How Galling Organisms Manipulate the Secondary Metabolites in the Host Plant Tissues?: A Histochemical Overview in Neotropical Gall Systems

  • Vinícius Coelho Kuster
  • Uiara Costa Rezende
  • João Custódio Fernandes Cardoso
  • Rosy Mary dos Santos Isaias
  • Denis Coelho de OliveiraEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)


The histochemistry approach has been used to understand cell metabolism modulation by galling organisms on their host-plant organs and the relationship of the accumulation of metabolites with the ecological and physiological roles. The main secondary classes of metabolites (i.e., phenolic compounds, terpenes, and alkaloids) have been mainly associated with the protection of galling organisms, scavenging of oxidative stress molecules, and the development of gall tissues. Therefore, this chapter brings together a compilation of the gall researches that assessed and discussed the role of secondary metabolites through histochemical approaches. The compartmentalization of secondary metabolites in different gall tissue sites, their related functions, and the detailing of the well-defined histochemical tests adopted in gall researches are the focus of this chapter.


Alkaloids DMACA Dragendorff Ferric chloride III NADI Phenolics Terpenes 



The authors thank FAPEMIG, CAPES, and CNPq (PQ 307011/2015-1) for financial support.


  1. 1.
    Novotny V, Basset SE, Miller Y, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844PubMedCrossRefGoogle Scholar
  2. 2.
    Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanism of plant defense against insect herbivores. Plant Signal Behav 7:1306–1313PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mani MS (1964) Ecology of plant galls. Dr. W. Junk Publish, HagueCrossRefGoogle Scholar
  5. 5.
    Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522CrossRefGoogle Scholar
  6. 6.
    Giron D, Huguet E, Stone GN, Body M (2016) Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J Insect Physiol 84:70–89PubMedCrossRefGoogle Scholar
  7. 7.
    Oliveira DC, Isaias RMS, Fernandes GW, Ferreira BG, Carneiro RGS, Fuzaro L (2016) Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds. J Insect Physiol 84:103–113PubMedCrossRefGoogle Scholar
  8. 8.
    Fernandes GW, Santos JC (2014) Neotropical insect galls. Springer, DordretchCrossRefGoogle Scholar
  9. 9.
    Isaias RMDS, Carneiro RGS, Oliveira DC, Santos JC (2013) Illustrated and annotated checklist of Brazilian gall morphotypes. Neotrop Entomol 42:230–239PubMedCrossRefGoogle Scholar
  10. 10.
    Isaias RMS, Oliveira DC, Carneiro RGS, Kraus JE (2014) Developmental anatomy of galls in the neotropics, arthropods stimuli versus host plant constraints. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, DordrechtGoogle Scholar
  11. 11.
    Carneiro RGS, Isaias RMS (2015) Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking-insects. AOB Plants 1:1–16Google Scholar
  12. 12.
    Carneiro RG, Isaias RMS, Moreira AS, Oliveira DC (2017) Reacquisition of new meristematic sites determines the development of a new organ, the Cecidomyiidae gall on Copaifera langsdorffii Desf. (Fabaceae). Front Plant Sci 8:1622PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bragança GP, Oliveira DC, Isaias RMS (2017) Compartmentalization of metabolites and enzymatic mediation in nutritive cells of Cecidomyiidae galls on Piper arboreum Aubl. (Piperaceae). J Plant Stud 6:11CrossRefGoogle Scholar
  14. 14.
    Bedetti CS, Ferreira BG, Castro NM, Isaias RMS (2013) The influence of parasitoidism on the anatomical and histochemical profiles of the host leaves in a galling Lepidoptera – Bauhinia ungulata system. Rev Bras Bioc 11:242–249Google Scholar
  15. 15.
    Amorim DO, Ferreira BG, Fleury G (2017) Plant potentialities determine anatomical and histochemical diversity in Mikania glomerata Spreng. galls. Braz J Bot 40:517–527CrossRefGoogle Scholar
  16. 16.
    Nalini MS, Shilpa KE, Basavarajappa S (2015) Stem gall of Michelia champaca L. (Magnoliaceae) induced by Podothrips sp.: identification, histochemical and phytochemical studies. Trop Plant Res 2:90–100Google Scholar
  17. 17.
    Oliveira DC, Christiano JCS, Soares GLG, Isaias RMS (2006) Reações de Defesas Químicas e Estruturais de Lonchocarpus muehlbergianus Hassl (Fabaceae) à Ação do Galhador Euphalerus ostreoides Crawf (Hemiptera: Psyllidae). Rev Bras Bot 29:657–667CrossRefGoogle Scholar
  18. 18.
    Moura MZD, Isaias RMS, Soares GLG (2008) Species-specific changes in tissue morphogenesis induced by two arthropod leaf Gallers in Lantana camara (Verbenaceae). Aust J Bot 56:153–160CrossRefGoogle Scholar
  19. 19.
    Sá CEMD, Silveira FA, Santos JC, Isaias RMS, Fernandes GW (2009) Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Braz J Bot 32:319–327CrossRefGoogle Scholar
  20. 20.
    Formiga AT, Soares GLG, Isaias RMS (2011) Responses of the host plant tissues to gall induction in Aspidosperma spruceanum Müell. Arg. (Apocynaceae). Am J Plant Sci 2:823CrossRefGoogle Scholar
  21. 21.
    Ferreira BG, Isaias RMS (2013) Developmental stem anatomy and tissue redifferentiation induced by a galling Lepidoptera on Marcetia taxifolia (Melastomataceae). Botany 91:752–760CrossRefGoogle Scholar
  22. 22.
    Bedetti CS, Modolo LV, Isaias RMS (2014) The role of phenolics in the control of auxin in galls of Piptadenia gonoacantha (Mart) MacBr (Fabaceae: Mimosoideae). Biochem Syst Ecol 55:53–59CrossRefGoogle Scholar
  23. 23.
    Ferreira BG, Isaias RMS (2014) Floral-like destiny induced by a galling Cecidomyiidae on the axillary buds of Marcetia taxifolia (Melastomataceae). Flora 209:391–400CrossRefGoogle Scholar
  24. 24.
    Jorge NC, Cavalleri A, Bedetti CS, Isaias RDS (2016) A new leaf-galling Holopothrips (Thysanoptera: Phlaeothripidae) and the structural alterations on Myrcia retorta (Myrtaceae). Zootaxa 4200:174–180CrossRefGoogle Scholar
  25. 25.
    Oliveira DC, Moreira ASFP, Isaias RMS, Martini VC, Rezende UC (2017) Sink status and photosynthetic rate of the leaflet galls induced by Bystracoccus mataybae (Eriococcidae) on Matayba guianensis (Sapindaceae). Front Plant Sci 8:01249CrossRefGoogle Scholar
  26. 26.
    Isaias RMSI, Ferreira BG, Alvarenga DR, Barbosa LR, Salminen J, Steinbauer MJ (2018) Functional compartmentalisation of nutrients and phenolics in the tissues of galls induced by Leptocybe invasa (Hymenoptera: Eulophidae) on Eucalyptus camaldulensis (Myrtaceae). Aust Entomol 57:238–246CrossRefGoogle Scholar
  27. 27.
    Bedetti CS, Bragança GP, Isaias RMS (2017) Influence of auxin and phenolic accumulation on the patterns of cell differentiation in distinct gall morphotypes on Piptadenia gonoacantha (Fabaceae). Aust J Bot 65:411–420CrossRefGoogle Scholar
  28. 28.
    Raman A, Ananthakrishnan TN (1983) Studies on some thrips (Thysanoptera: Insecta) induced galls: fine-structure of the nutritive zone. Proc Indian Natl Sci Acad Part B 49:525–561Google Scholar
  29. 29.
    Arriola IA, Melo-Júnior JCF, Ferreira BG, Isaias RMS (2017) Galls on Smilax campestris Griseb. (Smilacaceae) protect the insects against restinga constraints, but do not provide enriched nutrition. Braz Bot Bot 41:145–153CrossRefGoogle Scholar
  30. 30.
    Bedetti CS, Jorge NC, Trigueiro F, Bragança GP, Modolo LV, Isaias RMS (2018) Detection of cytokinins and auxin in plant tissues using histochemistry and immunocytochemistry. Biotech Histochem 1:1–6Google Scholar
  31. 31.
    Guedes LM, Aguilera N, Ferreira BG, Becerra J, Hernández V, Isaias RMS (2018) Anatomical and phenological implications between Schinus polygama (Cav.) (Cabrera) (Anacardiaceae) and the galling insect Calophya rubra (Blanchard) (Hemiptera: Psylloidea). Plant Biol 20:507–515PubMedCrossRefGoogle Scholar
  32. 32.
    Guimarães ALA, Bizarri CHB, Barbosa LS, Nakamura MJ, Ramos MFS, Vieira ACM (2013) Characterization of the effects of leaf galls of Clusiamyia nitida (Cecidomyiidae) on Clusia lanceolata Cambess. (Clusiaceae): anatomical aspects and chemical analysis of essential oil. Flora 208:165–173CrossRefGoogle Scholar
  33. 33.
    Álvarez R, Encina A, Hidalgo NP (2009) Histological aspects of three Pistacia terebinthus galls induced by three different aphids: Paracletus cimiciformis, Forda marginata and Forda formicaria. Plant Sci 176:303–314CrossRefGoogle Scholar
  34. 34.
    Allison SD, Schultz JC (2005) Biochemical responses of chestnut oak to a galling cynipid. J Chem Ecol 31:151–166PubMedCrossRefGoogle Scholar
  35. 35.
    Guimarães ALA, Cruz SMS, Vieira ACM (2014) Structure of floral galls of Byrsonima sericea (Malpighiaceae) induced by Bruggmanniella byrsonimae (Cecidomyiidae, Diptera) and their effects on host plants. Plant Biol 16:467–475PubMedCrossRefGoogle Scholar
  36. 36.
    Dias GG, Ferreira BG, Moreira GRP, Isaias RMS (2013) Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae). An Acad Bras Ciên 85:187–200CrossRefGoogle Scholar
  37. 37.
    Róstas M, Maag D, Ikegami M, Inbar M (2013) Gall volatiles defend aphids against a browsing mammal. BMC Evol Biol 13:193–204PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Abrahamson WG, Mccrea KD, Whitwell AJ, Vernieri LA (1991) The role of phenolics in goldenrod ball gall resistance. Biochem Syst Ecol 19:615–622CrossRefGoogle Scholar
  39. 39.
    Isaias RMS, Oliveira DC, Moreira ASFP, Soares GLG, Carneiro RGS (2015) The imbalance of redox homeostasis in arthropod-induced plant galls: mechanisms of stress generation and dissipation. Biochim Biophys Acta 1850:1509–1517CrossRefGoogle Scholar
  40. 40.
    Shorthouse JD, Rohfritsch O (1992) Biology of insect-induced galls. Oxford University Press, New YorkGoogle Scholar
  41. 41.
    Oliveira DC, Isaias RMS (2010) Redifferentiation of leaflet tissues during midrib gall development in Copaifera langsdorffii (Fabaceae). S Afr J Bot 76:239–248CrossRefGoogle Scholar
  42. 42.
    Oliveira DC, Magalhães TA, Carneiro RGS, Alvim MN, Isaias RMS (2010) Do Cecidomyiidae galls of Aspidosperma spruceanum (Apocynaceae) fit the pre-established cytological and histochemical patterns. Protoplasma 242:81–93PubMedCrossRefGoogle Scholar
  43. 43.
    Carneiro RGS, Castro AC, Isaias RMS (2014) Unique histochemical gradients in a photosynthesis-deficient plant gall. S Afr J Bot 92:97–104CrossRefGoogle Scholar
  44. 44.
    Oliveira DC, Moreira ASFP, Isaias RMS (2014) Functional gradients in insect gall tissues, studies on neotropical host plants. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, DordrechtGoogle Scholar
  45. 45.
    Maffei ME, Mithöfer A, Boland W (2007) Before gene expression: early events in plant-insect interaction. Trends Plant Sci 12:310–316PubMedCrossRefGoogle Scholar
  46. 46.
    Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66PubMedCrossRefGoogle Scholar
  47. 47.
    Price PW, Waring GL, Fernandes GW (1986) Hypotheses on the adaptive nature of galls. Proc Entomol Soc Wash 88:361–363Google Scholar
  48. 48.
    Price PW, Waring GL, Fernandes GW (1987) Adaptive nature of insect galls. Environ Entomol 16:15–24CrossRefGoogle Scholar
  49. 49.
    Leite TCC, Sena AR, Santos Silva TR, Santos AKA, Uetanabaro APT, Branco A (2012) Antimicrobial activity of Marcetia DC species (Melastomataceae) and analysis of its flavonoids by reverse phase-high performance liquid chromatography coupled-diode array detector. Pharmacogn Mag 8:209PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hall CR, Carroll AR, Kitching RL (2017) A meta-analysis of the effects of galling insects on host plant secondary metabolites. Arthropod Plant Interact 11:463–473CrossRefGoogle Scholar
  51. 51.
    Campos PT, Costa MCD, Isaias RMS, Moreira ASFP, Oliveira DC, Lemos-Filho JP (2010) Phenological relationships between two insect galls and their host plants: Aspidosperma australe and A. spruceanum (Apocynaceae). Acta Bot Bras 24:727–733CrossRefGoogle Scholar
  52. 52.
    Oliveira DC, Isaias RMS, Moreira ASFP, Magalhães TA, Lemos-Filho JP (2011) Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis. Plant Sci 180:489–495PubMedCrossRefGoogle Scholar
  53. 53.
    Teixeira CT, Oliveira DC, Kuster VC, Isaias RMS (2017) Immunocytochemical demonstration of cell wall components related to tissue compartments in the globoid galls induced by Clinodiplosis sp. (Cecidomyiidae) on Croton floribundus Spreng. (Euphorbiaceae). Botany 96:9–18CrossRefGoogle Scholar
  54. 54.
    Motta LB, Kraus JE, Salatino A, Salatino MLF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981CrossRefGoogle Scholar
  55. 55.
    Agudelo I, Cogoi L, Filip R, Kuzmanich N, Wagner ML, Ricco RA (2018) Anatomy, histochemistry, and comparative analysis of hydroxycinnamic derivatives in healthy leaves and galls induced by Baccharopelma spp. (Hemiptera: Psyllidae) in Baccharis spicata (Lam) Baill (Asteraceae). Biochem Syst Ecol 77:22–30CrossRefGoogle Scholar
  56. 56.
    Pelletier SW (1983) Alkaloids: chemical and biological perspectives. Wiley-Interscience, New YorkGoogle Scholar
  57. 57.
    Nyman T, Julkunen-Tiitto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA 97:13184–13187PubMedCrossRefGoogle Scholar
  58. 58.
    Silva ES, Saboia G, Jorge NC, Hoffmann C, Isaias RMS, Soares GLG, Zini CA (2017) Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens. Talanta 175:9–20CrossRefGoogle Scholar
  59. 59.
    Cuevas-Reyes P, Quesada M, Hanson P, Dirzo R, Oyama K (2004) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life forms, host plant age and plant density. J Ecol 92:707–716CrossRefGoogle Scholar
  60. 60.
    Bronner R (1992) The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, OxfordGoogle Scholar
  61. 61.
    Isaias RMS, Soares GLG, Christiano JCS, Gonçalves SJMR (2000) Análise comparativa entre as defesas mecânicas e químicas de Aspidosperma australe Müell. Arg. e Aspidosperma cylindrocarpon Müell. Arg. (Apocynaceae) contra herbivoria. Floram 7:19–30Google Scholar
  62. 62.
