Advertisement

Fruit Scent: Biochemistry, Ecological Function, and Evolution

  • Omer NevoEmail author
  • Manfred Ayasse
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Fruit scent plays an important role in human preference and has thus been studied primarily in the context of agricultural science. In wild species, fruit scent has long been speculated to play a role in mediating the mutualistic interaction between plants and fruit-eating animals that disperse their seeds. Yet until recently, empirical studies addressing this hypothesis have been all but absent. Studies in the past decade emphasized the ecological role of fruit scent as an animal attractant, as well as its evolution as a ripeness signal. But data are still limited and many questions remain open. This chapter summarizes recent developments in the study of the chemical ecology and evolution of wild fruit scent. It explores the chemistry and biochemistry of fruit scent, its use by various important seed dispersal vectors, its evolution, and other functions it may fulfill. We end with recommendation for future studies, in the hope that the next decade will be at least as fruitful as the previous one.

Keywords

Co-evolution Constraints Frugivory Mutualism Odor Olfaction Seed dispersal Sense of smell 

Notes

Acknowledgments

ON was funded by the German Science Foundation (Deutsche Forschungsgemeinschaft; grant nr. 2156/1-1) while working on this chapter. Dr. Kim Valenta and Prof. Colin A. Chapman were heavily involved in data collection in Uganda, which was used for some of the unpublished results cited here.

References

  1. 1.
    Crozier A, Yokota T, Jaganath IB, Marks SC, Saltmarsh M, Clifford MN (2006) Secondary metabolites in fruits, vegetables, beverages and other plant based dietary components. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites. Blackwell, Oxford, UK, pp 208–302CrossRefGoogle Scholar
  2. 2.
    Cipollini ML, Levey DJ (1997) Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am Nat 150:346–372PubMedCrossRefGoogle Scholar
  3. 3.
    Cipollini ML (2000) Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions. Rev Chil Hist Nat 73:421–440CrossRefGoogle Scholar
  4. 4.
    Ehrlén J, Eriksson O (1993) Toxicity in fleshy fruits: a non-adaptive trait? Oikos 66:107–113CrossRefGoogle Scholar
  5. 5.
    Eriksson O, Ehrlén J (1998) Secondary metabolites in fleshy fruits: are adaptive explanations needed? Am Nat 152:905–907PubMedCrossRefGoogle Scholar
  6. 6.
    Cipollini ML, Paulk E, Mink K, Vaughn K, Fischer T (2004) Defense tradeoffs in fleshy fruits: effects of resource variation on growth, reproduction, and fruit secondary chemistry in Solanum carolinense. J Chem Ecol 30:1–17PubMedCrossRefGoogle Scholar
  7. 7.
    Whitehead SR, Bowers MD (2013) Evidence for the adaptive significance of secondary compounds in vertebrate-dispersed fruits. Am Nat 182:563–577PubMedCrossRefGoogle Scholar
  8. 8.
    Whitehead SR, Bowers MD (2014) Chemical ecology of fruit defence: synergistic and antagonistic interactions among amides from piper. Funct Ecol 28:1094–1106CrossRefGoogle Scholar
  9. 9.
    Whitehead SR, Obando Quesada MF, Bowers MD (2015) Chemical tradeoffs in seed dispersal: defensive metabolites in fruits deter consumption by mutualist bats. Oikos 125:927–937CrossRefGoogle Scholar
  10. 10.
    Whitehead SR, Tiramani J, Bowers MD (2015) Iridoid glycosides from fruits reduce the growth of fungi associated with fruit rot. J Plant Ecol 9:357–366CrossRefGoogle Scholar
  11. 11.
    Izhaki I (2002) Emodin – a secondary metabolite with multiple ecological functions in higher plants. New Phytol 155:205–217CrossRefGoogle Scholar
  12. 12.
    Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633CrossRefGoogle Scholar
  13. 13.
    Farmer EE (2014) Leaf defence. Oxford University Press, OxfordCrossRefGoogle Scholar
  14. 14.
    Rodríguez A, Alquézar B, Peña L (2013) Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol 197:36–48PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Nevo O, Valenta K (2018) The ecology and evolution of fruit odor: implications for primate seed dispersal. Int J Primatol 39:338–355CrossRefGoogle Scholar
  16. 16.
    Nevo O, Valenta K, Tevlin AG, Omeja P, Styler SA, Jackson DJ, Chapman CA, Ayasse M (2017) Fruit defence syndromes: the independent evolution of mechanical and chemical defences. Evol Ecol 31:913–923CrossRefGoogle Scholar
  17. 17.
    Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Schwab W, Davidovich-Rikanati R, Lewinsohn E (2008) Biosynthesis of plant-derived flavor compounds. Plant J 54:712–732PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Goff SA, Klee HJ (2006) Plant volatile compounds: sensory cues for health and nutritional value? Science 311:815–819PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Valenta K, Nevo O, Martel C, Chapman CA (2017) Plant attractants: integrating insights from pollination and seed dispersal ecology. Evol Ecol 31:249–267CrossRefGoogle Scholar
  21. 21.
    Fischer KE, Chapman CA (1993) Frugivores and fruit syndromes: differences in patterns at the genus and species level. Oikos 66:472–482CrossRefGoogle Scholar
  22. 22.
    Jordano P (1995) Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. Am Nat 145:163–191CrossRefGoogle Scholar
  23. 23.
    Schaefer HM, Ruxton GD (2011) Animal-plant communication. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. 24.
    Lomáscolo SB, Schaefer HM (2010) Signal convergence in fruits: a result of selection by frugivores? J Evol Biol 23:614–624PubMedCrossRefGoogle Scholar
  25. 25.
    Lomáscolo SB, Levey DJ, Kimball RT, Bolker BM, Alborn HT (2010) Dispersers shape fruit diversity in Ficus (Moraceae). Proc Natl Acad Sci 107:14668–14672PubMedCrossRefGoogle Scholar
  26. 26.
    Schaefer HM, Valido A, Jordano P (2014) Birds see the true colours of fruits to live off the fat of the land. Proc R Soc B Biol Sci 281:20132516–20132516CrossRefGoogle Scholar
  27. 27.
    Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler J-P (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560PubMedCrossRefGoogle Scholar
  28. 28.
    Kalko EKV, Ayasse M (2009) Study and analysis of odor involved in the behavioral ecology of bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bat, 2nd edn. The Johns Hopkins University Press, Baltimore, pp 491–499Google Scholar
  29. 29.
    Howe HF, Westley LC (1986) Ecology of pollination and seed dispersal. In: Crawley MJ (ed) Plant ecology. Blackwell Scientific Publications, London, pp 185–215Google Scholar
  30. 30.
    Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569CrossRefGoogle Scholar
  31. 31.
    Schiestl FP (2015) Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol 206:571–577PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 147–198CrossRefGoogle Scholar
  33. 33.
    Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–332PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hodgkison R, Ayasse M, Kalko EKV, Häberlein C, Schulz S, Mustapha WAW, Zubaid A, Kunz TH (2007) Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of Paleotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii). J Chem Ecol 33:2097–2110PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Hodgkison R, Ayasse M, Häberlein C, Schulz S, Zubaid A, Mustapha WAW, Kunz TH, Kalko EKV (2013) Fruit bats and bat fruits: the evolution of fruit scent in relation to the foraging behaviour of bats in the New and Old World tropics. Funct Ecol 27:1075–1084CrossRefGoogle Scholar
  39. 39.
    Nevo O, Heymann EW, Schulz S, Ayasse M (2016) Fruit odor as a ripeness signal for seed-dispersing primates? A case study on four Neotropical plant species. J Chem Ecol 42:323–328PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Borges RM, Bessière JM, Hossaert-McKey M (2008) The chemical ecology of seed dispersal in monoecious and dioecious figs. Funct Ecol 22:484–493CrossRefGoogle Scholar
  41. 41.
    Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes – common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:1635–1646PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Theis N, Lerdau M (2003) The evolution of function in plant secondary metabolites. Int J Plant Sci 164:S93–S102CrossRefGoogle Scholar
  43. 43.
    Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95:4126–4133PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3:353–355PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Degenhardt J (2008) Ecological roles of vegetative terpene volatiles. In: Schaller A (ed) Induced plant resistance to herbivory. Springer Netherlands, Dordrecht, pp 433–442CrossRefGoogle Scholar
  46. 46.
    Nevo O, Garri RO, Hernandez Salazar LT, Schulz S, Heymann EW, Ayasse M, Laska M (2015) Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Sci Rep 5:14895–14895PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120CrossRefGoogle Scholar
  48. 48.
    Dudareva N, Negre F, Nagegowda D, Orlova I (2006) Plant volatiles: recent advances and future perspectives. CRC Crit Rev Plant Sci 25:417–440CrossRefGoogle Scholar
  49. 49.
    Dudareva N, Pichersky E (2006) Floral scent metabolic pathways: their regulation and evolution. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 55–78CrossRefGoogle Scholar
  50. 50.
    Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Nevo O, Razafimandimby D, Jeffrey JAJ, Schulz S, Ayasse M (2018) Fruit scent as an evolved signal to primate seed dispersal. Sci Adv 4:eaat4871PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Flores F, El Yahyaoui F, de Billerbeck G, Romojaro F, Latché A, Bouzayen M, Pech J-C, Ambid C (2002) Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons. J Exp Bot 53:201–206PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Beekwilder J, Alvarez-Huerta M, Neef E, Verstappen FWA, Bouwmeester HJ, Aharoni A (2004) Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol 135:1865–1878PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Peris JE, Rodríguez A, Peña L, Fedriani JM (2017) Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Sci Rep 7:5646–5646PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dudley R (2002) Fermenting fruit and the historical ecology of ethanol ingestion: is alcoholism in modern humans an evolutionary hangover. Addiction 97:381–388PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13:643–656PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Qualley AV, Dudareva N (2008) Aromatic volatiles and their involvement in plant defense. In: Schaller A (ed) Induced plant resistance to herbivory. Springer Netherlands, Dordrecht, pp 409–432CrossRefGoogle Scholar
  59. 59.
    Tieman D, Zeigler M, Schmelz E, Taylor MG, Rushing S, Jones JB, Klee HJ (2010) Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J 62:113–123PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463CrossRefGoogle Scholar
  61. 61.
    Brown MJ (1997) Durio, a bibliographic review. Bioversity International, New DelhiGoogle Scholar
  62. 62.
    Baldry J, Dougan J, Howard GE (1972) Volatile flavouring constituents of Durian. Phytochemistry 11:2081–2084CrossRefGoogle Scholar
  63. 63.
    Moser R, Düvel D, Greve R (1980) Volatile constituents and fatty acid composition of lipids in Durio zibethinus. Phytochemistry 19:79–81CrossRefGoogle Scholar
  64. 64.
    Wong KC, Tie DY (1995) Volatile constituents of durian (Durio zibethinus Murr.). Flavour Fragr J 10:79–83CrossRefGoogle Scholar
  65. 65.
    Teh BT, Lim K, Yong CH, Ng CCY, Rao SR, Rajasegaran V, Lim WK, Ong CK, Chan K, Cheng VKY, Soh PS, Swarup S, Rozen SG, Nagarajan N, Tan P (2017) The draft genome of tropical fruit durian (Durio zibethinus). Nat Genet 49:1633–1641PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Voo SS, Grimes HD, Lange BM (2012) Assessing the biosynthetic capabilities of secretory glands in Citrus peel. Plant Physiol 159:81–94PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Widhalm JR, Jaini R, Morgan JA, Dudareva N (2015) Rethinking how volatiles are released from plant cells. Trends Plant Sci 20:545–550PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Borges RM, Bessière J-M, Ranganathan Y (2013) Diel variation in fig volatiles across syconium development: making sense of scents. J Chem Ecol 39:630–642PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Birtic S, Ginies C, Causse M, Renard CM, Page D (2009) Changes in volatiles and glycosides during fruit maturation of two contrasted tomato (Solanum lycopersicum) lines. J Agric Food Chem 57:591–598PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Valenta K, Miller CN, Monckton SK, Melin AD, Lehman SM, Styler SA, Jackson DA, Chapman CA, Lawes MJ (2016) Fruit ripening signals and cues in a Madagascan dry forest: haptic indicators reliably indicate fruit ripeness to dichromatic lemurs. Evol Biol 43:344–355CrossRefGoogle Scholar
  72. 72.
    Sánchez F, Korine C, Steeghs M, Laarhoven L-J, Cristescu SM, Harren FJM, Dudley R, Pinshow B (2006) Ethanol and methanol as possible odor cues for Egyptian fruit bats (Rousettus aegyptiacus). J Chem Ecol 32:1289–1300PubMedCrossRefGoogle Scholar
  73. 73.
    Borges RM (2015) Fruit and seed volatiles: multiple stage settings, actors and props in an evolutionary play. J Indian Inst Sci 95:93–104Google Scholar
  74. 74.
    Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143CrossRefGoogle Scholar
  75. 75.
    Chapman GW, Horvat RJ, Forbus WR (1991) Physical and chemical changes during the maturation of peaches (cv. Majestic). J Agric Food Chem 39:867–870CrossRefGoogle Scholar
  76. 76.
    Gómez E, Ledbetter CA (1997) Development of volatile compounds during fruit maturation: characterization of apricot and plum× apricot hybrids. J Sci Food Agric 74:541–546CrossRefGoogle Scholar
  77. 77.
    Supriyadi S, Suzuki M, Yoshida K, Muto T, Fujita A, Watanabe N (2002) Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation. J Agric Food Chem 50:7627–7633PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Nevo O, Heymann EW (2015) Led by the nose: olfaction in primate feeding ecology. Evol Anthropol 24:137–148PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Borges RM, Ranganathan Y, Krishnan A, Ghara M, Pramanik G (2011) When should fig fruit produce volatiles? Pattern in a ripening process. Acta Oecol 37:611–618CrossRefGoogle Scholar
  80. 80.
    Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol 17:341–346PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Silver SC, Ostro LE, Yeager CP, Horwich R (1998) Feeding ecology of the black howler monkey (Alouatta pigra) in northern Belize. Am J Primatol 45:263–279PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Korine C, Kalko EKV (2005) Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): echolocation call design and olfaction. Behav Ecol Sociobiol 59:12–23CrossRefGoogle Scholar
  83. 83.
    van der Pijl L (1982) Principles of dispersal in higher plants, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  84. 84.
    Janson CH (1983) Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219:187–189PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Herrera CM (1985) Determinants of plant-animal coevolution: the case of mutualistic dispersal of seeds by vertebrates. Oikos 44:132–141CrossRefGoogle Scholar
  86. 86.
    Herrera CM (1986) Vertebrate-dispersed plants: why they don’t behave the way they should. In: Estrada A, Fleming TH (eds) Frugivores and seed dispersal. Dr W. Junk Publishers, Dordrecht, pp 5–18CrossRefGoogle Scholar
  87. 87.
    Lomáscolo SB, Speranza P, Kimball RT (2008) Correlated evolution of fig size and color supports the dispersal syndromes hypothesis. Oecologia 156:783–796PubMedCrossRefGoogle Scholar
  88. 88.
    Wang L-F, Cowled C (2015) Bats and viruses: a new frontier of emerging infectious diseases. Wiley, New YorkCrossRefGoogle Scholar
  89. 89.
    Muscarella R, Fleming TH (2007) The role of frugivorous bats in tropical forest succession. Biol Rev 82:573–590PubMedCrossRefGoogle Scholar
  90. 90.
    Kries K, Barros MAS, Duytschaever G, Orkin JD, Janiak MC, Pessoa DMA, Melin AD (2018) Colour vision variation in leaf-nosed bats (Phyllostomidae): links to cave roosting and dietary specialization. Mol Ecol.  https://doi.org/10.1111/mec.14818PubMedCrossRefGoogle Scholar
  91. 91.
    Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156PubMedCrossRefGoogle Scholar
  92. 92.
    von Helversen D, von Helversen O (1999) Acoustic guide in bat-pollinated flower. Nature 398:759–760CrossRefGoogle Scholar
  93. 93.
    Simon R, Holderied MW, Koch CU, von Helversen O (2011) Floral acoustics: conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science 333:631–633PubMedCrossRefGoogle Scholar
  94. 94.
    Schöner MG, Schöner CR, Simon R, Grafe TU, Puechmaille SJ, Ji LL, Kerth G (2015) Bats are acoustically attracted to mutualistic carnivorous plants. Curr Biol 25:1911–1916PubMedCrossRefGoogle Scholar
  95. 95.
    Kalko EKV, Condon MA (1998) Echolocation, olfaction and fruit display: how bats find fruit of flagellichorus cucurbits. Funct Ecol 12:364–372CrossRefGoogle Scholar
  96. 96.
    Hayden S, Bekaert M, Goodbla A, Murphy WJ, Dávalos LM, Teeling EC (2014) A cluster of olfactory receptor genes linked to frugivory in bats. Mol Biol Evol 4:1–11Google Scholar
  97. 97.
    Gonzalez-Terrazas TP, Martel C, Milet-Pinheiro P, Ayasse M, Kalko EKV, Tschapka M (2016) Finding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar. R Soc Open Sci 3:160199PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kalko EKV, Herre EA, Handley CO Jr (1996) Relation of fig fruit characteristics to fruit-eating bats in the new and Old World tropics. J Biogeogr 23:565–576CrossRefGoogle Scholar
  99. 99.
    Kalko EKV, Condon M (1993) Bat-plant interactions: how frugivorous leaf-nosed bats find their food. Bat Res News 35:28Google Scholar
  100. 100.
    Rieger JF, Jakob EM (1988) The use of olfaction in food location by frugivorous bats. Biotropica 20:161–164CrossRefGoogle Scholar
  101. 101.
    Thies W, Kalko EKV, Schnitzler H-U (1998) The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behav Ecol Sociobiol 42:397–409CrossRefGoogle Scholar
  102. 102.
    Laska M (1990) Olfactory sensitivity to food odor components in the short-tailed fruit bat, Carollia perspicillata (phyllostomatidae, chiroptera). J Comp Physiol A 166:395–399CrossRefGoogle Scholar
  103. 103.
    Sánchez F, Korine C, Pinshow B, Dudley R (2004) The possible roles of ethanol in the relationship between plants and frugivores: first experiments with Egyptian fruit bats. Integr Comp Biol 44:290–294PubMedCrossRefGoogle Scholar
  104. 104.
    Chapman CA, Russo SE (2007) Linking behavioral ecology with forest community structure. In: Campbell CJ, Fuentes A, KC MK, Panger M, Bearder SK (eds) Primates in perspective. Oxford University Press, New York, pp 510–525Google Scholar
  105. 105.
    Chapman CA, Dunham AE (2018) Primate seed dispersal and forest restoration: an african perspective for a brighter future. Int J Primatol.  https://doi.org/10.1007/s10764-018-0049-3CrossRefGoogle Scholar
  106. 106.
    Culot L, Mann DJ, Muñoz Lazo FJJ, Huynen M-C, Heymann EW (2010) Tamarins and dung beetles: an efficient diplochorous dispersal system in the Peruvian Amazonia. Biotropica 43:84–92CrossRefGoogle Scholar
  107. 107.
    Nevo O (2016) The chemical ecology of primate seed dispersal. PhD thesis, Georg-August-Universität GöttingenGoogle Scholar
  108. 108.
    Culot L, Muñoz Lazo FJJ, Huynen M-C, Poncin P, Heymann EW (2010) Seasonal variation in seed dispersal by tamarins alters seed rain in a secondary rain forest. Int J Primatol 31:553–569PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Jacobs GH (2009) Evolution of colour vision in mammals. Philos Trans R Soc Lond Ser B Biol Sci 364:2957–2967CrossRefGoogle Scholar
  110. 110.
    Valenta K, Edwards M, Rafaliarison RR, Johnson SE, Holmes SM, Brown KA, Dominy NJ, Lehman SM, Parra EJ, Melin AD, Portugal S (2016) Visual ecology of true lemurs suggests a cathemeral origin for the primate cone opsin polymorphism. Funct Ecol 30:932–942CrossRefGoogle Scholar
  111. 111.
    Melin AD, Hiramatsu C, Parr NA, Matsushita Y, Kawamura S, Fedigan LM (2014) The behavioral ecology of color vision: considering fruit conspicuity, detection distance and dietary importance. Int J Primatol 35:258–287CrossRefGoogle Scholar
  112. 112.
    Regan BC, Julliot C, Simmen B, Viénot F, Charles-Dominique P, Mollon JD (2001) Fruits, foliage and the evolution of primate colour vision. Philos Trans R Soc Lond Ser B Biol Sci 356:229–283CrossRefGoogle Scholar
  113. 113.
    Melin AD, Chiou KL, Walco ER, Bergstrom ML, Kawamura S (2017) Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator). Proc Natl Acad Sci 114:201705957–201705957CrossRefGoogle Scholar
  114. 114.
    Valenta K, Nevo O, Chapman CA (2018) Primate fruit color: useful concept or alluring myth? Int J Primatol 39:321–337CrossRefGoogle Scholar
  115. 115.
    Nevo O, Valenta K, Razafimandimby D, Melin AD, Ayasse M, Chapman CA (2018) Frugivores and the evolution of fruit colour. Biol Lett 14(9):20180377PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Laska M, Seibt A, Weber A (2000) “Microsmatic” primates revisited: olfactory sensitivity in the squirrel monkey. Chem Senses 25:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Melin AD, Nevo O, Shirasu M, Williamson R, Garrett E, Endo M, Sakurai K, Matsushita Y, Rothman J, Touhara K, Kawamura S. Accepted. Fruit scent and observer color vision shape food-selection strategies by wild capuchin monkeys. Nat CommGoogle Scholar
  118. 118.
    Valenta K, Brown KA, Rafaliarison RR, Styler SA, Jackson D, Lehman SM, Chapman CA, Melin AD (2015) Sensory integration during foraging: the importance of fruit hardness, colour, and odour to brown lemurs. Behav Ecol Sociobiol.  https://doi.org/10.1007/s00265-015-1998-6CrossRefGoogle Scholar
  119. 119.
    Howe HF (1986) Seed dispersal by fruit-eating birds and mammals. In: Murray DR (ed) Seed dispersal. Academic Press, San-Diego, pp 123–189CrossRefGoogle Scholar
  120. 120.
    Daniel Kissling W, Böhning-Gaese K, Jetz W (2009) The global distribution of frugivory in birds. Glob Ecol Biogeogr 18:150–162CrossRefGoogle Scholar
  121. 121.
    Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol 183:621–633CrossRefGoogle Scholar
  122. 122.
    Bennett ATD, Théry M (2007) Avian color vision and coloration: multidisciplinary evolutionary biology. Am Nat 169:S1–S6CrossRefGoogle Scholar
  123. 123.
    Ordano M, Blendinger PG, Lomáscolo SB, Chacoff NP, Sánchez MS, Núñez Montellano MG, Jiménez J, Ruggera RA, Valoy M (2017) The role of trait combination in the conspicuousness of fruit display among bird-dispersed plants. Funct Ecol 31:1718–1727CrossRefGoogle Scholar
  124. 124.
    Valenta K, Kalbitzer U, Razafimandimby D, Omeja P, Ayasse M, Chapman CA, Nevo O (2018) The evolution of fruit colour: phylogeny, abiotic factors and the role of mutualists. Sci Rep.  https://doi.org/10.1038/s41598-018-32604-x
  125. 125.
    Howe HF, Kerckhove GA (1980) Nutmeg dispersal by tropical birds. Science 210:925–927PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Clark L, Avilova KV, Beans NJ (1993) Odor thresholds in passerines. Comp Biochem Physiol A Physiol 104A:305–312CrossRefGoogle Scholar
  127. 127.
    Mennerat A, Bonadonna F, Perret P, Lambrechts MM (2005) Olfactory conditioning experiments in a food-searching passerine bird in semi-natural conditions. Behav Process 70:264–270CrossRefGoogle Scholar
  128. 128.
    Clark L, Hagelin J, Werner S (2014) The chemical senses in birds. In: Scanes CG (ed) Sturkie’s avian physiology, 6th edn. Academic Press, New York, pp 89–111Google Scholar
  129. 129.
    Caspers BA, Krause ET (2011) Odour-based natal nest recognition in the zebra finch (Taeniopygia guttata), a colony-breeding songbird. Biol Lett 7:184–186PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Mennerat A (2008) Blue tits (Cyanistes caeruleus) respond to an experimental change in the aromatic plant odour composition of their nest. Behav Process 79:189–191CrossRefGoogle Scholar
  131. 131.
    Gwinner H, Berger S (2008) Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim Behav 75:971–976CrossRefGoogle Scholar
  132. 132.
    Laska M, Hernandez Salazar LT (2015) Olfaction in nonhuman primates. In: Doty RL (ed) Handbook of olfaction and gustation. Wiley, New York, pp 607–623Google Scholar
  133. 133.
    Hernandez Salazar LT, Laska M, Rodriguez Luna E (2003) Olfactory sensitivity for aliphatic esters in spider monkeys (Ateles geoffroyi). Behav Neurosci 117:1142–1149PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Laska M, Seibt A (2002) Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. J Exp Biol 205:1633–1643PubMedPubMedCentralGoogle Scholar
  135. 135.
    Nevitt GA (2000) Olfactory foraging by Antarctic procellariiform seabirds: life at high Reynolds numbers. Biol Bull 198:245–253PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Rizvanovic A, Amundin M, Laska M (2013) Olfactory discrimination ability of Asian elephants (Elephas maximus) for structurally related odorants. Chem Senses 38:107–118PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Niimura Y, Matsui A, Touhara K (2014) Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res 24:1485–1496PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Schmitt MH, Shuttleworth A, Ward D, Shrader AM (2018) African elephants use plant odours to make foraging decisions across multiple spatial scales. Anim Behav 141:17–27CrossRefGoogle Scholar
  139. 139.
    Rasmussen LE, Lazar J, Greenwood DR (2003) Olfactory adventures of elephantine pheromones. Biochem Soc Trans 31:137–141PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Bates LA, Sayialel KN, Njiraini NW, Moss CJ, Poole JH, Byrne RW (2007) Elephants classify human ethnic groups by odor and garment color. Curr Biol 17:1938–1942PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Chapman LJ, Chapman CA, Wrangham RW (1992) Balanites wilsoniana: elephant dependent dispersal? J Trop Ecol 8:275–283CrossRefGoogle Scholar
  142. 142.
    Babweteera F, Savill P, Brown N (2007) Balanites wilsoniana: regeneration with and without elephants. Biol Conserv 134:40–47CrossRefGoogle Scholar
  143. 143.
    Debussche M, Isenmann P (1989) Fleshy fruit characters and the choices of bird and mammal seed dispersers in a Mediterranean region. Oikos 56:327–338CrossRefGoogle Scholar
  144. 144.
    Baron G, Frahm HD, Bhatnagar KP, Stephan H (1983) Comparison of brain structure volumes in insectivora and primates. III. Main olfactory bulb (MOB). J Hirnforsch 24:551–568PubMedPubMedCentralGoogle Scholar
  145. 145.
    Penn HJ, Crist TO (2018) From dispersal to predation: a global synthesis of ant-seed interactions. Ecol Evol 210:291Google Scholar
  146. 146.
    Pfeiffer M, Huttenlocher H, Ayasse M (2010) Myrmecochorous plants use chemical mimicry to cheat seed-dispersing ants: chemical mimicry in myrmecochory. Funct Ecol 24:545–555CrossRefGoogle Scholar
  147. 147.
    Gervais JA, Traveset A, Willson MF (1998) The potential for seed dispersal by the banana slug (Ariolimax columbianus). Am Midl Nat 140:103–110CrossRefGoogle Scholar
  148. 148.
    Türke M, Heinze E, Andreas K, Svendsen SM, Gossner MM, Weisser WW (2010) Seed consumption and dispersal of ant-dispersed plants by slugs. Oecologia 163:681–693PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Junker RR, Parachnowitsch AL (2015) Working towards a holistic view on flower traits-how floral scents mediate plant-animal interactions in concert with other floral characters. J Indian Inst Sci 95:43–67Google Scholar
  150. 150.
    Melin AD, Fedigan LM, Hiramatsu C, Hiwatashi T, Parr N, Kawamura S (2009) Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775CrossRefGoogle Scholar
  151. 151.
    Pellmyr O, Thien LB (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35:76–85CrossRefGoogle Scholar
  152. 152.
    Rodríguez A, San Andrés V, Cervera M, Redondo A, Alquézar B, Shimada T, Gadea J, Rodrigo MJ, Zacarías L, Palou L, López MM, Castañera P, Peña L (2011) Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiol 156:793–802PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Junker RR (2017) A biosynthetically informed distance measure to compare secondary metabolite profiles. Chemoecology.  https://doi.org/10.1007/s00049-017-0250-4PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Galetti M, Guevara R, Côrtes MC, Fadini R, Von Matter S, Leite AB, Labecca F, Ribeiro T, Carvalho CS, Collevatti RG, Pires MM, Guimarães PR, Brancalion PH, Ribeiro MC, Jordano P (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Brodie JF (2017) Evolutionary cascades induced by large frugivores. Proc Natl Acad Sci 114:11998–12002PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Kleiner A (2018) Olfactory and visual signals of animal dispersed fruits in the temperate climate of South Germany. MSc thesis, University of UlmGoogle Scholar
  157. 157.
    Haynes KF, Millar JG (2012) Methods in chemical ecology volume 2: bioassay methods. Springer Science & Business Media, NorwellGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany

Personalised recommendations