Advertisement

Co-evolution of Secondary Metabolites During Biological Competition for Survival and Advantage: An Overview

  • K. G. Ramawat
  • Shaily GoyalEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Plants produce secondary metabolites which are involved in several biological processes and interactions with other organisms from microbes to insects to higher plants. These processes are variously termed as plant-plant interaction, allelopathy, herbivory, parasitism and mutualism, and induction of plant protection by other microorganisms. Plants are under selection pressure to protect themselves from herbivores/parasites, whereas herbivores/parasites struggle for their survival from plant defense to obtain food and reproduction site. Plants develop defense mechanism from herbivores over a period of 400 million years. Therefore, both develop various strategies to adapt and adjust with changing environment. In this introductory chapter, a brief review of co-evolution of secondary metabolites not only to complete the biological process but also to compete with each other for survival is presented.

Keywords

Co-evolution Pollination Plant defense Secondary metabolites Allelopathy Biotic stress 

References

  1. 1.
    Ramawat KG, Merillon JM (2007) Biotechnology: secondary metabolites- plants and microbes. Science Publishers Inc., Enfield, pp 1–565CrossRefGoogle Scholar
  2. 2.
    Arora J, Goyal S, Ramawat KG (2010) Biodiversity, biology and conservation of medicinal plants of Thar Desert. In: Ramawat KG (ed) Desert plants. Springer, Berlin/Heidelberg, pp 3–36CrossRefGoogle Scholar
  3. 3.
    Arora J, Goyal S, Ramawat KG (2011) Co-evolution of pathogens, mechanism involved in pathogenesis and biocontrol of plant diseases: an overview. In: Merillon JM, Ramawat KG (eds) Plant defence: biological control, Progress in biological control, vol 12. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-1933-0_1 CrossRefGoogle Scholar
  4. 4.
    Goyal S, Lambert C, Cluzet S, Merillon JM, Ramawat KG (2011) Secondary metabolites and plant defence. In: Merillon JM, Ramawat KG (eds) Plant defence: biological control, Progress in biological control, vol 12. Springer, DordrechtGoogle Scholar
  5. 5.
    Hadacek F (2002) Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci 21(4):273–322CrossRefGoogle Scholar
  6. 6.
    Ramawat KG, Mathur M (2007) Factors affecting the production of secondary metabolites. In: Ramawat KG, Merillon JM (eds) Biotechnology: secondary metabolites. Taylor and Francis, Boca RatonGoogle Scholar
  7. 7.
    Suissa J, Barton K (2018) Intraspecific and interspecific variation in prickly poppy resistance to non-native generalist caterpillars. Bot Soc Mexico 95(2). http://www.botanicalsciences.com.mx/index.php/botanicalSciences/article/view/1798 CrossRefGoogle Scholar
  8. 8.
    Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in co-evolution. Evolution 18:586–608.  https://doi.org/10.2307/2406212 CrossRefGoogle Scholar
  9. 9.
    Price PW (2002) Species interactions and the evolution of biodiversity. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell Scientific Publications, Oxford, pp 3–25Google Scholar
  10. 10.
    Kariñho-Betancourt E (2018) Plant-herbivore interactions and secondary metabolites of plants: ecological and evolutionary perspectives. Bot Sci 96.  https://doi.org/10.17129/botsci.1860 CrossRefGoogle Scholar
  11. 11.
    Bais HP, Weir TL, Perry LG, Gilroy S (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266CrossRefGoogle Scholar
  12. 12.
    Rashid MH, Chung YR (2017) Induction of systemic resistance against insect herbivores in plants by beneficial soil microbes. Front Plant Sci 8:1816.  https://doi.org/10.3389/fpls.2017.01816 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Richardson LL, Adler LS, Leonard AS et al (2015) Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc R Soc B 282:20142471.  https://doi.org/10.1098/rspb.2014.2471 CrossRefPubMedGoogle Scholar
  14. 14.
    Martinez M, Santamaria ME, Diaz-Mendoza M et al (2016) Phytocystatins: defense proteins against phytophagous insects and Acari. Int J Mol Sci 17:1747.  https://doi.org/10.3390/ijms17101747 CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Rasmann S, Hiltpold I, Ali J (2012) The role of root-produced volatile secondary metabolites in mediating soil interactions. In: Giuseppe M (ed) Advances in selected plant physiology aspects. InTech. isbn:978-953-51-0557-2. Available from: http://www.intechopen.com/books/advances-in-selected-plant-physiology-aspects/the-role-of-root-producedvolatile-secondary-metabolites-in-mediating-soil-interactions Google Scholar
  16. 16.
    Bolnick DI, Amarasekare P, Araújo MS et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192CrossRefGoogle Scholar
  17. 17.
    Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623CrossRefGoogle Scholar
  18. 18.
    Speed MP, Fenton A, Jones MG et al (2015) Co-evolution can explain defensive secondary metabolite diversity in plants. New Phytol 208:1251–1263.  https://doi.org/10.1111/nph.13560 CrossRefPubMedGoogle Scholar
  19. 19.
    Karasov TL, Horton MW, Bergelson J (2014) Genomic variability as a driver of plant–pathogen co-evolution? Curr Opin Plant Biol 18:24–30.  https://doi.org/10.1016/j.pbi.2013.12.003 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Clark JS (2010) Individuals and the variation needed for high species diversity in forest trees. Science 327:1129–1132CrossRefGoogle Scholar
  21. 21.
    Bustos-Segura C, Poelman EH, Reichelt EL et al (2017) Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecol Lett 20:87–97CrossRefGoogle Scholar
  22. 22.
    Gols R, van Dam NM, Reichelt M, Gershenzon J et al (2018) Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea). Chemoecology 28(3):77–89CrossRefGoogle Scholar
  23. 23.
    Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463CrossRefGoogle Scholar
  24. 24.
    Graham LE (1993) Origin of land plants. Wiley, New YorkGoogle Scholar
  25. 25.
    Sztein AE, Cohen JD, Slovin JP, Cooke TJ (1995) Auxin metabolism in representative land plants. Am J Bot 82:1514–1521CrossRefGoogle Scholar
  26. 26.
    Kroken SB, Graham LE, Cook ME (1996) Occurrence and evolutionary significance of resistant cell walls in charophytes and bryophytes. Am J Bot 83:1241–1254CrossRefGoogle Scholar
  27. 27.
    Lewis LA, McCourt RM (2004) Green algae and origin of land plants. Am J Bot 91(10):1535–1556CrossRefGoogle Scholar
  28. 28.
    Qiu YL, Lee J (2001) Transition to a land flora: a molecular phylogenetic perspective. J Phycol 36:799–802CrossRefGoogle Scholar
  29. 29.
    Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Ann Rev Plant Biol 62:549–566CrossRefGoogle Scholar
  30. 30.
    Lange BM (2015) The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Ann Rev Plant Biol 66:139–159CrossRefGoogle Scholar
  31. 31.
    Taylor TN, Osborne JM (1996) The importance of fungi in shaping the paleoecosystem. Rev Palaeobot Palynol 90:249–262CrossRefGoogle Scholar
  32. 32.
    Asina F, Brzonova I, Voeller K, Kozliak E et al (2016) Biodegradation of lignin by fungi, bacteria and laccases. Bioresour Technol 220:414–424CrossRefGoogle Scholar
  33. 33.
    Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: concept, organisms and ecological significance. Crit Rev Plant Sci 18(6):757–772.  https://doi.org/10.1080/07352689991309478 CrossRefGoogle Scholar
  34. 34.
    Zhou X, Zhang J, Pan D et al (2018) P-Coumaric can alter the composition of cucumber rhizosphere microbial communities and induce negative plant-microbial interactions. Biol Fertil Soils 54:363.  https://doi.org/10.1007/s00374-018-1265-x CrossRefGoogle Scholar
  35. 35.
    Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Ann Rev Microbiol 66(1):265–283.  https://doi.org/10.1146/annurev-micro-092611-150107 CrossRefGoogle Scholar
  36. 36.
    Simpson BB, Neff JL (1983) Evolution and diversity of floral rewards. In: JonesCE, Little RJ (ed) Handbook of experimental pollination biology. Van Nostrand Reinhold Co, New YorkGoogle Scholar
  37. 37.
    Richardson LL, Adler LS, Leonard AS et al (2015) Secondary metabolites in floral nectar reduce parasite infections in bumblebees. Proc R Soc B 282:20142471.  https://doi.org/10.1098/rspb.2014.2471 CrossRefPubMedGoogle Scholar
  38. 38.
    Stevenson PC, Nicolson SW, Wright GA (2017) Plant secondary metabolites in nectar: impacts on pollinators and ecological functions. Funct Ecol 31:65–75CrossRefGoogle Scholar
  39. 39.
    Frolich C, HartmannT OD (2006) Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochemistry 67:1493–1502CrossRefGoogle Scholar
  40. 40.
    Manson JS, Rasmann S, Halitschke R, ThomsonJD, Agrawal AA (2012) Cardenolides in nectar may be more than a consequence of allocation to other plant parts: a phylogenetic study of Asclepias. Funct Ecol 26:1100–1110CrossRefGoogle Scholar
  41. 41.
    Irwin RE, Cook D, Richardson LL, Gardner DL (2014) Secondary compounds in floral rewards of toxic rangeland plants: impacts on pollinators. J Agric Food Chem 62:7335–7344CrossRefGoogle Scholar
  42. 42.
    Cook D, Manson JS, Gardner DR, Welch KD, Irwin RE (2013) Norditerpene alkaloid concentrations in tissues and floral rewards of larkspurs and impacts on pollinators. Biochem Syst Ecol 48:123–131CrossRefGoogle Scholar
  43. 43.
    Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, Borland AM, Stevenson PC (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204.  https://doi.org/10.1126/science.1228806 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jørgensen K, Stranden M, Sandoz J-C, Menzel R, Mustaparta H (2007) Effects of two bitter substances on olfactory conditioning in the moth Heliothis virescens. J Exp Biol 210:2563–2573CrossRefGoogle Scholar
  45. 45.
    Aurores-Weber A, de Brito Sanchez MG, Giurfa M, Dyer AG (2010) Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370CrossRefGoogle Scholar
  46. 46.
    Wright GA, Mustard JA, Simcock NK, Ross-Taylor AAR, McNicholas LD, Popescu A et al (2010) Parallel reinforcement pathways for conditioned food aversions in the honeybee. Curr Biol 20:2234–2240CrossRefGoogle Scholar
  47. 47.
    Ayestaran A, Giurfa M, de Brito Sanchez MG (2010) Toxic but drank: gustatory aversive compounds induce post-ingestional malaise in harnessed honeybees. PLoS One 5:e15000CrossRefGoogle Scholar
  48. 48.
    Wright GA, Baker D, Palmer MJ, Stabler D, Mustard JD, Power E et al (2013) Caffeine in floral nectar enhances a pollinator’s memory of reward. Science 339:1202–1204CrossRefGoogle Scholar
  49. 49.
    Schaeffer RN, Irwin RE (2014) Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology 95:1792–1798CrossRefGoogle Scholar
  50. 50.
    Manson J, Otterstatter M, Thomson J (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89.  https://doi.org/10.1007/s00442-009-1431-9 CrossRefPubMedGoogle Scholar
  51. 51.
    Glaum P, Kessler A (2017) Functional reduction in pollination through herbivore-induced pollinator limitation and its potential in mutualist communities. Nat Commun 8:2031.  https://doi.org/10.1038/s41467-017-02072-4 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Adler LS, Wink M, Distl M, Lentz AJ (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967CrossRefGoogle Scholar
  53. 53.
    Ohnmeiss TE, Baldwin IT (2000) Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecol Soc Am 81:1765–1783Google Scholar
  54. 54.
    Campbell SA (2015) Ecological mechanisms for the co-evolution of mating systems and defence. New Phytol 205:1047–1053CrossRefGoogle Scholar
  55. 55.
    Bouwnester HJ, Matusova R, Zhongkui S et al (2003) Secondary metabolite signalling in host–parasitic plant interactions. Curr Opin Plant Biol 6:358–364CrossRefGoogle Scholar
  56. 56.
    Oracz K, Bailly C, Gniazdowska A, Come D, Corbineau F, Bogatek R (2007) Induction of oxidative stress by sunflower phytotoxins in germinating mustard seeds. J Chem Ecol 33:251–264CrossRefGoogle Scholar
  57. 57.
    Blum U (2011) Plant–plant allelopathic interactions. In: Blum U (ed) Plant-plant Allelopathic interactions. Springer, Dordrecht.  https://doi.org/10.1007/978-94-007-0683-5_1 CrossRefGoogle Scholar
  58. 58.
    Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479CrossRefGoogle Scholar
  59. 59.
    Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  60. 60.
    Chaves N, Sosa T, Valares C, Alias JC (2015) Routes of incorporation of phytotoxic compounds of Cistus ladanifer L into soil. Allelopathy J 36:25–36Google Scholar
  61. 61.
    Raimundo JR, Frazão DF, Domingues JL (2018) Neglected Mediterranean plant species are valuable resources: the example of Cistus ladanifer. Planta 248:1351–1364CrossRefGoogle Scholar
  62. 62.
    Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2002) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301(5638):1377–1380.  https://doi.org/10.1126/science.1083245 CrossRefGoogle Scholar
  63. 63.
    Ren X, Yan Z-Q, He X-F, Li XZ, Qin B (2017) Allelopathic effect of β-cembrenediol and its mode of action: induced oxidative stress in lettuce seedlings. Emirates J Food Agric 29:441–449CrossRefGoogle Scholar
  64. 64.
    Yadav V, Singh NB, Singh H, Singh A, Hussain I (2016) Allelopathic invasion of alien plant species in India and their management strategies: a review. Trop Plant Res 3(1):87–101Google Scholar
  65. 65.
    Getachew S, Demissew S, Woldemariam T (2012) Allelopathic effects of the invasive Prosopis juliflora (Sw.) DC. On selected native plant species in middle awash, southern Afar rift of Ethiopia. Manag Biol Invasions 3(2):105–114CrossRefGoogle Scholar
  66. 66.
    Montesinos-Navarro A, Estrada A, Font X, Matias MG, Meireles C et al (2018) Community structure informs species geographic distributions. PLoS One 13(7):e0200556CrossRefGoogle Scholar
  67. 67.
    Fraire-velasquez S, Balderas-Hernandez VE (2013) Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C (eds) Abiotic Stress - Plant Responses and Applications in Agriculture.  https://doi.org/10.5772/54859 Google Scholar
  68. 68.
    Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36(2):235–242.  https://doi.org/10.1007/s00299-016-2084-x. Epub 2016 Dec 8CrossRefPubMedGoogle Scholar
  69. 69.
    Thompson JN (2006) Mutualistic webs of species. Science 312:372–373CrossRefGoogle Scholar
  70. 70.
    Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants: community patterns and mechanisms. Harvard University Press, CambridgeGoogle Scholar
  71. 71.
    Llorente-Bousquets J, Ocegueda S (2008) Estado del conocimiento de la biota. In: Contreras S, Chiang F, Papavero N (eds) Capital Natural de México, Conocimiento Actual de la Biodiversidad, vol I. Conabio, Mexico, pp 283–322Google Scholar
  72. 72.
    Mithoefer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Ann Rev Plant Biol 63:431–450CrossRefGoogle Scholar
  73. 73.
    Missbach C, Dweck HKM, Vogel H et al (2014) Evolution of insect olfactory receptors. eLife 3:e02115.  https://doi.org/10.7554/eLife.02115 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Wybouw N, Dermauw M, Tirry L et al (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. eLife 3:e02365.  https://doi.org/10.7554/eLife.02365 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Simon JC, Elencon ED, Guy E et al (2015) Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics 14(6):413–423.  https://doi.org/10.1093/bfgp/elv015 CrossRefPubMedGoogle Scholar
  76. 76.
    Baracchi D, Marples A, Jenkins AJ, Leitch AR, Chittka L (2017) Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci Rep 7:1951CrossRefGoogle Scholar
  77. 77.
    Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89CrossRefGoogle Scholar
  78. 78.
    Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 7:1–7.  https://doi.org/10.1371/journal.pone.0034601 CrossRefGoogle Scholar
  79. 79.
    Goggin FL, Lorence A, Topp CN (2015) Applying high-throughput phenotyping to plant–insect interactions: picturing more resistant crops. Curr Opin Insect Sci 9:69–76.  https://doi.org/10.1016/j.cois.2015.03.002 CrossRefGoogle Scholar
  80. 80.
    Tamiru A, Khan ZR, Bruce TJA (2015) New directions for improving crop resistance to insects by breeding for egg induced defence. Curr Opin Insect Sci 9:51–55.  https://doi.org/10.1016/j.cois.2015.02.011 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of BotanyUniversity College of Science, M. L. Sukhadia UniversityUdaipurIndia
  2. 2.Department of Life Earth and Environmental SciencesWest Texas A&M UniversityCanyonUSA

Personalised recommendations