    Detoni M, Vasconcelos EG, Scio E, Aguiar JAK, Isaias RMS, Soares GLG (2010) Differential biochemical responses of Calliandra brevipes (Fabaceae, Mimosoidae) to galling behaviour by Tanaostigmodes ringueleti and T. mecanga (Hymenoptera, Tanaostigmatidae). Aust J Bot 58:280–285CrossRefGoogle Scholar
  63. 63.
    Ferreira BG, Avritzer SC, Isaias RMS (2017) Totipotent nutritive cells and indeterminate growth in galls of Ditylenchus gallaeformans (Nematoda) on reproductive apices of Miconia. Flora 227:36–45CrossRefGoogle Scholar
  64. 64.
    Detoni ML, Vasconcelos EG, Rust NM, Isaias RMS, Soares GLG (2011) Seasonal variation of phenolic content in galled and non-galled tissues of Calliandra brevipes Benth (Fabaceae: Mimosoidae). Acta Bot Bras 25:601–604CrossRefGoogle Scholar
  65. 65.
    Nyman T, Julkunen-Titto R (2000) Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA 97:13184–13187PubMedCrossRefGoogle Scholar
  66. 66.
    Aloni R (2001) Foliar and axial aspects of vascular differentiations: hypotheses and evidence. J Plant Growth Regul 20:22–34CrossRefGoogle Scholar
  67. 67.
    Ahmad P (2014) Oxidative damage to plants. Academic, Jammu and KashmirCrossRefGoogle Scholar
  68. 68.
    Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Aboul-Enein H, Kruk I, Kladna A, Lichszteld K, Michalska T (2007) Scavenging effects of phenolics compounds on reactive oxygen species. Biopolymers 86:222–230PubMedCrossRefGoogle Scholar
  70. 70.
    Del Río LF, Puppo A (2009) Reactive oxygen species in plant signaling. Springer, New YorkCrossRefGoogle Scholar
  71. 71.
    Boerjan W, Ralph J, Baucher M (1996) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546CrossRefGoogle Scholar
  72. 72.
    Akhtar Y, Yang Y, Isman MB, Plettner E (2010) Dialkoxy-benzene and dialkoxy-allylbenzene feeding and oviposition deterrents against the cabbage looper, Trichoplusia ni: potential insect behavior control agents. J Agric Food Chem 58:4983–4991PubMedCrossRefGoogle Scholar
  73. 73.
    Hartley SE (1998) The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former? Oecol 113:492–501CrossRefGoogle Scholar
  74. 74.
    Kraus JE, Arduin M, Venturelli M (2002) Anatomy and ontogenesis of hymenopteran leaf galls of Struthanthus vulgaris Mart. (Loranthaceae). Braz J Bot 25:449–458CrossRefGoogle Scholar
  75. 75.
    Askew RR, Gómez JF, Hernández Nieves M, NievesAldrey JL (2006) Catalogue of parasitoids and inquilines in galls of Aylacini, Diplolepidini and Pediaspidini (Hym., Cynipidae) in the West Palaearctic. Zootaxa 1301:1–60Google Scholar
  76. 76.
    Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN (2009) Host niches and defensive extended phenotypes structure parasitoid wasp communities. PLoS Biol 7:e1000179PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Carmona D, Lajeunesse MJ, Johnson MT (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25(2):358–367CrossRefGoogle Scholar
  78. 78.
    Lyon K (1991) Theory and strategy in histochemistry: a guide to the selection and understanding of techniques. Springer, BelinCrossRefGoogle Scholar
  79. 79.
    Randhir R, Lin Y-T, Shetty K (2004) Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac J Clin Nutr 13:295–307PubMedGoogle Scholar
  80. 80.
    Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Res 56:317–333Google Scholar
  81. 81.
    Harborne JB, Baxter H, Moss GP (1999) Phytochemical dictionary: handbook of bioactive compounds from plants. Taylor & Francis, LondonGoogle Scholar
  82. 82.
    Johansen DA (1940) Plant microtechnique. McGraw- Hill, New YorkGoogle Scholar
  83. 83.
    Feucht W, Schmid PPS, Christ E (1986) Distribution of flavanols in meristematic and mature tissues of Prunus avium shoots. J Plant Physiol 125:1–8CrossRefGoogle Scholar
  84. 84.
    Figueiredo ACS, Barroso JMG, Pedro LMG, Ascensão L (2007) Histoquímica e citoquímica em plantas: princípios e protocolos. Faculdade de Ciências da Universidade de Lisboa, Centro de Biotecnologia Vegetal, LisboaGoogle Scholar
  85. 85.
    Lombard GL, Dowell VR (1983) Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems. J Clin Microbiol 18:609–613PubMedPubMedCentralGoogle Scholar
  86. 86.
    Abeynayake SW, Panter S, Mourado A, Spangenberg G (2011) A high-resolution method for the localization of proanthocyanidins in plant tissues. Plant Methods 7:13PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Treutter D (1989) Chemical reaction detection of catechins and proanthocyanidins with 4-dimethylaminocinnamaldehyde. J Chromatogr 467:185–193CrossRefGoogle Scholar
  88. 88.
    Marles MAS, Ray H, Gruber MY (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–383PubMedCrossRefGoogle Scholar
  89. 89.
    Gershenzon J, Croteau R (1991) Terpenoids. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary metabolites. Academic, San DiegoGoogle Scholar
  90. 90.
    Seigler DS (1995) Plant secondary metabolism. Department of Plant Biology. University of Illinois, Urbana Springer science+business media LLC, EUAGoogle Scholar
  91. 91.
    Ruzicka L, Eschenmoser A, Heusser H (1953) The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–396PubMedCrossRefGoogle Scholar
  92. 92.
    Banthorpe DV (1991) Classification of terpenoids and general procedures for their characterization. In: Charlwood BV, Banthorpe DV (eds) Modern methods in plant biochemistry 7. Academic, LondonGoogle Scholar
  93. 93.
    Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plants isoprenoids. Prog Lipid Res 44:357–429PubMedCrossRefGoogle Scholar
  94. 94.
    David R, Carde JP (1964) Coloration diffe’rentielle dês inclusions lipidique et terpeniques dês pseudophylles du Pin maritime au moyen du reactif Nadi. Compt Rend Hebd Se’ances Acad Sci Paris ser D 258:1338–1340Google Scholar
  95. 95.
    Husson F, Josse J, Le S, Mazet J (2018) FactoMineR: multivariate exploratory data analysis and data mining. R Package Version 1.41. Accessed 5 July 2018
  96. 96.
    Josse J, Chavent M, Liquet B, Husson F (2012) Handling missing values with regularized iterative multiple correspondence analysis. J Classif 29:91–116CrossRefGoogle Scholar
  97. 97.
    Husson F, Josse J (2018) missMDA: handling missing values with multivariate data analysis. R Package Version 1.13. Accessed 5 July 2018
  98. 98.
    R Core Team (2018) R: A language and environment for statistical computing. Acessed 10 July 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vinícius Coelho Kuster
    • 1
  • Uiara Costa Rezende
    • 2
  • João Custódio Fernandes Cardoso
    • 2
  • Rosy Mary dos Santos Isaias
    • 3
  • Denis Coelho de Oliveira
    • 2
    Email author
  1. 1.Laboratório de Anatomia VegetalUniversidade Federal de Goiás, Regional JataíJataíBrazil
  2. 2.Laboratório de Anatomia, Desenvolvimento Vegetal e Interações (LADEVI), Instituto de Biologia (INBIO), Campus UmuaramaUniversidade Federal de UberlândiaUberlândiaBrazil
  3. 3.Laboratório de Anatomia Vegetal, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations