Skip to main content

AD Blank Spot Model for Evaluation of Alzheimer’s Disease

  • Living reference work entry
  • First Online:
Handbook of Computational Neurodegeneration

Abstract

The discovery of biomarkers that confer high confidence of Alzheimer’s disease (AD) diagnosis and disease management would be a valuable tool to study the etiology of AD, to find risk factors, and to discover more treatments and medicines. With increased knowledge of various pathways that play significant roles in AD and other factors, it has become clear that one biomarker profile is not enough to identify differentially expressed proteins between AD patients and control individuals and provide conclusive diagnostic results. Hence, the aim of this chapter is to provide a mechanistic survey of the many complex and heterogeneous factors that may result in the different phenotypes of AD. In this context, AD Blank Spot is a wide-open system that uses data mining, machine learning, and artificial intelligence techniques, and has the potential to stage the individuals at risk or with AD according to their state of disease progression. Each of these factors have specific pathological roles in the molecular and cellular processes of this multifactorial disease and point at the biomarkers that should be valued for creating precise disease phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABCA7:

ATP-binding cassette subfamily A member 7

Ach:

Acetylcholine

AD:

Alzheimer’s disease

APOE:

Apolipoprotein E

APP:

Amyloid precursor protein

BBB:

Blood–brain barrier

BIN1:

Bridging integrator 1

CLU:

Clusterin

CNS:

Central nervous system

CR1:

Complement component receptor 1

CSF:

Cerebrospinal fluid

EOAD:

Early-onset Alzheimer’s disease

ER:

Endoplasmic reticulum

FINGER:

Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability

GSK3:

Glycogen synthase kinase-3

HLA-DRB1/HLA-DRB5:

Major histocompatibility complex class II DRβ1 and 5

IL:

Interleukin

LOAD:

Late-onset Alzheimer’s disease

MAPT:

Microtubule-associated protein tau

MMSE:

Modified Mini-Mental State Exam

MRI:

Magnetic resonance imaging

NFTs:

Neurofibrillary tangles

NMDAR:

N-methyl-D-aspartate receptors

OAA:

Oxaloacetate

PA:

Physical activity

PET:

Positron emission tomography

PICALM:

Phosphatidylinositol binding clathrin assembly protein

PSEN1:

Presenilin 1

PSEN2:

Presenilin 2

RCT:

Randomized controlled trial

ROS:

Reactive oxygen species

SORL1:

Sortilin-related receptor 1

T2D:

Type 2 diabetes

TNF:

Tumor necrosis factor

TREM2:

Triggering receptor expressed on myeloid cells 2

VD:

Vascular dementia

References

  • Avramouli A, Vlamos P (2020) Buccal mucosa biomarkers in Alzheimer’s disease. Adv Exp Med Biol 1195:49–56

    Article  CAS  Google Scholar 

  • Bellenguez C, Grenier-Boley B, Lambert JC (2020) Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol 61:40–48

    Article  CAS  Google Scholar 

  • Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3–12

    Article  CAS  Google Scholar 

  • Bruni AC, Bernardi L, Gabelli C (2020) From beta amyloid to altered proteostasis in Alzheimer’s disease. Ageing Res Rev 64:101126

    Article  CAS  Google Scholar 

  • Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose meta- bolism and Alzheimer disease. Nat Rev Neurosci 20:148–160

    Article  CAS  Google Scholar 

  • Cenini G, Voos W (2019) Mitochondria as potential targets in Alzheimer disease therapy: an update. Front Pharmacol 23(10):902

    Article  Google Scholar 

  • De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C et al (2020) Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci 9(5):394–404

    Article  Google Scholar 

  • Durazzo TC, Mattsson N, Weiner MW (2014) Alzheimer’s disease neuroimaging initiative. Smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimers Dement 10(3 Suppl):S122–S145

    Google Scholar 

  • French Pharmacoeconomic Committee (2012) Drugs for Alzheimer’s disease: best avoided. No therapeutic advantage. Prescrire Int 21:150

    Google Scholar 

  • Frost B, Jacks RL, Diamond MI (2009) Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem 284:12845–12852

    Article  CAS  Google Scholar 

  • Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  CAS  Google Scholar 

  • Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflamma- tion in Alzheimer disease. Nat Rev Neurosci 16(6):358–372

    Article  CAS  Google Scholar 

  • Iadecola C (2014) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  Google Scholar 

  • Kaur S, DasGupta G, Singh S (2019) Altered neurochemistry in Alzheimer’s disease: targeting neurotransmitter receptor mechanisms and therapeutic strategy. Neurophysiology 51(4):293

    Article  CAS  Google Scholar 

  • Kivipelto M, Solomon A, Ahtiluoto S, Ngandu T, Lehtisalo J, Antikainen R et al (2013) The Finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER): study design and progress. Alzheimer’s Demen 9:657–665

    Article  Google Scholar 

  • Kourtis LC, Regele OB, Wright JM, Jones GB (2019) Digital biomarkers for Alzheimer’s disease: the mobile/ wearable devices opportunity. NPJ Digit Med 2:9

    Article  Google Scholar 

  • Launer LJ (2019) Blood pressure control as an intervention to prevent dementia. Lancet Neurol 18(10):906–908

    Article  Google Scholar 

  • Liu PP, Xie Y, Meng XY, Kang JS (2019) History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 23(4):29

    Article  Google Scholar 

  • Marx J (2007) Alzheimer’s disease. Fresh evidence points to an old suspect: calcium. Science 318:384–385

    Article  CAS  Google Scholar 

  • Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R (2018) Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflammation 15(1):276

    Article  Google Scholar 

  • Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13(8):788–794

    Article  Google Scholar 

  • Roses AD, Saunders AM (1994) APOE is a major susceptibility gene for Alzheimer’s disease. Curr Opin Biotechnol 5(6):663–667

    Article  CAS  Google Scholar 

  • Schroeder RW, Martin PK, Walling A (2019) Neuropsychological evaluations in adults. Am Fam Physician 99(2):101–108

    Google Scholar 

  • Silva MVF, Loures CMG, Alves LCV et al (2019) Alzheimer’s disease: risk factors and potentially protective measures. J Biomed Sci 26:33

    Article  Google Scholar 

  • Tang Y, Zhang D, Gong X, Zheng J (2022) A mechanistic survey of Alzheimer’s disease. Biophys Chem 281:106735

    Article  CAS  Google Scholar 

  • Uddin MS, Tewari D, Sharma G et al (2020) Molecular mechanisms of ER stress and UPR in the pathogenesis of Alzheimer’s disease. Mol Neurobiol 57:2902–2919

    Article  CAS  Google Scholar 

  • Villa C, Lavitrano M, Salvatore E, Combi R (2020) Molecular and imaging biomarkers in Alzheimer’s disease: a focus on recent insights. J Pers Med 10(3):61

    Article  Google Scholar 

  • Walgrave H, Zhou L, De Strooper B, Salta E (2021) The promise of microRNA-based therapies in Alzheimer’s disease: challenges and perspectives. Mol Neurodegener 16(1):76

    Article  CAS  Google Scholar 

  • Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57(4):1041

    Article  CAS  Google Scholar 

  • Xiao X, Liu H, Liu X, Zhang W, Zhang S, Jiao B (2021) APP, PSEN1, and PSEN2 variants in Alzheimer’s disease: systematic re-evaluation according to ACMG guidelines. Front Aging Neurosci 13:695808

    Article  CAS  Google Scholar 

  • Yamasaki T, Kumagai S (2021) Nonwearable sensor-based in-home assessment of subtle daily behavioral changes as a candidate biomarker for mild cognitive impairment. J Pers Med 12(1):11

    Article  Google Scholar 

  • Zhang R, Simon G, Yu F (2017) Advancing Alzheimer’s research: a review of big data promises. Int J Med Inform 106:48–56

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antigoni Avramouli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Avramouli, A., Vlamos, P.M. (2023). AD Blank Spot Model for Evaluation of Alzheimer’s Disease. In: Vlamos, P., Kotsireas, I.S., Tarnanas, I. (eds) Handbook of Computational Neurodegeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-75479-6_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75479-6_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75479-6

  • Online ISBN: 978-3-319-75479-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics