Advertisement

Co-evolution of the Shrimp Hippolyte inermis and the Diatoms Cocconeis spp. in Posidonia oceanica: Sexual Adaptations Explained by Ecological Fitting

  • Valerio ZupoEmail author
Living reference work entry
Part of the Reference Series in Phytochemistry book series (RSP)

Abstract

Microalgae influence the life of grazers in such stable ecosystems as Posidonia oceanica meadows. Competition and co-existence require adaptations for both organisms: algae produce metabolites able to reduce the grazing activity, and invertebrate react to the chemical weapons of algae, for feeding on their thalli. Several diatoms produce wound-activated compounds and some of them have been demonstrated to trigger apoptosis and teratogenic effects in planktonic copepods. The case of Hippolyte inermis and its diatom food is different and peculiar because the shrimp transformed the effects of apoptogenic compounds produced by Cocconeis into a spring signal to obtain a higher abundance of females, so stabilizing its natural populations. As in crustacean decapods the sex is determined by the presence/absence of a single gland (the Androgenic Gland; A.G.), in H. inermis the apoptogenic effect of secondary metabolites is limited to the destruction of the A.G. in spring, when various species of Cocconeis dominate the epiphytic layer of Posidonia leaves. This relationship, evidently co-evolved through a competitive relationship, allows the shrimp to produce a secondary reproduction burst in fall, when Cocconeis spp. are less abundant on the leaves of the plant. Co-evolutionary relationships are often viewed in light of mutual cooperation between two species. However, the peculiar case of H. inermis indicates the need to widen the concept, integrating various adaptations that may lead to different degrees of advantages for two co-evolving organisms. Shrimp’s populations are stabilized in P. oceanica meadows thanks to this very specific relationship, and they can survive a high predation pressure by fish and other invertebrates because the secondary reproductive burst in fall produces sufficient specimens for the next spring.

Keywords

Chemical ecology Adaptation Co-existence Feeding Food webs Apoptosis 

Notes

Acknowledgments

The English text was kindly revised by Mrs. R. Messina.

References

  1. 1.
    Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740CrossRefGoogle Scholar
  2. 2.
    Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608CrossRefGoogle Scholar
  3. 3.
    Ehrlich PR (1958) The comparative morphology, phylogeny and higher classification of the butterflies (Lepidoptera: Papilionoidea). Univ Kansas Sci Bull 39:305–370Google Scholar
  4. 4.
    Nuismer S (2018) Introduction to coevolutionary theory. ISBN-10: 1-319-12981-1; ISBN-13: 978-1-319-12981-1Google Scholar
  5. 5.
    Perc M, Szolnoki A (2010) Coevolutionary games – a mini review. Biosystems 99:109–125CrossRefGoogle Scholar
  6. 6.
    Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396CrossRefGoogle Scholar
  7. 7.
    Dethier VG (1954) Evolution of feeding preferences in phytophagous insects. Evolution 8:33–54CrossRefGoogle Scholar
  8. 8.
    Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu Rev Ecol Syst 12:405–437CrossRefGoogle Scholar
  9. 9.
    Cronin G, Hay ME (1996) Susceptibility to herbivores depends on recent history of both plant and animal. Ecology 77(5):1531–1537CrossRefGoogle Scholar
  10. 10.
    Fontana A, d’Ippolito G, Cutignano A, Romano G, Lamari N, Gallucci AM, Cimino G, Miralto A, Ianora A (2007) LOX-induced lipid peroxidation mechanism responsible for the detrimental effect of marine diatoms on zooplankton grazers. Chembiochem 8:1810–1818.  https://doi.org/10.1002/cbic.200700269CrossRefPubMedGoogle Scholar
  11. 11.
    Duffy JE, Hay ME (1990) Seaweed adaptations to herbivory. BioScience 40:368–375CrossRefGoogle Scholar
  12. 12.
    Ban SH, Burns C, Castel J et al (1997) The paradox of diatom-copepod interactions. Mar Ecol Prog Ser 157:287–293CrossRefGoogle Scholar
  13. 13.
    Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Russo GL, Buttino I, Mazzarella G, Laabir M, Cabrini M, Giacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402:173–176.  https://doi.org/10.1038/46023CrossRefGoogle Scholar
  14. 14.
    Pohnert G (2000) Wound-activated chemical defence in unicellular planktonic algae. Angew Chem Int Ed 39:4352–4355.  https://doi.org/10.1002/1521-3773(20001201)CrossRefGoogle Scholar
  15. 15.
    Varrella S, Romano G, Ianora A, Bentley MG, Ruocco N, Costantini M (2014) Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus. Mar Drugs 12(4):2089–2113.  https://doi.org/10.3390/md12042089CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bornancin L, Bonnard I, Mills SC, Banaigs B (2017) Chemical mediation as a structuring element in marine gastropod predator-prey interactions. Nat Prod Rep 34(6):644–676.  https://doi.org/10.1039/c6np00097eCrossRefPubMedGoogle Scholar
  17. 17.
    Wang JR, He WF, Guo YW (2013) Chemistry, chemoecology, and bioactivity of the South China Sea opisthobranch molluscs and their dietary organisms. J Asian Nat Prod Res 15(2): 185–197.  https://doi.org/10.1080/10286020.2012.746960CrossRefPubMedGoogle Scholar
  18. 18.
    Taylor RL, Caldwell GS, Olive PJW, Bentley MG (2012) The harpacticoid copepod Tisbe holothuriae is resistant to the insidious effects of polyunsaturated aldehyde-producing diatoms. J Exp Mar Biol Ecol 413:30–37.  https://doi.org/10.1016/j.jembe.2011.11.024CrossRefGoogle Scholar
  19. 19.
    Thorsteinson AJ (1960) Host selection in phytophagous insects. Ann Rev Ent 5:193–218CrossRefGoogle Scholar
  20. 20.
    Stevenson RJ, Peterson CG, Kirschtel DB, King CC, Tuchman NC (1991) Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. J Phycol 27:59–69.  https://doi.org/10.1111/j.0022-3646.1991.00059.xCrossRefGoogle Scholar
  21. 21.
    Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Pohnert G (2004) Chemical defense strategies of marine organisms. In: Schulz S (ed) The chemistry of pheromones and other semiochemicals I. Springer, New York, Top Curr Chem 239:179–219.  https://doi.org/10.1007/b95453CrossRefGoogle Scholar
  23. 23.
    Falasco E, Badino G (2011) The role of environmental factors in shaping the diatom frustule morphological plasticity and teratological forms. In: Compton JC (ed) Diatom ecology and life cycle. pp 1–36. ISBN 978-1-61761-973-3Google Scholar
  24. 24.
    Pohnert G, Steinke M, Tollrian R (2007) Chemical cues, defense metabolites and the shaping of pelagic interspecific interactions. Trends Ecol Evol 22:198–204.  https://doi.org/10.1016/j.tree.2007.01.005CrossRefPubMedGoogle Scholar
  25. 25.
    d’Ippolito G, Romano G, Caruso T, Spinella A, Cimino G, Fontana A (2003) Production of octadienal in the marine diatom Skeletonema costatum. Org Lett 5:885–887.  https://doi.org/10.1021/ol034057cCrossRefGoogle Scholar
  26. 26.
    Nappo M, Berkov S, Codina C, Avila C, Messina P, Zupo V, Bastida J (2009) Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J Appl Phycol 21:295–306.  https://doi.org/10.1007/s10811-008-9367-8CrossRefGoogle Scholar
  27. 27.
    Zupo V, Maibam C (2011) Ecological role of benthic diatoms as regulators for invertebrate physiology and behaviour. In: Compton JC (ed) Diatom ecology and life cycle. pp 149–168. ISBN 978-1-61761-973-3Google Scholar
  28. 28.
    Dicke M, Sabelis MW (1988) Infochemical terminology: based on cost-benefit analysis rather than original compounds? Funct Ecol 2:131–139CrossRefGoogle Scholar
  29. 29.
    Maibam C, Fink P, Romano G et al (2014) Relevance of wound-activated compounds produced by diatoms as toxins and infochemicals for benthic invertebrates. Mar Biol 161(7):1639–1652CrossRefGoogle Scholar
  30. 30.
    Fink P, von Elert E, Jüttner F (2006) Oxylipins from freshwater diatoms act as attractants for a benthic herbivore. Arch Hydrobiol 167:561–574.  https://doi.org/10.1127/0003-9136/2006/0167-0561CrossRefGoogle Scholar
  31. 31.
    Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: role of polyunsaturated aldehydes and precursors. New Phytol 184:794–805.  https://doi.org/10.1111/j.1469-8137.2009.03033.xCrossRefPubMedGoogle Scholar
  32. 32.
    Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206:3487–3494.  https://doi.org/10.1242/jeb.00580CrossRefPubMedGoogle Scholar
  33. 33.
    Romano G, Miralto A, Ianora A (2010) Teratogenic effects of diatom metabolites on sea urchin Paracentrotus lividus embryos. Mar Drugs 8:950–967.  https://doi.org/10.3390/md8040950CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fink P (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar Freshw Behav Physiol 40:155–168.  https://doi.org/10.1080/10236240701602218CrossRefGoogle Scholar
  35. 35.
    Jones RH, Flynn KJ (2015) Nutritional status and diet composition affect the value of diatoms as copepod prey. Science 307:1457–1459.  https://doi.org/10.1126/science.1107767CrossRefGoogle Scholar
  36. 36.
    Djeghri N, Atkinson A, Fileman ES et al (2018) High prey-predator size ratios and unselective feeding in copepods: a seasonal comparison of five species with contrasting feeding modes. Prog Oceanogr 16:63–74CrossRefGoogle Scholar
  37. 37.
    Lepoint G, Cox AS, Dauby P, Poulicek M, Gobert S (2006) Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Mar Biol Res 2:355–365.  https://doi.org/10.1080/17451000600962797CrossRefGoogle Scholar
  38. 38.
    Mazzella L, Russo GF (1989) Grazing effect of two Gibbula species (Mollusca, Archaeogastropoda) on the epiphytic community of Posidonia oceanica leaves. Aquat Bot 35:353–373.  https://doi.org/10.1016/0304-3770(89)90007-7CrossRefGoogle Scholar
  39. 39.
    Jüttner F (1999) Allelochemical control of natural photoautotrophic biofilms. In: Keevil CW, Godfree A, Holt D, Dow C (eds) Biofilms in aquatic environment. Royal Society of Chemistry, Cambridge, UK, pp 43–50Google Scholar
  40. 40.
    De Stefano M, Marino D, Mazzella L (2000) Marine taxa of Cocconeis on leaves of Posidonia oceanica, including a new species and two new varieties. Eur J Phycol 35:225–242.  https://doi.org/10.1080/09670260010001735831CrossRefGoogle Scholar
  41. 41.
    Watson SB, Ridal J (2004) Periphyton: a primary source of widespread and severe taste and odour. Water Sci Technol 49:33–39CrossRefGoogle Scholar
  42. 42.
    Raniello R, Iannicelli MM, Nappo M Avila C, Zupo V (2006) Production of Cocconeis neothumensis (Bacillariophyceae) biomass in batch cultures and bioreactors for biotechnological applications: light and nutrient requirements. J Appl Phycol.  https://doi.org/10.1007/s10811-006-9145-4CrossRefGoogle Scholar
  43. 43.
    Zupo V, Alexander T, Edgar GJ (2017) Relating trophic resources to community structure: a predictive index of food availability. R Soc Open Sci 4:160515.  https://doi.org/10.1098/rsos.160515CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zupo V, Messina P (2006) How do dietary diatoms cause the sex reversal of the shrimp Hippolyte inermis Leach (Crustacea, Decapoda). Mar Biol 151:907–917.  https://doi.org/10.1007/s00227-006-0524-9CrossRefGoogle Scholar
  45. 45.
    Zariquiei Alvarez R (1968) Crustaceos Decapodos ibericos. Invest Pesq 32:1–510Google Scholar
  46. 46.
    Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Depth and seasonal distribution of some groups of the vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analyses. PSZNI Mar Ecol 13(1):17–39CrossRefGoogle Scholar
  47. 47.
    Guillen Nieto JE (1990) Guia illustrada de los crustaceos decapo- dos del litoral alicantino. Instituto del Cultura “Juan Gil-Albert” Publisher, Alicante. 316 ppGoogle Scholar
  48. 48.
    Bedini R, Canali MG, Acunto S (1997) Study of the mobile fauna of Posidonia oceanica (L.) Delile of Golfo di Follonica e Golfo di baratti. In: Ambiente Mare: Ecologia e nuove Tecnologie di Ricerca. Edizioni Regione Toscana, Collana Ricerca Scientifica e Tecnologica 12:59–78Google Scholar
  49. 49.
    Ianora A, Poulet SA, Miralto A (1995) A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar Biol 121:533–539CrossRefGoogle Scholar
  50. 50.
    Poulet SA, Ianora A, Miralto A, Meijer L (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Progr Ser 111:79–86CrossRefGoogle Scholar
  51. 51.
    Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicology 19: 493–511CrossRefGoogle Scholar
  52. 52.
    Adiyodi G, Adiyodi G (1970) Endocrine control of reproduction in decapod crustacea. Biol Rev 45:121–165CrossRefGoogle Scholar
  53. 53.
    Zupo V (1994) Strategies of sexual inversion in Hippolyte inermis Leach (Crustacea, Decapoda) from a Mediterranean seagrass meadow. J Exp Mar Biol Ecol 178:131–145CrossRefGoogle Scholar
  54. 54.
    Zupo V (2000) Effect of microalgal food on the sex reversal of Hippolyte inermis (Crustacea: Decapoda). Mar Ecol Prog Ser 201:251–259CrossRefGoogle Scholar
  55. 55.
    d’Udekem d’Acoz C (1996) The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zool Verhand 303:1–133Google Scholar
  56. 56.
    Zupo V, Messina P, Buttino I, Sagi A, Avila C, Nappo M, Bastida J, Codina C, Zupo S (2007) Do benthic and planktonic diatoms produce equivalent effects in crustaceans? Mar Freshw Behav Physiol 40:1–13.  https://doi.org/10.1080/10236240701592930CrossRefGoogle Scholar
  57. 57.
    Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Medit 7(2):167–190Google Scholar
  58. 58.
    Charniaux-Cotton H (1967) Endocrinologie et génétique de la différenciation sexuelle chez les invertébrés. C R Seances Soc Biol 16:6–9Google Scholar
  59. 59.
    Levy T, Manor R, Tamone SL, Aflalo ED, Sagi A (2017) Sexual differentiation during the life history of a protandric shrimp. Integr Comp Biol 57(1):E327–E327Google Scholar
  60. 60.
    Bortolini JL, Bauet RT (2017) Persistence of reduced androgenic glands after protandric sex change is a possible basis for simultaneous hermaphroditism in the marine shrimp Lysmata wurdemanni. Integr Comp Biol 57(1):E208Google Scholar
  61. 61.
    Zupo V, Messina P, Carcaterra A, Aflalo ED, Sagi A (2008) Experimental evidence of a sex reversal process in the shrimp Hippolyte inermis. Invertebr Reprod Dev 52(1–2):93–100CrossRefGoogle Scholar
  62. 62.
    Reverberi G (1950) La situazione sessuale di Hippolyte viridis e le condizioni che la reggono. Boll Zoologico 4:91–94CrossRefGoogle Scholar
  63. 63.
    Zupo V (2001) Influence of diet on sex differentiation of Hippolyte inermis Leach (Decapoda: Natantia) in the field. Hydrobiologia 449:131–140CrossRefGoogle Scholar
  64. 64.
    Cobos V, Diaz V, Raso G, Enrique J, Manjon-Cabeza ME (2005) Insights on the female reproductive system in Hippolyte inermis (Decapoda, Caridea): is this species really hermaphroditic? Invertebr Biol 124:310–320CrossRefGoogle Scholar
  65. 65.
    Charnov EL, Los-den Hartogh RL, Jones WT, van den Assem J (1981) Sex ratio evolution in a variable environment. Nature 289:27–33CrossRefGoogle Scholar
  66. 66.
    Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  67. 67.
    Zupo V, Jüttner F, Maibam C, Butera E, Blom JF (2014) Apoptogenic metabolites in fractions of the benthic diatom Cocconeis scutellum parva. Mar Drugs 12:547–567.  https://doi.org/10.3390/md12010547CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Juettner F, Messina P, Patalano C et al (2010) Odour compounds of the diatom Cocconeis scutellum: effects on benthic herbivores living on Posidonia oceanica. Mar Ecol Prog Ser 400:63–73CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Marine Biotechnology DepartmentStazione Zoologica Anton DohrnNaplesItaly

Personalised recommendations