Skip to main content

Computational Models and Advanced Digital Techniques in Alzheimer’s Disease

  • Living reference work entry
  • First Online:
Handbook of Computational Neurodegeneration

Abstract

Alzheimer’s disease (AD) is an irreversible and progressive neurodegenerative disease and the most common form of dementia. AD is characterized by two main pathological hallmarks, the plaque deposits of the β-amyloid peptide (Aβ) and the neurofibrillary tangles of the microtubule binding protein tau. The two most well-established AD biomarkers are the biomarker for brain amyloid Aβ protein and CSF/brain tau deposition. The cerebrospinal fluid (CSF) Aβ42 levels are inversely associated with AD risk, meaning that low CSF Aβ42 levels are indicative of an increased AD risk. On the other hand, elevated CSF/brain tau shows a potential AD diagnosis. This biomarker can be validated by imaging techniques seeing as reduced tau uptake on positron emission tomography (PET) in the temporoparietal lobes and atrophy of medial temporal (MTL) on a magnetic resonance imaging (MRI) scan may also reveal an AD diagnosis. Appropriately validated and optimized mathematical models can be used to mechanistically explain the structure of the brain and neural networks. Such models in combination with methods of nonlinear dynamical systems and statistics may help identify and predict brain diseases and disorders. The capabilities of computational models include an understanding of brain function and dysfunction. These models can provide, in unprecedented detail, an understanding of the neurobiological and mental basis of brain disorders such as AD, and this knowledge can offer key insights in disease progression, diagnosis, and treatment. In computational neuroscience, such models are created that can imitate behaviors by conducting simulation experiments on neural simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aich S et al (2018) Prediction of neurodegenerative diseases based on gait signals using supervised machine learning techniques. Adv Sci Lett 24(3):1974–1978

    Article  Google Scholar 

  • Alanazi H, Abdullah A, Qureshi K (2017) A critical review for developing accurate and dynamic predictive models using machine learning methods in medicine and health care. J Med Syst 41(4)

    Google Scholar 

  • Anastasio T (2011) Data-driven modeling of Alzheimer disease pathogenesis. J Theor Biol 290:60–72

    Article  PubMed  Google Scholar 

  • Britt 3rd WG, Hansen AM, Bhaskerrao S, Larsen JP, Petersen F, Dickson A, Dickson C, Kirsch WM (2011) Mild cognitive impairment: prodromal Alzheimer’s disease or something else? J Alzheimers Dis 27(3):543–551. https://doi.org/10.3233/JAD-2011-110740

    Article  PubMed  PubMed Central  Google Scholar 

  • Califf RM (2018) Biomarker definitions and their applications. Exp Biol Med (Maywood) 243(3):213–221. https://doi.org/10.1177/1535370217750088

    Article  CAS  PubMed  Google Scholar 

  • Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert M, Chupin M, Benali H, Colliot O (2011) Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56(2):766–781

    Article  PubMed  Google Scholar 

  • Dodge HH, Zhu J, Harvey D, Saito N, Silbert LC, Kaye JA, Koeppe RA, Albin RL, Alzheimer’s Disease Neuroimaging Initiative (2014) Biomarker progressions explain higher variability in stage-specific cognitive decline than baseline values in Alzheimer disease. Alzheimers Dement 10(6):690–703. https://doi.org/10.1016/j.jalz.2014.04.513

    Article  PubMed  PubMed Central  Google Scholar 

  • Egmont-Petersen M, de Ridder D, Handels H (2002) Image processing with neural networks—a review. Pattern Recogn 35(10):2279–2301

    Article  Google Scholar 

  • Ferreira A, Figueiredo M (2014) Incremental filter and wrapper approaches for feature discretization. Neurocomputing 123:60–74

    Article  Google Scholar 

  • Grassi M, Rouleaux N, Caldirola D, Loewenstein D, Schruers K, Perna G, Dumontier M (2019) A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer’s disease using socio-demographic characteristics, clinical information, and neuropsychological measures. Front Neurol 10

    Google Scholar 

  • Gupta Y, Lama R, Kwon G (2019) Prediction and classification of Alzheimer’s disease based on combined features from Apolipoprotein-E genotype, cerebrospinal fluid, MR, and FDG-PET imaging biomarkers. Front Comput Neurosci:13

    Google Scholar 

  • Huang G, Huang G, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48

    Article  PubMed  Google Scholar 

  • Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128. https://doi.org/10.1016/S1474-4422(09)70299-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilic S (2013) ROC analysis in clinical decision making. J Mood Disord 3(3):135

    Article  Google Scholar 

  • Li H, Yuan S, Wu J, Gu Y, Sun X (2021) Predicting conversion from MCI to AD combining multi-modality data and based on molecular subtype. Brain Sci 11(6):674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondragón-Rodríguez S, Perry G, Zhu X, Moreira P, Acevedo-Aquino M, Williams S (2013) Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer’s disease. Oxidative Med Cell Longev 2013:1–6

    Article  Google Scholar 

  • Myszczynska M, Ojamies P, Lacoste A, Neil D, Saffari A, Mead R, Hautbergue G, Holbrook J, Ferraiuolo L (2020) Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat Rev Neurol 16(8):440–456

    Article  PubMed  Google Scholar 

  • Niemantsverdriet E, Ottoy J, Somers C, De Roeck E, Struyfs H, Soetewey F, Verhaeghe J, Van den Bossche T, Van Mossevelde S, Goeman J, De Deyn PP, Mariën P, Versijpt J, Sleegers K, Van Broeckhoven C, Wyffels L, Albert A, Ceyssens S, Stroobants S, Staelens S et al (2017) The cerebrospinal fluid Aβ1-42/Aβ1-40 ratio improves concordance with amyloid-PET for diagnosing Alzheimer’s disease in a clinical setting. J Alzheimers Dis 60(2):561–576. https://doi.org/10.3233/JAD-170327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nori VS et al (2019) Machine learning models to predict onset of dementia: a label learning approach. Alzheimers Dement Translat Res Clin Interv 5(1):918–925

    Article  Google Scholar 

  • Park JH, Cho HE, Kim JH et al (2020) Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data. npj Digit Med 3:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrella J, Hao W, Rao A, Doraiswamy P (2019) Computational causal modeling of the dynamic biomarker Cascade in Alzheimer’s disease. Comput Math Methods Med 2019:1–8

    Article  Google Scholar 

  • Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, Fagan AM, Shah AR, Alvarez S, Arbelaez A, Giraldo M, Acosta-Baena N, Sperling RA, Dickerson B, Stern CE, Tirado V, Munoz C, Reiman RA, Huentelman MJ, Alexander GE et al (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol 11(12):1048–1056. https://doi.org/10.1016/S1474-4422(12)70228-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie K, Ritchie C, Yaffe K, Skoog I, Scarmeas N (2015) Is late-onset Alzheimer’s disease really a disease of midlife? Alzheimers Dement Translat Res Clin Interv 1(2):122–130

    Article  Google Scholar 

  • Rohini M, Surendran D (2019) Classification of neurodegenerative disease stages using ensemble machine learning classifiers. Procedia Comput Sci 165:66–73

    Article  Google Scholar 

  • Skolariki K et al (2020) Multivariate data analysis and machine learning for prediction of MCI-to-AD conversion. Adv Exp Med Biol 1194:81–103

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Huang J, Zhou D, Zha H, Giles C (2007) IKNN: informative K-nearest neighbor pattern classification. In: Knowledge discovery in databases: PKDD, pp 248–264

    Google Scholar 

  • Syaifullah A, Shiino A, Kitahara H, Ito R, Ishida M, Tanigaki K (2021) Machine learning for diagnosis of AD and prediction of MCI progression from brain MRI using brain anatomical analysis using diffeomorphic deformation. Front Neurol 11

    Google Scholar 

  • Tarnanas I, Tsolaki A, Wiederhold M, Wiederhold B, Tsolaki M (2015) Five-year biomarker progression variability for Alzheimer’s disease dementia prediction: can a complex instrumental activities of daily living marker fill in the gaps? Alzheimers Dement 1(4):521–532. https://doi.org/10.1016/j.dadm.2015.10.005

    Article  Google Scholar 

  • Wang T et al (2018) Predictive modeling of the progression of Alzheimer’s disease with recurrent neural networks. Sci Rep 8(1):9161

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Stella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stella, E., Tsiampa, A.M., Stella, A. (2023). Computational Models and Advanced Digital Techniques in Alzheimer’s Disease. In: Vlamos, P., Kotsireas, I.S., Tarnanas, I. (eds) Handbook of Computational Neurodegeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-75479-6_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75479-6_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75479-6

  • Online ISBN: 978-3-319-75479-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics