
  34. 34.
    Paiva EA, Machado SR (2008) The floral nectary of Hymenaea stigonocarpa (Fabaceae, Caesalpinioideae): structural aspects during floral development. Ann Bot 101:125–133.  https://doi.org/10.1093/aob/mcm268CrossRefPubMedGoogle Scholar
  35. 35.
    Rachmilevitz T, Fahn A (1973) Ultrastructure of nectaries of Vinca rosea L., Vinca major L. and Citrus sinensis Osbeck cv. Valencia and its relation to the mechanism of nectar secretion. Ann Bot 37:1–9.  https://doi.org/10.1093/oxfordjournals.aob.a084662CrossRefGoogle Scholar
  36. 36.
    Durkee LT, Gaal DJ, Reisner WH (1981) The floral and extra-floral nectaries of Passiflora. I. The floral nectary. Am J Bot 68:453–462.  https://doi.org/10.2307/2443021CrossRefGoogle Scholar
  37. 37.
    Zer H, Fahn A (1992) Floral nectaries of Rosmarinus officinalis L. structure, ultrastructure and nectar secretion. Ann Bot 70:391–397.  https://doi.org/10.1093/oxfordjournals.aob.a088493CrossRefGoogle Scholar
  38. 38.
    Nepi M, Ciampolini F, Pacini E (1996) Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot 81:251–262.  https://doi.org/10.1006/anbo.1996.0100CrossRefGoogle Scholar
  39. 39.
    Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: a short review. Plant Syst Evol 238:7–22.  https://doi.org/10.1007/s00606-002-0277-yCrossRefGoogle Scholar
  40. 40.
    Peng YB, Li YQ, Hao YJ, Xu ZH, Bai SN (2004) Nectar production, and transportation in the nectaries of the female Cucumis sativus L. flower during anthesis. Protoplasma 224:71–78.  https://doi.org/10.1007/s00709-004-0051-9CrossRefPubMedGoogle Scholar
  41. 41.
    Tölke ED, Galetto L, Machado SR, Lacchia APS, Carmello-Guerreiro SM (2015) Stages of development of the floral secretory disk in Tapirira guianensis Aubl. (Anacardiaceae), a dioecious species. Bot J Linn Soc 179:533–544.  https://doi.org/10.1111/boj.12340CrossRefGoogle Scholar
  42. 42.
    Giaquinta RT (1979) Phloem loading of sucrose: involvement of membrane ATPase and proton transport. Plant Physiol 63:744–748CrossRefGoogle Scholar
  43. 43.
    Leonard RT, Hodges TK (1980) The plasma membrane. In: Tolbert NE (ed) The biochemistry of plants, vol 1. Academic, New YorkGoogle Scholar
  44. 44.
    Davis AR, Peterson RL, Shuel RW (1988) Vasculature and ultrastructure of the floral and stipular nectaries of Vicia faba (Fabaceae). Can J Bot 66:1435–1448.  https://doi.org/10.1139/b88-198CrossRefGoogle Scholar
  45. 45.
    Davies KL (1999) A preliminary survey of foliar anatomy in Maxillaria. Lindleyana 14:126–135Google Scholar
  46. 46.
    Horner HT, Healy RA, Cervantes-Martinez T, Palmer RG (2003) Floral nectary fine structure and development in Glycine max L. (Fabaceae). Int J Plant Sci 164:675–690.  https://doi.org/10.1086/377060CrossRefGoogle Scholar
  47. 47.
    Wergin WP, Elmore CD, Hanny BW, Ingber BF (1975) Ultrastructure of the subglandular cells from the foliar nectaries of cotton in relation to the distribution of plamodesmata and the symplastic transport of nectar. Am J Bot 62:842–849.  https://doi.org/10.1002/j.1537-2197.1975.tb14124.xCrossRefGoogle Scholar
  48. 48.
    Gunning BES, Hughes JE (1976) Quantitative assessment of symplastic transport of pre-nectar into the trichomes of Abutilon nectaries. Aust J Bot 3:619–637.  https://doi.org/10.1071/PP9760619CrossRefGoogle Scholar
  49. 49.
    Dafni H, Lensky Y, Fahn A (1988) Flower and nectar characteristics of nine species of Labiatae and their influence on honeybee visits. J Apic Res 27:103–114.  https://doi.org/10.1080/00218839.1988.11100788CrossRefGoogle Scholar
  50. 50.
    Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultra-structure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193.  https://doi.org/10.1093/aob/mcj027CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vassilyev AE (2010) On the mechanisms of nectar secretion: revisited. Ann Bot 105:349–354.  https://doi.org/10.1093/aob/mcp302CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Davis AR, Peterson RL, Shuel RW (1986) Anatomy and vasculature of the floral nectaries of Brassica napus (Brassicaceae). Can J Bot 64:2508–2516.  https://doi.org/10.1139/b86-333CrossRefGoogle Scholar
  53. 53.
    Stpiczyńska M (1995) The structure of floral nectaries of some species of Vicia L. (Papilionaceae). Acta Soc Bot Pol 64:327–334.  https://doi.org/10.5586/asbp.1995.042CrossRefGoogle Scholar
  54. 54.
    Kram BW, Carter CJ (2009) Arabidopsis thaliana as a model for functional nectary analysis. Sex Plant Reprod 22:235–246.  https://doi.org/10.1007/s00497-009-0112-5CrossRefPubMedGoogle Scholar
  55. 55.
    Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200.  https://doi.org/10.1016/j.tplants.2011.01.003CrossRefPubMedGoogle Scholar
  56. 56.
    Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257.  https://doi.org/10.1111/j.1469-8137.1988.tb04159.xCrossRefGoogle Scholar
  57. 57.
    Nicolson SW, Thornburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, DordrechtCrossRefGoogle Scholar
  58. 58.
    Baker HG, Baker I (1982) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki MH (ed) Biochemical aspects of evolutionary biology. University of Chicago Press, ChicagoGoogle Scholar
  59. 59.
    Baker HG, Baker I (1983) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New YorkGoogle Scholar
  60. 60.
    Elisens WJ, Freeman CE (1988) Floral nectar sugar composition and pollinator type among New World genera in tribe Antirrhineae (Scrophulariaceae). Am J Bot 75:971–978.  https://doi.org/10.2307/2443763CrossRefGoogle Scholar
  61. 61.
    Perret M, Chautems A, Spichiger R, Peixoto M, Savolainen V (2001) Nectar sugar composition in relation to pollination syndromes in Sinningieae (Gesneriaceae). Ann Bot 87:267–273.  https://doi.org/10.1006/anbo.2000.1331CrossRefGoogle Scholar
  62. 62.
    Perret M, Chautems A, Spichiger R, Kite G, Savolainen V (2003) Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS. Am J Bot 90:445–460.  https://doi.org/10.3732/ajb.90.3.445CrossRefPubMedGoogle Scholar
  63. 63.
    Torres C, Galetto L (2002) Are nectar sugar composition and corolla tube length related to the diversity of insects that visit Asteraceae flowers? Plant Biol 4:360–366.  https://doi.org/10.1055/s-2002-32326CrossRefGoogle Scholar
  64. 64.
    Galetto L, Bernardello G (2003) Nectar sugar composition in angiosperms from Chaco and Patagonia (Argentina): an animal visitor’s matter? Plant Syst Evol 238:69–86.  https://doi.org/10.1007/s00606-002-0269-yCrossRefGoogle Scholar
  65. 65.
    Pyke GH, Waser NM (1981) The production of dilute nectars by hummingbird and honeyeater flowers. Biotropica 13:260–270.  https://doi.org/10.2307/2387804CrossRefGoogle Scholar
  66. 66.
    Baker HG, Baker I (1973) Amino-acids in nectar and their evolutionary significance. Nature 241:543–545.  https://doi.org/10.1038/241543b0CrossRefGoogle Scholar
  67. 67.
    Galetto L, Bernardello G (2005) Nectar. In: Dafni A, Kevan PG, Husbana BC (eds) Practical pollination biology. Enviroquest, CambridgeGoogle Scholar
  68. 68.
    Gottsberger G, Arnold T, Linskens HF (1990) Variation in floral nectar amino acids with aging of flowers, pollen contamination, and flower damage. Isr J Bot 39:167–176Google Scholar
  69. 69.
    Lanza J, Smith GC, Sack S, Cash A (1995) Variation in nectar volume and composition of Impatiens capensis at the individual, plant, and population levels. Oecologia 102:113–119.  https://doi.org/10.1007/BF00333318CrossRefPubMedGoogle Scholar
  70. 70.
    Petanidou T, Van Laere AJ, Smets E (1996) Change in floral nectar components from fresh to senescent flowers of Capparis spinosa L. (Capparidaceae), a nocturnally flowering Mediterranean shrub. Plant Syst Evol 199:79–92.  https://doi.org/10.1007/BF00985919CrossRefGoogle Scholar
  71. 71.
    Gardener MC, Gillman MP (2001) Analyzing variability in nectar amino acids: composition is less variable than concentration. J Chem Ecol 27:2545–2558.  https://doi.org/10.1023/A:1013687701120CrossRefPubMedGoogle Scholar
  72. 72.
    Birch GG, Kemp SE (1989) Apparent specific volumes and tastes of amino acids. Chem Senses 14:249–258.  https://doi.org/10.1093/chemse/14.2.249CrossRefGoogle Scholar
  73. 73.
    Hansen K, Wacht S, Seebauer H, Schnuch M (1998) New aspects of chemoreception in flies. Ann N Y Acad Sci 855:143–147.  https://doi.org/10.1111/j.1749-6632.1998.tb10556.xCrossRefPubMedGoogle Scholar
  74. 74.
    Wacht S, Lunau K, Hansen K (2000) Chemosensory control of pollen ingestion in the hoverfly Eristalis tenax by labellar taste hairs. J Comp Physiol 186:193–203.  https://doi.org/10.1007/s003590050019CrossRefGoogle Scholar
  75. 75.
    Gardener MC, Gillman MP (2002) The taste of nectar – a neglected area of pollination ecology. Oikos 98:552–557.  https://doi.org/10.1034/j.1600-0706.2002.980322.xCrossRefGoogle Scholar
  76. 76.
    Peumans WJ, Smeets K, Van Nerum K, Van Leuven F, Van Damme EJM (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302.  https://doi.org/10.1007/s004250050070CrossRefPubMedGoogle Scholar
  77. 77.
    Carter C, Thornburg RW (2000) Tobacco Nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733.  https://doi.org/10.1074/jbc.M006461200CrossRefPubMedGoogle Scholar
  78. 78.
    Carter C, Thornburg RW (2004) Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol 54:415–425.  https://doi.org/10.1023/B:PLAN.0000036373.84579.13CrossRefPubMedGoogle Scholar
  79. 79.
    Machado SR, Morellato LP, Sajo MG, Oliveira PS (2008) Morphological patterns of extrafloral nectaries in woody plant species of the Brazilian cerrado. Plant Biol 10:660–673.  https://doi.org/10.1111/j.1438-8677.2008.00068.xCrossRefPubMedGoogle Scholar
  80. 80.
    Monteiro MM, Demarco D (2017) Corona development and the floral nectaries of Asclepiadeae (Asclepiadoideae, Apocynaceae). Acta Bot Bras 31:420–432.  https://doi.org/10.1590/0102-33062016abb0424CrossRefGoogle Scholar
  81. 81.
    Southwick EE (1990) Floral nectar. Am Bee J 130:517–519Google Scholar
  82. 82.
    Galetto L, Bernardello G (2004) Floral nectaries, nectar production dynamics and chemical composition in six Ipomoea species (Convolvulaceae) in relation to pollinators. Ann Bot 94:269–280.  https://doi.org/10.1093/aob/mch137CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Neff JL, Simpson BB (2005) Other rewards: oils, resins and gums. In: Dafni A, Kevan PG, Husbana BC (eds) Practical pollination biology. Enviroquest, CambridgeGoogle Scholar
  84. 84.
    Vogel S (1971) Pollination of oil-producing flowers by oil-collecting bees. Naturwissenschaften 58:58CrossRefGoogle Scholar
  85. 85.
    Bernardello G, Galetto L, Forcone A (1999) Floral nectar chemical composition of some species from Patagonia. II. Biochem Syst Ecol 27:779–790.  https://doi.org/10.1016/S0305-1978(99)00029-0CrossRefGoogle Scholar
  86. 86.
    Raguso RA (2004) Why are some floral nectars scented? Ecology 85:1486–1494.  https://doi.org/10.1890/03-0410CrossRefGoogle Scholar
  87. 87.
    Rering CC, Beck JJ, Hall GW, McCartney MM, Vannette RL (2017) Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol 220:655–658.  https://doi.org/10.1111/nph.14809CrossRefGoogle Scholar
  88. 88.
    Guerrant EO, Fiedler PL (1981) Flower defenses against nectar-pilferage by ants. Biotropica 13:25–33.  https://doi.org/10.2307/2388067CrossRefGoogle Scholar
  89. 89.
    Detzel A, Wink M (1993) Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18.  https://doi.org/10.1007/BF01245891CrossRefGoogle Scholar
  90. 90.
    Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420.  https://doi.org/10.1034/j.1600-0706.2000.910301.xCrossRefGoogle Scholar
  91. 91.
    Singaravelan N, Nee’man G, Inbar M, Izhaki I (2005) Feeding responses of freeflying honeybees to secondary compounds mimicking floral nectars. J Chem Ecol 31:2791–2804.  https://doi.org/10.1007/s10886-005-8394-zCrossRefPubMedGoogle Scholar
  92. 92.
    Ferreres F, Andrade P, Gil MI, Tomás-Barberán FA (1996) Floral nectar phenolics as biochemical markers for the botanical origin of heather honey. Z Lebensm Unters Forsch 202:40–44.  https://doi.org/10.1007/BF01229682CrossRefGoogle Scholar
  93. 93.
    Gil MI, Ferreres F, Ortiz A, Subra E, Tomás-Barberán FA (1995) Plant phenolic metabolites and floral origin of rosemary honey. J Agric Food Chem 43:2833–2838.  https://doi.org/10.1021/jf00059a012CrossRefGoogle Scholar
  94. 94.
    Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31:65–75.  https://doi.org/10.1111/1365-2435.12761CrossRefGoogle Scholar
  95. 95.
    Nepi M (2017) New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction? Acta Agrobot 70:1704.  https://doi.org/10.5586/aa.1704CrossRefGoogle Scholar
  96. 96.
    Smets EF (1986) Localization and systematic importance of the floral nectaries in the Magnoliatae (Dicotyledons). Bull Jard Bot Nat Belg 56:51–76.  https://doi.org/10.2307/3667757CrossRefGoogle Scholar
  97. 97.
    Smets EF (1988) La presence des ‘nectaria persistentia’ chez les Magnoliophytina (Angiosperms). Candollea 43:709–716Google Scholar
  98. 98.
    Schmid R (1988) Reproductive versus extra-reproductive nectaries – historical perspective and terminological recommendations. Bot Rev 54:179–232.  https://doi.org/10.1007/BF02858528CrossRefGoogle Scholar
  99. 99.
    Smets EF, Decraene LPR, Caris P, Rudall PJ (2000) Floral nectaries in monocotyledons: distribution and evolution. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, MelbourneGoogle Scholar
  100. 100.
    Smets EF, Jansen S, Caris P, Lens F (2003) Distribution and evolution of floral nectaries in angiosperms: a review. Palmarum Hortus Francofurtensis 7:103Google Scholar
  101. 101.
    Petanidou T, Goethals V, Smets E (2000) Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community: does flowering time matter? Plant Syst Evol 225:103–118.  https://doi.org/10.1007/BF00985461CrossRefGoogle Scholar
  102. 102.
    Diels L (1916) Käferblumen bei den Ranales und ihre Bedeutung für die Phylogenese der Angiospermen. Ber Deut Bot Ges 34:758–774Google Scholar
  103. 103.
    Faegri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon, OxfordGoogle Scholar
  104. 104.
    Takhtajan A (1991) Evolutionary trends in flowering plants. Columbia University Press, New YorkGoogle Scholar
  105. 105.
    Erbar C (2014) Nectar secretion and nectaries in basal angiosperms, magnoliids and non-core eudicots and a comparison with core eudicots. Plant Divers Evol 131(2):63–143.  https://doi.org/10.1127/1869-6155/2014/0131-0075CrossRefGoogle Scholar
  106. 106.
    Pacini E, Nicolson SW (2007) Introduction. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, DordrechtGoogle Scholar
  107. 107.
    Nepi M, Little S, Guarnieri M, Nocentini D, Prior N, Gill J, Barry Tomlinson P, Ickert-Bond SM, Pirone C, Pacini E, von Aderkas P (2017) Nectar in plant–insect mutualistic relationships: from food reward to partner manipulation. Front Plant Sci 9:1063.  https://doi.org/10.3389/fpls.2018.01063CrossRefGoogle Scholar
  108. 108.
    Bernhardt P, Thien LB (1987) Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. Plant Syst Evol 156:159–176.  https://doi.org/10.1007/BF00936071CrossRefGoogle Scholar
  109. 109.
    Pellmyr O (1992) Evolution of insect pollination and angiosperm diversifcation. Trends Ecol Evol 7:46–49.  https://doi.org/10.1016/0169-5347(92)90105-KCrossRefPubMedGoogle Scholar
  110. 110.
    Bernhardt P (2000) Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Syst Evol 222:293–320.  https://doi.org/10.1007/BF00984108CrossRefGoogle Scholar
  111. 111.
    Thien LB, Sage TL, Jaffré T, Bernhardt P, Pontieri V, Weston PH, Malloch D, Azuma H, Graham SW, McPherson MA, Rai HS, Sage RF, Dupre JL (2003) The population structure and floral biology of Amborella trichopoda (Amborellaceae). Ann Mo Bot Gard 90:466–490.  https://doi.org/10.2307/3298537CrossRefGoogle Scholar
  112. 112.
    Thien LB, Bernhardt P, Devall MS, Chen ZD, Luo YB, Fan JH, Yuan LC, Williams JH (2009) Pollination biology of basal angiosperms (ANITA grade). Am J Bot 96:166–182.  https://doi.org/10.3732/ajb.0800016CrossRefPubMedGoogle Scholar
  113. 113.
    Brown W (1938) The bearing of nectaries on the phylogeny of flowering plants. Proc Am Philos Soc 79:549–595Google Scholar
  114. 114.
    Schneider EL, Jeter JM (1982) Morphological studies of the Nymphaeaceae XII. The floral biology of Cabomba caroliniana. Am J Bot 69:1410–1419.  https://doi.org/10.1002/j.1537-2197.1982.tb13389.xCrossRefGoogle Scholar
  115. 115.
    Vogel S (1998) Remarkable nectaries: structure, ecology, organophyletic perspectives: II. Nectarioles. Flora 193:1–29.  https://doi.org/10.1016/S0367-2530(17)30812-5CrossRefGoogle Scholar
  116. 116.
    Schneider EL, Tucker SC, Williamson PS (2003) Floral development in the Nymphaeales. Int J Plant Sci 164:S279–S292.  https://doi.org/10.1086/376883CrossRefGoogle Scholar
  117. 117.
    Endress PK (2008) Perianth biology in the basal grade of extant angiosperms. Int J Plant Sci 169:844–862.  https://doi.org/10.1086/589691CrossRefGoogle Scholar
  118. 118.
    Endress PK (1980) The reproductive structures and systematic position of the Austrobaileyaceae. Bot Jahrb Syst 101:393–433Google Scholar
  119. 119.
    Endress PK (1990) Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Mem N Y Bot Gard 55:5–34Google Scholar
  120. 120.
    Endress PK (2001) The flowers in extant basal angiosperms and inferences on ancestral flowers. Int J Plant Sci 162:1111–1140.  https://doi.org/10.1086/321919CrossRefGoogle Scholar
  121. 121.
    von Balthazar M, Endress PK (1999) Floral bract function, flowering process and breeding systems of Sarcandra and Chloranthus (Chloranthaceae). Plant Syst Evol 218:161–178.  https://doi.org/10.1007/BF01089225CrossRefGoogle Scholar
  122. 122.
    Tosaki Y, Renner SS, Takahashi H (2001) Pollination of Sarcandra glabra (Chloranthaceae) in natural populations in Japan. J Plant Res 114:423–427.  https://doi.org/10.1007/PL00014007CrossRefGoogle Scholar
  123. 123.
    Doyle JA, Eklund H, Herendeen PS (2003) Floral evolution in Chloranthaceae: implications of a morphological phylogenetic analysis. Int J Plant Sci 164:S365–S382.  https://doi.org/10.1086/377064CrossRefGoogle Scholar
  124. 124.
    Daumann E (1970) Das Blütennektarium der Monocotyledonen unter besonderer Berücksichtigung seiner systematischen und phylogenetischen Bedeutung. Feddes Repertorium 80:463–590CrossRefGoogle Scholar
  125. 125.
    Rao VS (1975) Septal glands: their form, structure and function. In: Ram HYM, Shah JJ, Shah CK (eds) Form, structure and function in plants. Sarita Prakasham, NauchandiGoogle Scholar
  126. 126.
    Schmid R (1985) Functional interpretation of the morphology and anatomy of the septal nectaries. Acta Bot Neerl 34:125–128.  https://doi.org/10.1111/j.1438-8677.1985.tb01862.xCrossRefGoogle Scholar
  127. 127.
    van Heel WA (1988) On the development of some gynoecia with septal nectaries. Blumea 33:477–504Google Scholar
  128. 128.
    Vogel S (1981) Trichomatische Blütennektarien bei Cucurbitaceen. Beitr Biol Pflanzen 55:325–353Google Scholar
  129. 129.
    Kocyan A, Endress PK (2001) Floral structure and development and systematic aspects of some ‘lower’ Asparagales. Plant Syst Evol 229:187–216.  https://doi.org/10.1007/s006060170011CrossRefGoogle Scholar
  130. 130.
    Rudall PJ, Bateman RM, Fay MF, Eastman A (2002) Floral anatomy and systematics of Alliaceae with particular reference to Gilliesia, a presumed insect mimic with strongly zygomorphic flowers. Am J Bot 89:1867–1883.  https://doi.org/10.3732/ajb.89.12.1867CrossRefPubMedGoogle Scholar
  131. 131.
    Jabbour F, Renner SS (2012) Spurs in a spur: perianth evolution in the Delphinieae (Ranunculaceae). Int J Plant Sci 173:1036–1054.  https://doi.org/10.1086/667613CrossRefGoogle Scholar
  132. 132.
    Hodges S (1997) Floral nectar spurs and diversification. Int J Plant Sci 158:81–88CrossRefGoogle Scholar
  133. 133.
    Lee J, Baum SF, Oh S, Jiang C, Chen J, Bowman JL (2005) Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development 132:5021–5032.  https://doi.org/10.1242/dev.02067CrossRefPubMedGoogle Scholar
  134. 134.
    Svendsen AB, Schefferd JJC (1985) Essential oils and aromatic plants. Springer Dordrecht, NoordwijkerhoutCrossRefGoogle Scholar
  135. 135.
    Baudino S, Caissard J, Bergougnoux V, Jullien F, Magnard J, Scalliet G, Cook J, Hugueney P (2007) Production and emission of volatile compounds by petal cells. Plant Signal Behav 6:525–526.  https://doi.org/10.4161/psb.2.6.4659CrossRefGoogle Scholar
  136. 136.
    Płachno BJ, Światek P, Szymczak G (2010) Can a stench be beautiful? Osmophores in stem-succulent stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae-Stapeliinae). Flora 205:101–105.  https://doi.org/10.1093/aob/mcx042CrossRefGoogle Scholar
  137. 137.
    Wiemer AP, Moré M, Benitez-Vieyra S, Cocucci AA, Raguso RA, Sérsic AN (2008) A simple floral fragrance and unusual osmophore structure in Cyclopogon elatus (Orchidaceae). Plant Biol 11:506–514.  https://doi.org/10.1111/j.1438-8677.2008.00140.xCrossRefGoogle Scholar
  138. 138.
    Antoń S, Kamińska M, Stpiczyńska M (2012) Comparative structure of the osmophores in the flower of Stanhopea graveolens Lindley and Cycnoches chlorochilon Klotzsch (Orchidaceae). Acta Agrobot 65:11–22.  https://doi.org/10.5586/aa.2012.054CrossRefGoogle Scholar
  139. 139.
    Kowalkowska AK, Kozieradzka-Kiszkurno M, Turzyński S (2015) Morphological, histological and ultrastructural features of osmophores and nectary of Bulbophyllum wendlandianum (Kraenzl.) Dammer (B. section Cirrhopetalum Lindl., Bulbophyllinae Schltr., Orchidaceae). Plant Syst Evol 301:609–622.  https://doi.org/10.1007/s00606-014-1100-2CrossRefGoogle Scholar
  140. 140.
    Hadacek F, Weber M (2002) Club-shaped organs as additional osmophores within the Sauromatum inflorescense: odour analysis, ultrastructural changes and pollination aspects. Plant Biol 4:367–383.  https://doi.org/10.1055/s-2002-32335CrossRefGoogle Scholar
  141. 141.
    Skubatz H, Kunkel DD, Howald WN, Trenkle R, Mookherjee B (1996) The Sauromatum guttatum appendix as an osmophore: excretory pathways, composition of volatiles and attractiveness to insects. New Phytol 134:631–640.  https://doi.org/10.1111/j.1469-8137.1996.tb04928.xCrossRefGoogle Scholar
  142. 142.
    Skubatz H, Kunkel DD, Meeuse BJD (1993) Ultrastructural changes in the appendix of the Sauromatum guttatum inflorescence during anthesis. Sex Plant Reprod 6:153–170.  https://doi.org/10.1007/BF00228644CrossRefGoogle Scholar
  143. 143.
    Skubatz H, Kunkel DD (1999) Further studies of the glandular tissue of the Sauromatum guttatum (Araceae) appendix. Am J Bot 86:841–854.  https://doi.org/10.2307/2656705CrossRefPubMedGoogle Scholar
  144. 144.
    Pridgeon AM, Stern WL (1983) Ultrastructure of osmophores in Restrepia (Orchidaceae). Am J Bot 70:1233–1243.  https://doi.org/10.2307/2443293CrossRefGoogle Scholar
  145. 145.
    Stern WL, Curry KJ, Pridgeon AM (1987) Osmophores of Stanhopea (Orchidaceae). Am J Bot 74:1323.  https://doi.org/10.2307/2444310CrossRefGoogle Scholar
  146. 146.
    Melo MC, Borba EL, Paiva EAS (2010) Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: Pleurothallidinae). Plant Syst Evol 286:141–151.  https://doi.org/10.1007/s00606-010-0294-1CrossRefGoogle Scholar
  147. 147.
    Kowalkowska AK, Margońska HB, Kozieradzka-Kiszkurno M, Bohdanowicz J (2012) Studies on the ultrastructure of a three-spurred fumeauxiana form of Anacamptis pyramidalis. Plant Syst Evol 298:1025–1035.  https://doi.org/10.1007/s00606-012-0611-yCrossRefGoogle Scholar
  148. 148.
    García MTA, Galati BG, Hoc PS (2007) Ultrastructure of the corona of scented and scentless flowers of Passiflora spp. (Passifloraceae). Flora 202:302–315.  https://doi.org/10.1016/j.flora.2006.08.003CrossRefGoogle Scholar
  149. 149.
    Buchanan BB, Gruissem W, Jones RL (2015) Biochemistry and molecular biology of plants. Wiley-Blackwell, ChichesterGoogle Scholar
  150. 150.
    Marinho CR, Martucci MEP, Gobbo-Neto L, Teixeira SP (2018) Chemical composition and secretion biology of the floral bouquet in legume trees (Fabaceae). Bot J Linn Soc 187:5–25.  https://doi.org/10.1093/botlinnean/boy002CrossRefGoogle Scholar
  151. 151.
    Stpiczyńska M (2001) Osmophores of the fragrant orchid Gymnadenia conopsea L. (Orchidaceae). Acta Soc Bot Pol 70:91–96.  https://doi.org/10.5586/asbp.2001.012CrossRefGoogle Scholar
  152. 152.
    Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press Taylor & Francis Group, New YorkGoogle Scholar
  153. 153.
    Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, OregonGoogle Scholar
  154. 154.
    Raguso RA, Pichersky E (1995) Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Syst Evol 194:55–67.  https://doi.org/10.1007/BF00983216CrossRefGoogle Scholar
  155. 155.
    Pellmyr O (1986) Three pollination morphs in Cimicifuga simplex: incipient speciation due to inferiority in competition. Oecologia 78:304–307.  https://doi.org/10.1007/BF00384804CrossRefGoogle Scholar
  156. 156.
    Groth I, Bergstrom G, Pellmyr O (1987) Floral fragrances in Cimicifuga: chemical polymorphism and incipient speciation in Cimicifuga simplex. Biochem Syst Ecol 15:441–444.  https://doi.org/10.1016/0305-1978(87)90058-5CrossRefGoogle Scholar
  157. 157.
    Dudareva N, Piechulla B, Pichersky E (2000) Biogenesis of floral scents. Hortic Rev 24:31–53.  https://doi.org/10.1002/9780470650776.ch2CrossRefGoogle Scholar
  158. 158.
    Matile P, Altenburger R (1988) Rhythms of fragrance emission in flowers. Planta 174:242–247.  https://doi.org/10.1007/BF00394777CrossRefPubMedGoogle Scholar
  159. 159.
    Pott MB, Pichersky E, Piechulla B (2002) Evening specific oscillations of scent emission, SAMT enzyme activity, and SAMT mRNA in flowers of Stephanotis floribunda. J Plant Physiol 159:925–934.  https://doi.org/10.1078/0176-1617-00699CrossRefGoogle Scholar
  160. 160.
    Loughrin JH, Hamilton-Kemp R, Anderson RA, Hildebrand DF (1990) Volatiles from flowers of Nicotiana sylvestris, N. otophora and Malus domestica: headspace components and day/night changes in their relative concentrations. Phytochemistry 29:2473–2477.  https://doi.org/10.1016/0031-9422(90)85169-GCrossRefGoogle Scholar
  161. 161.
    Piechulla B, Pott MB (2003) Plant scents – mediators of inter- and intraorganismic communication. Planta 217:687–689.  https://doi.org/10.1007/s00425-003-1047-yCrossRefPubMedGoogle Scholar
  162. 162.
    Kolosova N, Sherman D, Karlson D, Dudareva N (2001) Cellular and subcellular localization of S-adenosyl-l-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiol 126:956–964.  https://doi.org/10.1104/pp.126.3.956CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Bünning E (1967) The physiological clock. Springer, New YorkCrossRefGoogle Scholar
  164. 164.
    Hess D (1983) Die Blüte. Ulmer, StuttgartGoogle Scholar
  165. 165.
    Hansted L, Jakobsen HB, Olsen CE (1994) Influence of temperature on the rhythmic emission of volatiles from Ribes nigrum flowers in situ. Plant Cell Environ 17:1069–1072.  https://doi.org/10.1111/j.1365-3040.1994.tb02030.xCrossRefGoogle Scholar
  166. 166.
    Jakobsen HB, Olsen CE (1994) Influence of climatic factors on emission of flower volatiles in situ. Planta 192:365–371.  https://doi.org/10.1007/BF00198572CrossRefGoogle Scholar
  167. 167.
    Nielsen JK, Jakobsen HB, Friis P, Hansen K, Møller J, Olsen CE (1995) Asynchronous rhythms in the emission of volatiles from Hesperis matronalis flowers. Phytochemistry 38:847–851.  https://doi.org/10.1016/0031-9422(94)00332-NCrossRefGoogle Scholar
  168. 168.
    Schiestl FP, Ayasse M (2001) Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? Oecologia 126:531–534.  https://doi.org/10.1007/s004420000552CrossRefPubMedGoogle Scholar
  169. 169.
    Negre F, Kish CM, Boatright J, Underwood B, Shibuya K, Wagner C, Clark DG, Dudareva N (2003) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15:2992–3006.  https://doi.org/10.1105/tpc.016766CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Theis N, Raguso RA (2005) The effect of pollination on floral fragrance in thistles. J Chem Ecol 31:2581–2600.  https://doi.org/10.1007/s10886-005-7615-9CrossRefPubMedGoogle Scholar
  171. 171.
    Kessler A, Halitschke R (2009) Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and case study. Funct Ecol 23:901–912.  https://doi.org/10.1111/j.1365-2435.2009.01639.xCrossRefGoogle Scholar
  172. 172.
    Zangerl AR, Berenbaum MR (2009) Effects of florivory on floral volatile emissions and pollination success in the wild parsnip. Arthropod Plant Interact 3:181–191.  https://doi.org/10.1007/s11829-009-9071-xCrossRefGoogle Scholar
  173. 173.
    Kessler D, Diezel C, Baldwin IT (2010) Changing pollinators as a means of escaping herbivores. Curr Biol 20:237–242.  https://doi.org/10.1016/j.cub.2009.11.071CrossRefPubMedGoogle Scholar
  174. 174.
    Pareja M, Qvarfordt E, Webster B, Mayon P, Pickett J, Birkett M, Glinwood R (2012) Herbivory by a phloem-feeding insect inhibits floral volatile production. PLoS One 7:e31971.  https://doi.org/10.1371/journal.pone.0031971CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Schiestl FP (2014) Correlation analyses between volatiles and glucosinolates show no evidence for chemical defense signaling in Brassica rapa. Front Ecol Evol 2:1–10.  https://doi.org/10.3389/fevo.2014.00010CrossRefGoogle Scholar
  176. 176.
    Roff DA (1997) Evolutionary quantitative genetics. Springer, New York.  https://doi.org/10.1007/978-1-4615-4080-9CrossRefGoogle Scholar
  177. 177.
    Kaczorowski RL, Juenger TE, Holtsford TP (2008) Heritability and correlation structure of nectar and floral morphology traits in Nicotiana alata. Evolution 62:1738–1750.  https://doi.org/10.1111/j.1558-5646.2008.00400.xCrossRefPubMedGoogle Scholar
  178. 178.
    Zu P, Blanckenhorn WU, Schiestl FP (2016) Heritability of floral volatiles and pleiotropic responses to artificial selection in Brassica rapa. New Phytol 209:1208–1219.  https://doi.org/10.1111/nph.13652CrossRefPubMedGoogle Scholar
  179. 179.
    Gervasi DDL, Schiestl FP (2017) Real-time divergent evolution in plants driven by pollinators. Nat Commun 8:14691.  https://doi.org/10.1038/ncomms14691CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    van der Pijl L, Dodson CH (1996) Orchid flowers: their pollination and evolution. University of Miami Press, Coral GablesGoogle Scholar
  181. 181.
    Dressler D (1990) Orchids – natural history and classification, 2nd edn. Harvard University Press, CambridgeGoogle Scholar
  182. 182.
    Renner SS (2006) Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, ChicagoGoogle Scholar
  183. 183.
    Pinheiro F (2014) Polinização por engodo. In: Rech AR, Agostini K, Oliveira PE, Machado IC (eds) Biologia da polinização, 1st edn. Editora Projeto Cultural, Rio de JaneiroGoogle Scholar
  184. 184.
    Cozzolino S, Widmer A (2005) Orchid diversity: an evolutionary consequence of deception? Trends Ecol Evol 20:487–494.  https://doi.org/10.1016/j.tree.2005.06.004CrossRefPubMedGoogle Scholar
  185. 185.
    Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235.  https://doi.org/10.1017/S1464793105006986CrossRefPubMedGoogle Scholar
  186. 186.
    Schiestl FP (2005) On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–264.  https://doi.org/10.1007/s00114-005-0636-yCrossRefPubMedGoogle Scholar
  187. 187.
    de Jager ML, Ellis AG (2012) Gender-specific pollinator preference for floral traits. Funct Ecol 26:1197–1204.  https://doi.org/10.1111/j.1365-2435.2012.02028.xCrossRefGoogle Scholar
  188. 188.
    Phillips RD, Xu T, Hutchinson MF, Dixon KW, Peakall R (2013) Convergent specialization – the sharing of pollinators by sympatric genera of sexually deceptive orchids. J Ecol 101:826–835.  https://doi.org/10.1111/1365-2745.12068CrossRefGoogle Scholar
  189. 189.
    de Jager ML, Peakall R (2016) Does morphology matter? An explicit assessment of floral morphology in sexual deception. Funct Ecol 30:537–546.  https://doi.org/10.1111/1365-2435.12517/fullCrossRefGoogle Scholar
  190. 190.
    de Jager ML, Peakall R (2018) Experimental examination of pollinator mediated selection in a sexually deceptive orchid. Ann Bot.  https://doi.org/10.1093/aob/mcy083. in press
  191. 191.
    Bohman B, Flematti GR, Barrow RA, Pichersky E, Peakall R (2016) Pollination by sexual deception – it takes chemistry to work. Curr Opin Plant Biol 32:37–46.  https://doi.org/10.1016/j.pbi.2016.06.004CrossRefPubMedGoogle Scholar
  192. 192.
    Phillips RD, Peakall R (2018) An experimental evaluation of traits that influence the sexual behaviour of pollinators in sexually deceptive orchids. J Evol Biol.  https://doi.org/10.1111/jeb.13370. in pressCrossRefGoogle Scholar
  193. 193.
    Andersson S (2003) Antennal responses to floral scents in the butterflies Inachis io, Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae). Chemoecology 13:1–11.  https://doi.org/10.1007/s000490300001CrossRefGoogle Scholar
  194. 194.
    Salzmann CC, Cozzolino S, Schiestl FP (2007) Floral scent in food-deceptive orchids: species specificity and sources of variability. Plant Biol 9:720–729.  https://doi.org/10.1055/s-2007-965614CrossRefPubMedGoogle Scholar
  195. 195.
    Dormont L, Delle-Vedove R, Bessière JM, Hossaert-Mc Key M, Schatz B (2009) Rare white-flowered morphs increase the reproductive success of common purple morphs in a food-deceptive orchid. New Phytol 185:300–310CrossRefGoogle Scholar
  196. 196.
    Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399:421–422CrossRefGoogle Scholar
  197. 197.
    Peakall R, Ebert D, Poldy J, Barrow RA, Francke W, Bower CC, Schiestl FP (2010) Pollinator specifcity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation. New Phytol 188:437–450.  https://doi.org/10.1111/j.1469-8137.2010.03308.xCrossRefPubMedGoogle Scholar
  198. 198.
    Vereecken NJ, Cozzolino S, Schiestl FP (2010) Hybrid floral scent novelty drives pollinator shift in sexually deceptive orchids. BMC Evol Biol 10:103.  https://doi.org/10.1186/1471-2148-10-103CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Xu S, Schlüter PM, Schiestl FP (2012) Pollinator-driven speciation in sexually deceptive orchids. Int J Ecol:285081.  https://doi.org/10.1155/2012/285081CrossRefGoogle Scholar
  200. 200.
    Borba EL, Semir J (2001) Pollinator specificity and convergence in fly-pollinated Pleurothallis (Orchidaceae) species: a multiple population approach. Ann Bot 88:75–88.  https://doi.org/10.1006/anbo.2001.1434CrossRefGoogle Scholar
  201. 201.
    van der Niet T, Hansen DM, Johnson SD (2011) Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses. Ann Bot 107:981–992.  https://doi.org/10.1093/aob/mcr048CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Hall DW, Brown BV (1993) Pollination of Aristolochia littoralis (Aristolochiales: Arisolochiaceae) by males of Megaselia spp. (Diptera: Phoridae). Ann Entomol Soc Am 86:609–613CrossRefGoogle Scholar
  203. 203.
    Mesler MR, Lu KL (1993) Pollination biology of Asarum hartwegii (Aristolochiaceae): an evaluation of Vogel’s mushroom-fly hypothesis. Madrono 40:117–125Google Scholar
  204. 204.
    Sakai S (2002) Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot 89:527–524.  https://doi.org/10.3732/ajb.89.3.527CrossRefPubMedGoogle Scholar
  205. 205.
    Burgess KS, Singfield J, Melendez V, Kevan PG (2004) Pollination biology of Aristolochia grandiflora (Aristolochiaceae) in Veracruz, Mexico. Ann Mo Bot Gard 91:346–356Google Scholar
  206. 206.
    Azuma H, Nagasawa J, Setoguchi H (2010) Floral scent emissions from Asarum yaeyamense and related species. Biochem Syst Ecol 38:548–553.  https://doi.org/10.1016/j.bse.2010.06.002CrossRefGoogle Scholar
  207. 207.
    Aliscione SS, Achler AP, Torretta JP (2017) Floral anatomy, micromorphology and visitor insects in three species of Aristolochia L. (Aristolochiaceae). N Z J Bot.  https://doi.org/10.1080/0028825X.2017.1380051CrossRefGoogle Scholar
  208. 208.
    Vogel S (1978) Evolutionary shifts from reward to deception in pollen flowers. In: Richards AJ (ed) The pollination of flowers by insects. Academic, LondonGoogle Scholar
  209. 209.
    Kaiser R (2006) Flowers and fungi use scents to mimic each other. Science 311:806–807.  https://doi.org/10.1126/science.1119499CrossRefPubMedGoogle Scholar
  210. 210.
    Kaiser R (1993) The scents of orchids. Elsevier, AmsterdamCrossRefGoogle Scholar
  211. 211.
    Moré M, Cocucci AA, Raguso RA (2013) The importance of oligosulfides in the attraction of fly pollinators to the brood-site deceptive species Jaborosa rotacea (Solanaceae). Int J Plant Sci 174:863–876.  https://doi.org/10.1086/670367CrossRefGoogle Scholar
  212. 212.
    Kite GC, Hetterscheld WLA, Lewis MJ, Boyce PC, Ollerton J, Cocklin E, Diaz A, Simmonds MSJ (1998) Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Garden, KewGoogle Scholar
  213. 213.
    Jürgens A, Dötterl S, Meve U (2006) The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytol 172:452–468.  https://doi.org/10.1111/j.1469-8137.2006.01845.xCrossRefPubMedGoogle Scholar
  214. 214.
    Johnson SD, Jürgens A (2010) Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S Afr J Bot 76:796–807.  https://doi.org/10.1016/j.sajb.2010.07.012CrossRefGoogle Scholar
  215. 215.
    Vogel S (1969) Flowers offering fatty oil instead of nectar. Abstracts, Proceedings of the XI International Botanical Congress, Seattle, p 229Google Scholar
  216. 216.
    Vogel S (1974) Ölblumen und ölsammelnde Bienen. Tropische subtropische Pflanzenwelt 7:283–547Google Scholar
  217. 217.
    Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Mo Bot Gard 68:301–322.  https://doi.org/10.2307/2398800CrossRefGoogle Scholar
  218. 218.
    Buchmann SL (1987) The ecology of oil flowers and their bees. Annu Rev Ecol Evol Syst 18:343–369CrossRefGoogle Scholar
  219. 219.
    Rasmussen C, Olesen JM (2000) Oil flowers and oil collecting bees. Scand Assoc Pollination Ecology. Det Norske Videnskaps-Akademi. I. Mat Nat Kl, Skrifter, Ny Serie 39:23–31Google Scholar
  220. 220.
    Machado IC (2004) Oil-collecting bees and related plants: a review of the studies in the last twenty years and case histories of plants occurring in NE Brazil. In: Freitas BM, Pereira JOP (eds) Solitary bees: conservation, rearing and management for pollination. Imprensa Universitária, FortalezaGoogle Scholar
  221. 221.
    Renner SS, Schaefer H (2010) The evolution and loss of oil-offering flowers: new insights from dated phylogenies for plants and bees. Philos Trans R Soc B 365:423–435.  https://doi.org/10.1098/rstb.2009.0229CrossRefGoogle Scholar
  222. 222.
    Possobom CCF, Machado SR (2017) Elaiophores: their taxonomic distribution, morphology and functions. Acta Bot Bras 31:503–524.  https://doi.org/10.1590/0102-33062017abb0088CrossRefGoogle Scholar
  223. 223.
    Anderson WR (1990) The origin of the Malpighiaceae – the evidence from morphology. Mem NY Bot Gard 64:210–224Google Scholar
  224. 224.
    Simpson BB, Neff JL, Seigler N (1977) Krameria, free fatty acids and oil-collecting bees. Nature 267:150–151.  https://doi.org/10.1038/267150a0CrossRefPubMedGoogle Scholar
  225. 225.
    Manning J, Goldblatt P (2002) The pollination of Tritoniopsis parviflora (Iridaceae) by the oil-collecting bee Rediviva gigas (Hymenoptera: Melittidae): the first record of oil-secretion in African Iridaceae. S Afr J Bot 68:171–176.  https://doi.org/10.1016/S0254-6299(15)30416-6CrossRefGoogle Scholar
  226. 226.
    Stpiczyńska M, Davies KL, Gregg A (2007) Elaiophore diversity in three contrasting members of the Oncidiinae Benth. (Orchidaceae). Bot J Linn Soc 155:135–148.  https://doi.org/10.1111/j.1095-8339.2007.00681.xCrossRefGoogle Scholar
  227. 227.
    Davies KL, Stpiczyńska M (2009) Comparative histology of floral elaiophores in the orchids Rudolfiella picta (Schltr.) Hoehne (Maxillariinae sensu lato) and Oncidium ornithorhynchum H.B.K. (Oncidiinae sensu lato). Ann Bot 104:221–234CrossRefGoogle Scholar
  228. 228.
    Stpiczyńska M, Davies KL, Pacek-Bieniek A, Kaminska M (2013) Comparative anatomy of the floral elaiophore in representatives of the newly re-circumscribed Gomesa and Oncidium clades (Orchidaceae: Oncidiinae). Ann Bot 112:839–854.  https://doi.org/10.1093/aob/mct149CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Vinson SB, Williams HJ, Frankie GW, Shrum G (1997) Floral lipid chemistry of Byrsonima crassifolia (Malpighiaceae) and a use of floral lipid by Centris bees (Hymenoptera: Apidae). Biotropica 29:76–83.  https://doi.org/10.1111/j.1744-7429.1997.tb00008.xCrossRefGoogle Scholar
  230. 230.
    Silvério A, Nadot S, Souza-Chies TT, Chauveau O (2012) Flora rewards in the tribe Sisyrinchieae (Iridaceae): oil as an alternative to pollen and nectar? Sex Plant Reprod 25:267–279.  https://doi.org/10.1007/s00497-012-0196-1CrossRefPubMedGoogle Scholar
  231. 231.
    Cocucci AA, Vogel S (2001) Oil producing flowers of Sisyrinchium species (Iridaceae) and their pollinators in southern South America. Flora 196:26–46.  https://doi.org/10.1016/S0367-2530(17)30010-5CrossRefGoogle Scholar
  232. 232.
    Pacek A, Stpiczyńska M (2007) The structure of elaiophores in Oncidium cheirophorum Rchb.F. and Ornithocephalus kruegeri Rchb.F. (Orchidaceae). Acta Agrobot 60:9–14.  https://doi.org/10.5586/aa.2007.024CrossRefGoogle Scholar
  233. 233.
    Goldblatt P, Manning JC (2008) The Iris family – natural history and classification. Timber Press, PortlandGoogle Scholar
  234. 234.
    Aliscioni SS, Torretta JP, Bello ME, Galati BG (2009) Elaiophores in Gomesa bifolia (Sims) M.W. Chase & N.H. Williams (Oncidiinae: Cymbidieae: Orchidaceae): structure and oil secretion. Ann Bot 104:1141–1149.  https://doi.org/10.1093/aob/mcp199CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Stpiczyńska M, Davies KL (2008) Elaiophore structure and oil secretion in flowers of Oncidium. Ann Bot 101:375–384.  https://doi.org/10.1093/aob/mcm297CrossRefPubMedGoogle Scholar
  236. 236.
    Vogel S, Machado IC (1991) Pollination of four sympatric species of Angelonia (Scrophulariaceae) by oil-collecting bees in NE Brazil. Plant Syst Evol 178:153–178.  https://doi.org/10.1007/BF00937962CrossRefGoogle Scholar
  237. 237.
    Cocucci AA (1991) Pollination biology of Nierembergia (Solanaceae). Plant Syst Evol 174:17–35.  https://doi.org/10.1007/BF00937691CrossRefGoogle Scholar
  238. 238.
    Cosacov A, Nattero J, Cocucci AA (2008) Variation of pollinator assemblages and pollen limitation in a locally specialized system: the oil-producing Nierembergia linariifolia (Solanaceae). Ann Bot 102:723–734.  https://doi.org/10.1093/aob/mcn154CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Cosacov A, Sérsic AN, Sosa V, De-Nova A, Nylinder S, Cocucci AA (2009) New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). Am J Bot 96:2240–2255.  https://doi.org/10.3732/ajb.0900165CrossRefPubMedGoogle Scholar
  240. 240.
    Cosacov A, Cocucci AA, Sérsic AN (2012) Variación geográfica de la recompensa floral de Calceolaria polyrhiza (Calceolariaceae): influencia de factores bióticos y abióticos. Bol Soc Argent Bot 47:363–373Google Scholar
  241. 241.
    Cosacov A, Cocucci AA, Sérsic AN (2014) Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting I: do pollinators matter? Ann Bot 113:251–266.  https://doi.org/10.1093/aob/mct239CrossRefPubMedGoogle Scholar
  242. 242.
    Dumri K, Seipold L, Schmidt J, Gerlach G, Dötterl S, Ellis AG, Wessjohann AL (2008) Non-volatile floral oils of Diascia spp. (Scrophulariaceae). Phytochemistry 69:1372–1383.  https://doi.org/10.1016/j.phytochem.2007.12.012CrossRefPubMedGoogle Scholar
  243. 243.
    Pacek A, Stpiczyńska M, Davies KL, Szymczak G (2012) Floral elaiophore structure in four representatives of the Ornithocephalus clade (Orchidaceae: Oncidiinae). Ann Bot 110:809–820.  https://doi.org/10.1093/aob/mcs158CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Blanco MA, Davies KL, Stpiczyńska M, Carlsward BS, Ionta GM, Gerlach G (2013) Floral elaiophores in Lockhartia hook. (Orchidaceae: Oncidiinae): their distribution, diversity and anatomy. Ann Bot 112:1775–1791.  https://doi.org/10.1093/aob/mct232CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Davies KL, Stpiczyńska M, Rawski M (2014) Comparative anatomy of floral elaiophores in Vitekorchis Romowicz & Szlach., Cyrtochilum Kunth and a florally dimorphic species of Oncidium Sw. (Orchidaceae: Oncidiinae). Ann Bot 113:1155–1173.  https://doi.org/10.1093/aob/mcu045CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Reis MG, Singer RB, Gonçalves R, Marsaioli AJ (2006) The chemical composition of Phymatidium delicatulum and P. tillandsioides (Orchidaceae) floral oils. Nat Prod Commun 1:757–761Google Scholar
  247. 247.
    Seigler DS, Simpson BB, Martin C, Neff JL (1978) Free 3-acetoxy fatty acids in floral glands of Krameria species. Phytochemistry 17:995–996CrossRefGoogle Scholar
  248. 248.
    Reis MG, Faria AD, Bittrich V, Amaral MCE, Marsaioli AJ (2000) The chemistry of flower-rewards: Oncidium (Orchidaceae). J Braz Chem Soc 11:600–608.  https://doi.org/10.1590/S0103-50532000000600008CrossRefGoogle Scholar
  249. 249.
    Reis MG, Faria AD, Amaral MCE, Marsaioli AJ (2003) Oncidinol – a novel diacylglycerol from Ornithophora radicans Barb. Rodr. (Orchidaceae) floral oil. Tetrahedron Lett 44:8519–8523.  https://doi.org/10.1002/chin.200409228CrossRefGoogle Scholar
  250. 250.
    Reis MG, Faria AD, Alves-dos-Santos I, Amaral MCE, Marsaioli AJ (2007) Byrsonic acid – the clue to floral mimicry involving oil-producing flowers and oil-collecting bees. J Chem Ecol 33:1421–1429.  https://doi.org/10.1007/s10886-007-9309-yCrossRefPubMedGoogle Scholar
  251. 251.
    Seipold L, Gerlach G, Wessjohann L (2004) A new type of floral oil from Malpighia coccigera (Malpighiaceae) and chemical considerations on the evolution of oil flowers. Chem Biodivers 1:1519–1528.  https://doi.org/10.1002/cbdv.200490112CrossRefPubMedGoogle Scholar
  252. 252.
    Dumri MSK (2008) Chemical analyses of non-volatile flower oils and related bee nest cell linings. PhD thesis, Naturwissenschaftlich Fakutät II – Chemie und Physik der Martin Luther Universität Halle-Wittenberg, GermanyGoogle Scholar
  253. 253.
    Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970.  https://doi.org/10.1105/tpc.7.7.957CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Ollerton J, Armbruster WC, Vásquez DP (2006) The ecology and evolution of specialized and generalized pollination. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, LondonGoogle Scholar
  255. 255.
    Harwood JL (2005) Fatty acid biosynthesis. In: Murphy DJ (ed) Plant lipids: biology, utilization and manipulation. Blackwell, OxfordGoogle Scholar
  256. 256.
    Fahn A (2000) Structure and function of secretory cells. In: Hallahan DL, Gray JC, Callow JA (eds) Advances in botanical research, incorporating advances in plant pathology, vol 31: plant trichomes. Academic, LondonGoogle Scholar
  257. 257.
    Possobom CCF, Guimarães E, Machado SR (2015) Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species. Flora 211:26–39.  https://doi.org/10.1016/j.flora.2015.01.002CrossRefGoogle Scholar
  258. 258.
    Cocucci AA, Holgado AM, Anton AM (1996) Estudio morfológico y anatómico de los eleóforos pedicelados de Dinemandra ericoides, Malpighiácea endémica del desierto de Atacama, Chile. Darwin 34:183–192Google Scholar
  259. 259.
    Michener CD (2007) The bees of the world, 2nd edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  260. 260.
    Simpson BB, Neff JL, Dieringer G (1990) The production of floral oils by Monttea (Scrophulariaceae) and the function of tarsal pads in Centris bees. Plant Syst Evol 173:209–222.  https://doi.org/10.1007/BF00940864CrossRefGoogle Scholar
  261. 261.
    Vinson SB, Frankie GW, Williams HJ (1995) Chemical ecology of bees of the genus Centris (Hymenoptera: Apidae). Fla Entomol 79:109–129.  https://doi.org/10.2307/3495809CrossRefGoogle Scholar
  262. 262.
    Cardinal S, Straka J, Danforth BN (2010) Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proc Natl Acad Sci U S A 107:16207–16211.  https://doi.org/10.1073/pnas.1006299107CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Chauveau O, Eggers L, Raquin C, Silvério A, Brown S, Couloux A, Kaltchuk-Santos E, Yockteng R, Souza-Chies TT, Nadot S (2011) Evolution of oil-producing trichomes in Sisyrinchium (Iridaceae): insights from the first comprehensive phylogenetic analysis of the genus. Ann Bot 107:1287–1312.  https://doi.org/10.1093/aob/mcr080CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Chauveau O, Eggers L, Souza-Chies TT, Nadot S (2012) Oil-producing flowers within the Iridoideae (Iridaceae): evolutionary trends in the flowers of the New World genera. Ann Bot 110:713–729.  https://doi.org/10.1093/aob/mcs134CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Oxelman B, Kornhall P, Olmstead RG, Bremer B (2005) Further disintegration of Scrophulariaceae. Taxon 54:411–425.  https://doi.org/10.2307/25065369CrossRefGoogle Scholar
  266. 266.
    Schaefer H, Renner SS (2008) A phylogeny of the oil bee tribe Ctenoplectrini (Hymenoptera: Anthophila) based on mitochondrial and nuclear data: evidence for early Eocene divergence and repeated out-of-Africa dispersal. Mol Phylogenet Evol 47:799–811.  https://doi.org/10.1016/j.ympev.2008.01.030CrossRefPubMedGoogle Scholar
  267. 267.
    Michez D, De Meulemeester T, Rasmont P, Nel A, Patiny S (2009) New fossil evidence of the early diversification of bees: Paleohabropoda oudardi from the French Paleocene (Hymenoptera, Apidae, Anthophorini). Zool Scr 38:171–181.  https://doi.org/10.1111/j.1463-6409.2008.00362.xCrossRefGoogle Scholar
  268. 268.
    Lamgenhein JH (2003) Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber Press, Portland/CambridgeGoogle Scholar
  269. 269.
    Prado E, Demarco D (2018) Laticifers and secretory ducts: similarities and differences. In: Hufnagel L (ed) Ecosystem services and global ecology. IntechOpen, London.  https://doi.org/10.5772/intechopen.75705CrossRefGoogle Scholar
  270. 270.
    Armbruster WS, Webster GL (1979) Pollination of two species of Dalechampia (Euphorbiaceae) in Mexico by Euglossine Bees. Biotropica 11:278–283.  https://doi.org/10.2307/2387919CrossRefGoogle Scholar
  271. 271.
    Bittrich V, Amaral MCE (1997) Flower biology of some Clusia species from Central Amazonia. Kew Bull 52:617–635.  https://doi.org/10.2307/4110290CrossRefGoogle Scholar
  272. 272.
    Stevens PF (2001 onwards) Angiosperm Phylogeny Website. Vers 14, July 2017 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/
  273. 273.
    Armbruster WS (1984) The role of resin in angiosperm pollination: ecological and chemical considerations. Am J Bot 71:1149–1160.  https://doi.org/10.2307/2443391CrossRefGoogle Scholar
  274. 274.
    Bittrich V, Amaral MCE (1996) Flower morphology and pollination biology of some Clusia species from the Gran Sabana (Venezuela). Kew Bull 51:681–693.  https://doi.org/10.2307/4119722CrossRefGoogle Scholar
  275. 275.
    Porto ALM, Machado SMF, Oliveira CMA, Bittrich V, Amaral MCE, Marsaioli AJ (2000) Polyisoprenylated benzophenones from Clusia floral resins. Phytochemistry 55:755–768.  https://doi.org/10.1016/S0031-9422(00)00292-2CrossRefPubMedGoogle Scholar
  276. 276.
    Martins FM, Cunha-Neto IL, Pereira TM (2016) Floral morphology and anatomy of Dalechampia alata Klotzsch ex Baill. (Euphorbiaceae), with emphasis on secretory structures. Braz J Biol 76:233–244.  https://doi.org/10.1590/1519-6984.19514CrossRefPubMedGoogle Scholar
  277. 277.
    Gagliardi KB, Cordeiro I, Demarco D (2016) Protection and attraction: bracts and secretory structures in reduced inflorescences of Malpighiales. Flora 220:52–62.  https://doi.org/10.1016/j.flora.2016.02.003CrossRefGoogle Scholar
  278. 278.
    Hochwallner H, Weber A (2006) Flower development and anatomy of Clusia valerioi, a central American species of Clusiaceae offering floral resin. Flora 201:407–418.  https://doi.org/10.1016/j.flora.2005.07.017CrossRefGoogle Scholar
  279. 279.
    Sá-Haiad B, Silva CP, Paula RCV, Rocha JF, Machado SR (2015) Androecia in two Clusia species: development, structure and resin secretion. Plant Biol 17:816–824.  https://doi.org/10.1111/plb.12314CrossRefPubMedGoogle Scholar
  280. 280.
    Amaral MCE, Bittrich V, Endress PK, Stevens PF (2017) The unique morphology of resin-producing multilocellate anther and their evolution in Clusia (Clusiaceae). Bot J Linn Soc 184:79–93.  https://doi.org/10.1093/botlinnean/box015CrossRefGoogle Scholar
  281. 281.
    Bittrich V, Amaral MCE, Machado SMF, Zacharias ME, Marsaioli AJ (2006) Oils, resins and the pollination biology of the Clusiaceae. In: Silva JAT (Org.) Floriculture, ornamental and plant biotechnology. Global Science Books, Ikenobe, 04:387–394Google Scholar
  282. 282.
    Gibernau M, Barabé D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143. 1058-5893/1999/16006-0009$03.00. https://www.journals.uchicago.edu/toc/ijps/1999/160/6CrossRefGoogle Scholar
  283. 283.
    Gottsberger G, Silberbauer-Gottsberger I, Seymour RS, Dötterl S (2013) Pollination and floral scent differentiation in species of the Philodendron bipinnatifidum complex (Araceae). Plant Syst Evol 299:793–809.  https://doi.org/10.1007/s00606-013-0763-4CrossRefGoogle Scholar
  284. 284.
    Davies KL, Stpiczyińska M (2012) Comparative labellar anatomy of resin-secreting and pupative resin-mimic species of Maxillaria s. l. (Orchidaceae: Maxillariinae). Bot J Linn Soc 170:405–435.  https://doi.org/10.1111/j.1095-8339.2012.01278.xCrossRefGoogle Scholar
  285. 285.
    Bittrich V, Amaral MCE, Machado SMF, Marsaioli AJ (2003) Floral resin of Tovomitopsis saldanhae (Guttiferae) and 7-epi-nemorosone: structural revision. Z Naturforsch 58:643–648CrossRefGoogle Scholar
  286. 286.
    Armbruster WS (1993) Evolution of plant pollination systems: hypotheses and tests with Neotropical vine Dalechampia. Evolution 45:1480–1505.  https://doi.org/10.2307/2410162CrossRefGoogle Scholar
  287. 287.
    Gustafsson MHG, Bittrich V (2002) Evolution of morphological diversity and resin secretion in flowers of Clusia (Clusiaceae): insights from ITS sequence variation. Nord J Bot 22:183–203.  https://doi.org/10.1111/j.1756-1051.2002.tb01364.xCrossRefGoogle Scholar
  288. 288.
    Gustafsson MHG, Winter K, Bittrich V (2007) Diversity, phylogeny and classification of Clusia. In: Lüttge U (ed) Clusia: a woody neotropical genus of remarkable plasticity and diversity. Ecological studies. Springer, Berlin/HeidelbergGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elisabeth Dantas Tölke
    • 1
    Email author
  • Natalie do Valle Capelli
    • 2
  • Tamara Pastori
    • 3
  • Ana Cláudia Alencar
    • 1
  • Theodor C. H. Cole
    • 4
  • Diego Demarco
    • 2
  1. 1.Department of Plant Biology, Institute of BiologyUniversity of Campinas – UNICAMPCampinasBrazil
  2. 2.Department of Botany, Institute of BiosciencesUniversity of São Paulo – USPSão PauloBrazil
  3. 3.Department of Botany, Institute of Biological SciencesUniversity of Rio Grande – FURGRio GrandeBrazil
  4. 4.Institute of Biology, Structural and Functional Plant Diversity GroupFreie Universität BerlinBerlinGermany

Personalised recommendations