Skip to main content

Effect of Irradiation for Producing the Conductive and Smart Hydrogels

  • Living reference work entry
  • First Online:
Cellulose-Based Superabsorbent Hydrogels

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 313 Accesses

Abstract

This review presents the past and current efforts with a brief description on the featured properties of conductive and smart hydrogel fabricated from biopolymers and natural ones for different applications. Many endeavors have been exerted during the past 10 years for developing new smart hydrogels. This review mainly focuses on the effect of different irradiation methods for improving the properties of smart hydrogels. As the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the best properties. So this chapter provides the reader good information about the irradiation effects on producing the smart conductive hydrogels and perspective on further potential developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Calo E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  CAS  Google Scholar 

  2. Cha R, He Z, Ni Y (2012) Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr Polym 88:713–718

    Article  CAS  Google Scholar 

  3. Ullah F, Bisyrul Hafi Othman M, Javed F, Ahmad Z, Aki H (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  CAS  Google Scholar 

  4. Onofrei MD, Filimon A (2016) Cellulose-based hydrogels: designing concepts, properties, and perspectives for biomedical and environmental applications. In: Mendez-Vilas A, Solano-Martin A (eds) Polymer science: research advances, practical applications and educational aspects. Formatex Research Center, Spain pp 108–120

    Google Scholar 

  5. Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2:353–373

    Article  CAS  PubMed Central  Google Scholar 

  6. Zhang W, Zhu S, Bai Y, Xi N, Wang S, Bian Y, Li X, Zhan Y (2015) Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydr Polym 12:11–17

    Article  CAS  Google Scholar 

  7. Mohammadi-Khoo S, Najafi Moghadam P, Fareghi AR, Movagharnezhad N (2016) Synthesis of a cellulose-based hydrogel network: characterization and study of urea fertilizer slow release. J Appl Polym Sci 42935:1–9

    Google Scholar 

  8. Alesa Gyles D, Diniz Castro L, Otávio Carréra Silva J Jr, Maria Ribeiro-Costa R (2017) The designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polym J 88:373–392

    Article  CAS  Google Scholar 

  9. Nechyporchuk O, Naceur Belgacem M, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crop Prod 93:2–25

    Article  CAS  Google Scholar 

  10. Tang J, Sisler J, Grishkewich N, Chiu Tam K (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409

    Article  CAS  PubMed  Google Scholar 

  11. Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C 79:958–971

    Article  CAS  Google Scholar 

  12. Siddhanta SK, Gangopadhyay R (2005) Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly (2-acrylamido-2-methylpropanesulfonic acid). Polymer (Guildf) 46:2993–3000

    Article  CAS  Google Scholar 

  13. Tang Q, Wu J, Sun H, Fan S, Hu D, Lin J (2008) Superabsorbent conducting hydrogel from poly (acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydr Polym 73:473–481

    Article  CAS  Google Scholar 

  14. Mohd Amin MCI, Ahmad M, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473

    Article  CAS  Google Scholar 

  15. Rui-Hong X, Peng-Gang R, Jian H, Fang R, Lian-Zhen R, Zhen-Feng S (2016) Preparation and properties of graphene oxide-regenerated cellulose/polyvinyl alcohol hydrogel with pH-sensitive behavior. Carbohydr Polym 138:222–228

    Article  CAS  PubMed  Google Scholar 

  16. Liang X, Qu B, Li J, Xiao H, He B, Qian L (2015) Preparation of cellulose-based conductive hydrogels with ionic liquid. React Funct Polym 86:1–6

    Article  CAS  Google Scholar 

  17. Xiong C, Zhong W, Zou Y, Luo J, Yang W (2016) Electroactive biopolymer/graphene hydrogels prepared for high-performance supercapacitor electrodes. Electrochim Acta 211:941–949

    Article  CAS  Google Scholar 

  18. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  19. Hebeish A, Farag S, Sharaf S, Shaheen TI (2015) Radically new cellulose nanocomposite hydrogels: temperature and pH responsive characters. Int J Biol Macromol 81:356–361

    Article  CAS  PubMed  Google Scholar 

  20. Zhao W, Glavas L, Odelius K, Edlund U, Albertsson AC (2014) A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer 55:2967–2976

    Article  CAS  Google Scholar 

  21. Shi Z, Gao X, Wajid Ullah M, Li S, Wang Q, Yang G (2016) Electroconductive natural polymer-based hydrogels. Biomaterials 11:40–54

    Article  CAS  Google Scholar 

  22. Chen C, Yang C, Li S, Li D (2015) A three-dimensionally chitin nanofiber/carbon nanotube hydrogel network for foldable conductive paper. Carbohydr Polym 134:309–313

    Article  CAS  PubMed  Google Scholar 

  23. Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25

    Article  CAS  PubMed  Google Scholar 

  24. Cirillo G, Curcio M, Gianfranco Spizzirri U, Vittori O, Tucci P, Picci N, Iemma F, Hampel S, Pasquale Nicoletta F (2017) Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin. Eur Polym J 90:1–12

    Article  CAS  Google Scholar 

  25. Bogaerts A, Chen Z, Gijbels R (2003) Glow discharge modelling: from basic understanding towards applications. Surf Interface Anal 35(7):593–603

    Article  CAS  Google Scholar 

  26. Monteiro WA (2016) Radiation effects in materials. Intech, Rijeka, pp 309–330

    Book  Google Scholar 

  27. Zhang W, Sha Z, Huang Y, Bai Y, Xi N, Zhang Y (2015) Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Adv 5:6505–6511. The Royal Society of Chemistry

    Article  CAS  Google Scholar 

  28. Zhao L, Gwon HJ, Lim YM, Nho YC, Kim SY (2014) Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique. Carbohydr Polym 102:598–605

    Article  CAS  PubMed  Google Scholar 

  29. Plungpongpan K, Koyanukkul K, Kaewvilai A, Nootsuwan N, Kewsuwan P, Laobuthee A (2013) Preparation of PVP/MHEC blended hydrogels via gamma irradiation and their calcium ion uptaking and releasing ability. Energy Procedia 34:775–781

    Article  CAS  Google Scholar 

  30. Hong T, Okabe H, Hidaka Y, Hara K (2017) Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr Polym 157:335–343

    Article  CAS  Google Scholar 

  31. Spasojevic J, Radosavljević A, Krstić J, Jovanović D, Spasojević V, Kalagasidis-Krušić M, Kačarević-Popović Z (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185

    Article  CAS  Google Scholar 

  32. Yang J, Dong X, Gao Y, Zhang W (2015) One-step synthesis of methacrylated POSS cross-linked poly(N-isopropylacrylamide) hydrogels by γ-irradiation. Mater Lett 157:81–84

    Article  CAS  Google Scholar 

  33. Swaroop K, Francis S, Somashekarappa HM (2016) Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity. Mater Today Proc 3:1792–1798

    Article  Google Scholar 

  34. Leyva-Gómez G, Santillan-Reyes E, Lima E, Madrid-Martínez A, Krötzsch E, Quintanar-Guerrero D, Garciadiego-Cázares D, Martínez-Jiménez A, Hernández Morales M, Ortega-Peña S, Contreras-Figueroa ME, Cortina-Ramírez GE, Fernando Abarca-Buis R (2017) A novel hydrogel of poloxamer 407 and chitosan obtained by gamma irradiation exhibits physicochemical properties for wound management. Mater Sci Eng C 74:36–46

    Article  CAS  Google Scholar 

  35. Ajji Z, Othman I, Rosiak JM (2005) Production of hydrogel wound dressings using gamma radiation. Nucl Instrum Methods Phys Res B 229:375–380

    Article  CAS  Google Scholar 

  36. Magda J, Cho SH, Streitmatter S, Jevremovic T (2014) Effects of gamma rays and neutron irradiation on the glucose response of boronic acid-containing “smart” hydrogels. Polym Degrad Stab 99:219–222

    Article  CAS  Google Scholar 

  37. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogel. Polym Degrad Stab 107:166–177

    Article  CAS  Google Scholar 

  38. Mohamady Ghobashy M, Elhady MA (2017) pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal. Radiat Phys Chem 134:47–55

    Article  CAS  Google Scholar 

  39. Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Fadilah Rajab N (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320

    Article  CAS  PubMed  Google Scholar 

  40. Bhunia T, Goswami L, Chattopadhyay D, Bandyopadhyay A (2011) Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes. Nucl Instrum Methods Phys Res B 269:1822–1828

    Article  CAS  Google Scholar 

  41. Moslem Tavakol M, Saeedeh Dehshiri S, Ebrahim Vasheghani-Farahani E (2016) Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth. Carbohydr Polym 152:504–509

    Article  CAS  PubMed  Google Scholar 

  42. Choi J, Pant B, Lee C, Park M, Park SJ, Kim HY (2017) Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique. J Ind Eng Chem 47:41–45

    Article  CAS  Google Scholar 

  43. El-Naggar AWM, Abd Alla SG, Said HM (2006) Temperature and pH responsive behaviours of CMC/AAc hydrogels prepared by electron beam irradiation. Mater Chem Phys 95:158–163

    Article  CAS  Google Scholar 

  44. Park M, Kim BS, Shin HK, Park SJ, Kim HY (2013) Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Mater Sci Eng C 33:5051–5057

    Article  CAS  Google Scholar 

  45. Senna MM, Mostafa AB, Mahdy SR, El-Naggar AM (2016) Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl Instrum Methods Phys Res B 386:22–29

    Article  CAS  Google Scholar 

  46. Tanan W, Saengsuwan S (2014) Microwave assisted synthesis of poly (acrylamide-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) semi-IPN hydrogel. Energy Procedia 56:386–393

    Article  CAS  Google Scholar 

  47. Omprakash GS, Anant LC, Rao BS, Mirajkar SP (2003) Enhancement of crystallization rate by microwave radiation: synthesis of ZSM-5. Mater Chem Phys 82(3):538–545

    Article  CAS  Google Scholar 

  48. Zhao Z, Li Z, Xia Q, Xi H, Lin Y (2008) Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. Eur Polym J 44:1217–1224

    Article  CAS  Google Scholar 

  49. Rivero RE, Molina MA, Rivarola CR, Barbero CA (2014) Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite. Sens Actuators B Chem 190:270–278

    Article  CAS  Google Scholar 

  50. Zhao ZX, Li Z, Xia QB, Bajalis E, Xi HX, Lin YS (2008) Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chem Eng J 142:263–270

    Article  CAS  Google Scholar 

  51. Zhang L, Zheng GJ, Guo YT, Zhou L, Du J, He H (2014) Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pac J Trop Med 7(2):136–140

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Zhang X, Qiu D, Li Y, Yao L, Duan J (2018) Ultrasonic assisted microwave synthesis of poly (chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel. Ultrason Sonochem 40:714–719

    Article  CAS  PubMed  Google Scholar 

  53. Wang X, Wang Y, He S, Hou H, Hao C (2018) Ultrasonic-assisted synthesis of superabsorbent hydrogels based on sodium lignosulfonate and their adsorption properties for Ni2+. Ultrason Sonochem 40:221–229

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Xiong Y, Wang J, Zhang X (2017) Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf A Physicochem Eng Asp 520:903–913

    Article  CAS  Google Scholar 

  55. Koshani R, Aminlari M (2017) Physicochemical and functional properties of ultrasonic-treated tragacanth hydrogels cross-linked to lysozyme. Int J Biol Macromol 103:948–956

    Article  CAS  PubMed  Google Scholar 

  56. Cass P, Knower W, Pereeia E, Holmes NP, Hughes T (2010) Preparation of hydrogels via ultrasonic polymerization. Ultrason Sonochem 17:326–332

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Shahidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shahidi, S. (2018). Effect of Irradiation for Producing the Conductive and Smart Hydrogels. In: Mondal, M. (eds) Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-76573-0_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76573-0_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76573-0

  • Online ISBN: 978-3-319-76573-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics