Differential Response of Herbivores to Plant Defence

  • Martin VolfEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The differential response of insect herbivores to plant traits is one of the mechanisms promoting diversity and specificity of insect-plant interactions. The response differs mainly among generalist insects on the one hand and specialized or adapted insects on the other hand. While generalists are often strongly affected by toxic defences of their hosts, specialists have evolved various adaptations to overcome such defences. These adaptations include tolerance, detoxification, or sequestration of secondary metabolites of the host. In addition, behavioral adaptations help herbivores to avoid particularly potent defences. The response of herbivores is also tightly linked to their feeding mode (i.e., herbivore guild), physiology, metabolism, or size. The resulting specificity of interactions gives rise to diversification of host defences as no single trait can provide an efficient defence against diverse communities of insects. The diversification of host defences then seems to be one of the key factors promoting diversity of insects in a reciprocal way.


Adaptation Diversity Evolution Generalists Secondary metabolites Specialists Specialization 



I acknowledge funding by Alexander von Humboldt Foundation and the Federal Ministry for Education and Research. I thank the New Guinea Binatang Research Center for providing photos of New Guinean Lepidoptera, Tereza Holicová for help with preparing the illustrations for this chapter, and Conor Redmond, Carlo L. Seifert, and Tereza Holicová for providing valuable comments on the manuscript.


  1. 1.
    Hamilton AJ, Novotny V, Waters EK, Basset Y, Benke KK, Grimbacher PS, Miller SE, Samuelson GA, Weiblen GD, Yen JDL, Stork NE (2013) Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia 171:357–365PubMedCrossRefGoogle Scholar
  2. 2.
    Basset Y, Cizek L, Cuenoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Odegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc HP, Bail J, Barrios H, Bridle JR, Castano-Meneses G, Corbara B, Curletti G, da Rocha WD, de Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sorensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484PubMedCrossRefGoogle Scholar
  3. 3.
    Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Ehrlich PR, Raven PH (1964) Butterflies and plants – a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  5. 5.
    Janz N (2011) Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu Rev Ecol Evol Syst 42:71–89CrossRefGoogle Scholar
  6. 6.
    Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense – do latex and resin canals spur plant diversification. Am Nat 138:881–900CrossRefGoogle Scholar
  7. 7.
    Volf M, Segar ST, Miller SE, Isua B, Sisol M, Aubona G, Šimek P, Moos M, Laitila J, Kim J, Zima Jnr J, Rota J, Weiblen GD, Wossa S, Salminen JP, Basset Y, Novotny V (2018) Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol Lett 21:83–92PubMedCrossRefGoogle Scholar
  8. 8.
    Marquis RJ, Salazar D, Baer C, Reinhardt J, Priest G, Barnett K (2016) Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology 97:2939–2951PubMedCrossRefGoogle Scholar
  9. 9.
    Steemans P, Le Herisse A, Melvin J, Miller MA, Paris F, Verniers J, Wellman CH (2009) Origin and radiation of the earliest vascular land plants. Science 324:353–353PubMedCrossRefGoogle Scholar
  10. 10.
    Labandeira CC (2013) A paleobiologic perspective on plant–insect interactions. Curr Opin Plant Biol 16:414–421PubMedCrossRefGoogle Scholar
  11. 11.
    Labandeira C (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci 14:259–275CrossRefGoogle Scholar
  12. 12.
    Koricheva J, Nykanen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163:64–75CrossRefGoogle Scholar
  13. 13.
    Volf M, Hrcek J, Julkunen-Tiitto R, Novotny V (2015) To each its own: differential response of specialist and generalist herbivores to plant defence in willows. J Anim Ecol 84:1123–1132PubMedCrossRefGoogle Scholar
  14. 14.
    Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302PubMedCrossRefGoogle Scholar
  15. 15.
    Volf M, Kadlec J, Butterill PT, Novotny V (2017) Host phylogeny and nutrient content drive galler diversity and abundance on willows. Ecol Entomol. Scholar
  16. 16.
    Whittaker RH, Feeny PP (1971) Allelochemics: chemical interactions between species. Science 171:757–770PubMedCrossRefGoogle Scholar
  17. 17.
    Agrawal AA (2005) Natural selection on common milkweed (Asclepias syriaca) by a community of specialized insect herbivores. Evol Ecol Res 7:651–667Google Scholar
  18. 18.
    Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256PubMedCrossRefGoogle Scholar
  19. 19.
    Volf M, Julkunen-Tiitto R, Hrcek J, Novotny V (2015) Insect herbivores drive the loss of unique chemical defense in willows. Entomol Exp Appl 156:88–98CrossRefGoogle Scholar
  20. 20.
    Jones CG, Lawton JH (1991) Plant chemistry and insect species richness of British umbellifers. J Anim Ecol 60:767–777CrossRefGoogle Scholar
  21. 21.
    Hartmann T, Theuring C, Beuerle T, Bernays E, Singer M (2005) Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem Mol Biol 35:1083–1099PubMedCrossRefGoogle Scholar
  22. 22.
    Althoff DM, Segraves KA, Johnson MT (2014) Testing for coevolutionary diversification: linking pattern with process. Trends Ecol Evol 29:82–89PubMedCrossRefGoogle Scholar
  23. 23.
    Wahlberg N (2001) The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:522–537PubMedCrossRefGoogle Scholar
  24. 24.
    Forister ML, Novotny V, Panorska AK, Baje L, Basset Y, Butterill PT, Cizek L, Coley PD, Dem F, Diniz IR, Drozd P, Fox M, Glassmire AE, Hazen R, Hrcek J, Jahner JP, Kaman O, Kozubowski TJ, Kursar TA, Lewis OT, Lill J, Marquis RJ, Miller JS, Morais HC, Murakami M, Nickel H, Pardikes NA, Ricklefs RE, Singer MS, Smilanich AM, Stireman JO, Villamarín-Cortez S, Vodka S, Volf M, Wagner DL, Walla T, Weiblen GD, Dyer LA (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci 112:442–447PubMedCrossRefGoogle Scholar
  25. 25.
    Novotny V, Miller SE, Leps J, Basset Y, Bito D, Janda M, Hulcr J, Damas K, Weiblen GD (2004) No tree an island: the plant–caterpillar food web of a secondary rain forest in New Guinea. Ecol Lett 7:1090–1100CrossRefGoogle Scholar
  26. 26.
    Unsicker SB, Oswald A, Köhler G, Weisser WW (2008) Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia 156:313–324PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bernays E, Bright K, Gonzalez N, Angel J (1994) Dietary mixing in a generalist herbivore: tests of two hypotheses. Ecology 75:1997–2006CrossRefGoogle Scholar
  28. 28.
    Ibanez S, Manneville O, Miquel C, Taberlet P, Valentini A, Aubert S, Coissac E, Colace M-P, Duparc Q, Lavorel S (2013) Plant functional traits reveal the relative contribution of habitat and food preferences to the diet of grasshoppers. Oecologia 173:1459–1470PubMedCrossRefGoogle Scholar
  29. 29.
    Salminen JP, Lahtinen M, Lempa K, Kapari L, Haukioja E, Pihlaja K (2004) Metabolic modifications of birch leaf phenolics by an herbivorous insect: detoxification of flavonoid aglycones via glycosylation. Z Naturforsch C 59:437–444PubMedCrossRefGoogle Scholar
  30. 30.
    Vihakas MA, Kapari L, Salminen JP (2010) New types of flavonol oligoglycosides accumulate in the hemolymph of birch-feeding sawfly larvae. J Chem Ecol 36:864–872PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Li Q, Eigenbrode SD, Stringam G, Thiagarajah M (2000) Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J Chem Ecol 26:2401–2419CrossRefGoogle Scholar
  32. 32.
    Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci U S A 101:4859–4864PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci U S A 99:11223–11228PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Wynn SG, Fougere BJ (2007) Veterinary herbal medicine. Elsevier Health Sciences, St. LouisGoogle Scholar
  35. 35.
    Julkunen-Tiitto R (1989) Phenolic constituents of Salix – a chemotaxonomic survey of further Finnish species. Phytochemistry 28:2115–2125CrossRefGoogle Scholar
  36. 36.
    Kolehmainen J, Julkunen-Tiitto R, Roininen H, Tahvanainen J (1995) Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomol Exp Appl 74:235–243CrossRefGoogle Scholar
  37. 37.
    Matsuki M, Maclean SF (1994) Effects of different leaf traits on growth rates of insect herbivores on willows. Oecologia 100:141–152PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Rank NE (1992) Host plant preference based on salicylate chemistry in a willow leaf beetle (Chrysomela aeneicollis). Oecologia 90:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Denno RF, Larsson S, Olmstead KL (1990) Role of enemy-free space and plant quality in host-plant selection by willow beetles. Ecology 71:124–137CrossRefGoogle Scholar
  40. 40.
    Pasteels JM, Rowell-Rahier M, Braekman JC, Dupont A (1983) Salicin from host plant as precursor of salicylaldehyde in defensive secretion of Chrysomeline larvae. Physiol Entomol 8:307–314CrossRefGoogle Scholar
  41. 41.
    Rank NE, Kopf A, Julkunen-Tiitto R, Tahvanainen J (1998) Host preference and larval performance of the salicylate-using leaf beetle Phratora vitellinae. Ecology 79:618–631CrossRefGoogle Scholar
  42. 42.
    Novotny V, Miller SE, Baje L, Balagawi S, Basset Y, Cizek L, Craft KJ, Dem F, Drew RAI, Hulcr J, Leps J, Lewis OT, Pokon R, Stewart AJA, Samuelson GA, Weiblen GD (2010) Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203PubMedCrossRefGoogle Scholar
  43. 43.
    Miller SE, Darrow K, Basset Y, Weiblen GD, Novotny V (2018) Caterpillars feeding on New Guinea plants – online. Accessed 10 Oct 2018
  44. 44.
    Sourakov A, Emmel TC (2001) On the toxic diet of day-flying moths in the Solomon Islands (Lepidoptera: Arctiidae). Trop Lepid Res 12:5–6Google Scholar
  45. 45.
    Wills PJ, Anjana M, Nitin M, Varun R, Sachidanandan P, Jacob TM, Lilly M, Thampan RV, Varma KK (2016) Population explosions of tiger moth lead to lepidopterism mimicking infectious fever outbreaks. PLoS One 11:e0152787PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Cardoso MZ (2008) Herbivore handling of a plant’s trichome: the case of Heliconius charithonia (L.) (Lepidoptera: Nymphalidae) and Passiflora lobata (Killip) Hutch. (Passifloraceae). Neotrop Entomol 37:247–252PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331CrossRefGoogle Scholar
  48. 48.
    Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K (2004) Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J 37:370–378PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytol 194:28–45PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Richards LA, Dyer LA, Smilanich AM, Dodson CD (2010) Synergistic effects of amides from two Piper species on generalist and specialist herbivores. J Chem Ecol 36:1105–1113PubMedCrossRefGoogle Scholar
  51. 51.
    Bernays EA (1997) Feeding by lepidopteran larvae is dangerous. Ecol Entomol 22:121–123CrossRefGoogle Scholar
  52. 52.
    Murphy SM (2004) Enemy-free space maintains swallowtail butterfly host shift. Proc Natl Acad Sci U S A 101:18048–18052PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Greeney H, Dyer L, Smilanich A (2012) Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr Surviv J 9:7–34Google Scholar
  54. 54.
    Coley PD, Bateman ML, Kursar TA (2006) The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115:219–228CrossRefGoogle Scholar
  55. 55.
    Gentry GL, Dyer LA (2002) On the conditional nature of neotropical caterpillar defenses against their natural enemies. Ecology 83:3108–3119CrossRefGoogle Scholar
  56. 56.
    Oppenheim SJ, Gould F (2002) Behavioral adaptations increase the value of enemy-free space for Heliothis subflexa, a specialist herbivore. Evolution 56:679–689PubMedCrossRefGoogle Scholar
  57. 57.
    Pellissier L, Moreira X, Danner H, Serrano M, Salamin N, van Dam NM, Rasmann S (2016) The simultaneous inducibility of phytochemicals related to plant direct and indirect defences against herbivores is stronger at low elevation. J Ecol 104:1116–1125CrossRefGoogle Scholar
  58. 58.
    Amo L, Jansen JJ, Dam NM, Dicke M, Visser ME (2013) Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol Lett 16:1348–1355PubMedCrossRefGoogle Scholar
  59. 59.
    Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP (2009) Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Oecologia 159:777–788PubMedCrossRefGoogle Scholar
  60. 60.
    Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723CrossRefGoogle Scholar
  61. 61.
    Falk KL, Kästner J, Bodenhausen N, Schramm K, Paetz C, Vassão DG, Reichelt M, Knorre D, Bergelson J, Erb M (2014) The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Mol Ecol 23:1188–1203PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Turlings TC, Erb M (2018) Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63:433–452PubMedCrossRefGoogle Scholar
  63. 63.
    Vet LE, Wäckers FL, Dicke M (1990) How to hunt for hiding hosts: the reliability–detectability problem in foraging parasitoids. Neth J Zool 41:202–213CrossRefGoogle Scholar
  64. 64.
    Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Danner H, Desurmont GA, Cristescu SM, Dam NM (2017) Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytol. Scholar
  66. 66.
    Rowen E, Kaplan I (2016) Eco-evolutionary factors drive induced plant volatiles: a meta-analysis. New Phytol 210:284–294PubMedCrossRefGoogle Scholar
  67. 67.
    Turlings TC, Wäckers F (2004) Recruitment of predators and parasitoids by herbivore-injured plants. Adv Insect Chem Ecol 2:21–75CrossRefGoogle Scholar
  68. 68.
    Turlings TCJ, Loughrin JH, McCall PJ, Rose USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci U S A 92:4169–4174PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nyman T, Widmer A, Roininen H (2000) Evolution of gall morphology and host-plant relationships in willow-feeding sawflies (Hymenoptera: Tenthredinidae). Evolution 54:526–533PubMedCrossRefGoogle Scholar
  70. 70.
    Nyman T, Bokma F, Kopelke J-P (2007) Reciprocal diversification in a complex plant–herbivore–parasitoid food web. BMC Biol 5:49PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kobayashi C, Matsuo K, Watanabe K, Nagata N, Suzuki-Ohno Y, Kawata M, Kato M (2015) Arms race between leaf rollers and parasitoids: diversification of plant-manipulation behavior and its consequences. Ecol Monogr 85:253–268CrossRefGoogle Scholar
  72. 72.
    Paniagua MR, Medianero E, Lewis OT (2009) Structure and vertical stratification of plant galler–parasitoid food webs in two tropical forests. Ecol Entomol 34:310–320CrossRefGoogle Scholar
  73. 73.
    Body M, Burlat V, Giron D (2015) Hypermetamorphosis in a leaf-miner allows insects to cope with a confined nutritional space. Arthropod Plant Interact 9:75–84CrossRefGoogle Scholar
  74. 74.
    Raupp MJ (1985) Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol Entomol 10:73–79CrossRefGoogle Scholar
  75. 75.
    Bernays EA (1986) Diet-induced head allometry among foliage-chewing insects and its importance for graminivores. Science 231:495–497PubMedCrossRefGoogle Scholar
  76. 76.
    Vincent JF (1982) The mechanical design of grass. J Mater Sci 17:856–860CrossRefGoogle Scholar
  77. 77.
    Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y (2012) Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol 196:586–595PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Giron D, Huguet E, Stone GN, Body M (2016) Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol 84:70–89PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Price PW (2005) Adaptive radiation of gall-inducing insects. Basic Appl Ecol 6:413–421CrossRefGoogle Scholar
  80. 80.
    Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci U S A 97:13184–13187PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Stuart JJ, Chen M-S, Shukle R, Harris MO (2012) Gall midges (Hessian flies) as plant pathogens. Annu Rev Phytopathol 50:339–357PubMedCrossRefGoogle Scholar
  82. 82.
    Liu X, Bai J, Huang L, Zhu L, Liu X, Weng N, Reese JC, Harris M, Stuart JJ, Chen M-S (2007) Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J Chem Ecol 33:2171–2194PubMedCrossRefGoogle Scholar
  83. 83.
    Tooker JF, De Moraes CM (2007) Feeding by Hessian fly [Mayetiola destructor (Say)] larvae does not induce plant indirect defences. Ecol Entomol 32:153–161CrossRefGoogle Scholar
  84. 84.
    Stone GN, Hernandez-Lopez A, Nicholls JA, Di Pierro E, Pujade-Villar J, Melika G, Cook JM (2009) Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63:854–869PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang H, de Bernonville TD, Body M, Glevarec G, Reichelt M, Unsicker S, Bruneau M, Renou J-P, Huguet E, Dubreuil G (2016) Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. J Insect Physiol 84:114–127PubMedCrossRefGoogle Scholar
  86. 86.
    Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161CrossRefGoogle Scholar
  87. 87.
    Quiros C, Stevens M, Rick CM, Kok Yokomi M (1977) Resistance in tomato to the pink form of the potato aphid (Macrosiphum euphorbiae Thomas): the role of anatomy, epidermal hairs, and foliage composition. J Am Soc Hortic Sci 102:166–171Google Scholar
  88. 88.
    Andrew NR, Hughes L (2005) Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Glob Ecol Biogeogr 14:249–262CrossRefGoogle Scholar
  89. 89.
    Novotny V, Wilson MR (1997) Why are there no small species among xylem-sucking insects? Evol Ecol 11:419–437CrossRefGoogle Scholar
  90. 90.
    Will T, Tjallingii WF, Thönnessen A, van Bel AJ (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci U S A 104:10536–10541PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Vincent TR, Avramova M, Canham J, Higgins P, Bilkey N, Mugford ST, Pitino M, Toyota M, Gilroy S, Miller AJ (2017) Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding. Plant Cell 29:1460–1479PubMedPubMedCentralGoogle Scholar
  92. 92.
    Zvereva EL, Kozlov MV, Niemela P (1998) Effects of leaf pubescence in Salix borealis on host-plant choice and feeding behaviour of the leaf beetle, Melasoma lapponica. Entomol Exp Appl 89:297–303CrossRefGoogle Scholar
  93. 93.
    Chiang HS, Norris DM (1983) Morphological and physiological parameters of soybean resistance to agromyzid beanflies. Environ Entomol 12:260–265CrossRefGoogle Scholar
  94. 94.
    Robinson SH, Wolfenbarger DA, Dilday RH (1980) Antixenosis of smooth leaf cotton to the ovipositional response of tobacco budworm. Crop Sci 20:646–649CrossRefGoogle Scholar
  95. 95.
    Salminen JP, Karonen M (2011) Chemical ecology of tannins and other phenolics: we need a change in approach. Funct Ecol 25:325–338CrossRefGoogle Scholar
  96. 96.
    Foley W, Iason G, McArthur C (1999) Role of plant secondary metobolites in the nutritional ecology of mammalian herbivores: how far have we come in 25 years? In: Jung HG, Fahey GC Jr (eds) Nutritional ecology of herbivores: proceedings of the 5th international symposium on the nutrition of herbivores. American Society of Animal Science, Savoy, pp 130–209Google Scholar
  97. 97.
    Haslam E, Lilley TH, Warminski E, Liao H, Cai Y, Martin R, Gaffney SH, Goulding PN, Luck G (1992) Polyphenol complexation. A study in molecular recognition. In: Ho CT, Lee CY, Huang MT (eds) Phenolic compounds in food and their effects on health I: analysis, occurrence, and chemistry. American Chemical Society, Washington, DC, pp 8–50CrossRefGoogle Scholar
  98. 98.
    Bailey JK, Schweitzer JA, Rehill BJ, Lindroth RL, Martinsen GD, Whitham TG (2004) Beavers as molecular geneticists: a genetic basis to the foraging of an ecosystem engineer. Ecology 85:603–608CrossRefGoogle Scholar
  99. 99.
    Harrison JF (2001) Insect acid–base physiology. Annu Rev Entomol 46:221–250PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Barbehenn R, Weir Q, Salminen JP (2008) Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. J Chem Ecol 34:748–756PubMedCrossRefGoogle Scholar
  101. 101.
    Roslin T, Salminen JP (2008) Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos 117:1560–1568CrossRefGoogle Scholar
  102. 102.
    Kopper BJ, Jakobi VN, Osier TL, Lindroth RL (2002) Effects of paper birch condensed tannin on whitemarked tussock moth (Lepidoptera: Lymantriidae) performance. Environ Entomol 31:10–14CrossRefGoogle Scholar
  103. 103.
    Segar ST, Volf M, Isua B, Sisol M, Redmond CM, Rosati ME, Gewa B, Molem K, Dahl C, Holloway JD (2017) Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proc R Soc Lond B Biol Sci 284:20171803CrossRefGoogle Scholar
  104. 104.
    Appel HM (1993) Phenolics in ecological interactions – the importance of oxidation. J Chem Ecol 19:1521–1552PubMedCrossRefGoogle Scholar
  105. 105.
    Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen J-P (2009) Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 55:297–304PubMedCrossRefGoogle Scholar
  106. 106.
    Endara M-J, Coley PD, Ghabash G, Nicholls JA, Dexter KG, Donoso DA, Stone GN, Pennington RT, Kursar TA (2017) Coevolutionary arms race versus host defense chase in a tropical herbivore–plant system. Proc Natl Acad Sci U S A 114:E7499–E7505PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Agrawal AA, Fishbein M (2008) Phylogenetic escalation and decline of plant defense strategies. Proc Natl Acad Sci U S A 105:10057–10060PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:S132–S149PubMedCrossRefGoogle Scholar
  109. 109.
    Hattas D, Hjalten J, Julkunen-Tiitto R, Scogings PF, Rooke T (2011) Differential phenolic profiles in six African savanna woody species in relation to antiherbivore defense. Phytochemistry 72:1796–1803PubMedCrossRefGoogle Scholar
  110. 110.
    Sampedro L, Moreira X, Zas R (2011) Costs of constitutive and herbivore-induced chemical defences in pine trees emerge only under low nutrient availability. J Ecol 99:818–827CrossRefGoogle Scholar
  111. 111.
    Agrawal AA, Salminen JP, Fishbein M (2009) Phylogenetic trends in phenolic metabolism of milkweeds (Asclepias): evidence for escalation. Evolution 63:663–673PubMedCrossRefGoogle Scholar
  112. 112.
    Becerra JX, Noge K, Venable DL (2009) Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. Proc Natl Acad Sci U S A 106:18062–18066PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Becerra JX (2007) The impact of herbivore–plant coevolution on plant community structure. Proc Natl Acad Sci U S A 104:7483–7488PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE, Weber MG, Murakami ET, Drake C, McGregor R, Coley PD (2009) The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc Natl Acad Sci U S A 106:18073–18078PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Sedio BE, Rojas Echeverri JC, Boya P, Cristopher A, Wright SJ (2017) Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology 98:616–623PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Gilbert LE (1980) Ecological consequences of a coevolved mutualism between butterflies and plants. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 210–240Google Scholar
  117. 117.
    Becerra JX (2015) On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc Natl Acad Sci U S A 112:6098–6103PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Mo Bot Gard 69:557–593CrossRefGoogle Scholar
  119. 119.
    Foster RB, Hubbell SP (1990) The floristic composition of the Barro Colorado Island forest. In: Gentry AH (ed) Four neotropical rainforests. Yale University Press, New Haven/London, pp 85–98Google Scholar
  120. 120.
    Salazar D, Jaramillo A, Marquis RJ (2016) The impact of plant chemical diversity on plant–herbivore interactions at the community level. Oecologia 181:1199–1208PubMedCrossRefGoogle Scholar
  121. 121.
    Richards LA, Dyer LA, Forister ML, Smilanich AM, Dodson CD, Leonard MD, Jeffrey CS (2015) Phytochemical diversity drives plant–insect community diversity. Proc Natl Acad Sci U S A 112:10973–10978PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Salazar D, Lokvam J, Mesones I, Vásquez M, Ayarza J, Fine P (2018) Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat Ecol Evol 2(6):983–990PubMedCrossRefGoogle Scholar
  123. 123.
    Novotný V, Basset Y (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89:564–572CrossRefGoogle Scholar
  124. 124.
    Marquis RJ, Lill JT, Piccinni A (2002) Effect of plant architecture on colonization and damage by leaftying caterpillars of Quercus alba. Oikos 99:531–537CrossRefGoogle Scholar
  125. 125.
    Lavandero B, Labra A, Ramirez CC, Niemeyer HM, Fuentes-Contreras E (2009) Species richness of herbivorous insects on Nothofagus trees in South America and New Zealand: the importance of chemical attributes of the host. Basic Appl Ecol 10:10–18CrossRefGoogle Scholar
  126. 126.
    Volf M, Pyszko P, Abe T, Libra M, Kotásková N, Šigut M, Kumar R, Kaman O, Butterill P, Šipoš J, Abe H, Fukushima H, Drozd P, Kamata N, Murakami M, Novotny V (2017) Phylogenetic composition of host plant communities drives plant–herbivore food web structure. J Anim Ecol 86:556–565PubMedCrossRefGoogle Scholar
  127. 127.
    Janz N, Nylin S (1998) Butterflies and plants: a phylogenetic study. Evolution 52:486–502PubMedCrossRefGoogle Scholar
  128. 128.
    Farrell BD, Mitter C (1990) Phylogenesis of insect/plant interactions: have Phyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel. Evolution 44:1389–1403PubMedCrossRefGoogle Scholar
  129. 129.
    Futuyma DJ (2000) Some current approaches to the evolution of plant–herbivore interactions. Plant Species Biol 15:1–9CrossRefGoogle Scholar
  130. 130.
    Jorge LR, Prado PI, Almeida-Neto M, Lewinsohn TM (2014) An integrated framework to improve the concept of resource specialisation. Ecol Lett 17:1341–1350PubMedCrossRefGoogle Scholar
  131. 131.
    Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci U S A 106:18054–18061PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests. Science 313:1115–1118PubMedCrossRefGoogle Scholar
  133. 133.
    Vermeij GJ (1994) The evolutionary interaction among species – selection, escalation, and coevolution. Annu Rev Ecol Syst 25:219–236CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Molecular Interaction Ecology GroupGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany

Personalised recommendations