Advertisement

Microwave Materials for Defense and Aerospace Applications

  • J. VargheseEmail author
  • N. Joseph
  • H. Jantunen
  • S. K. Behera
  • H. T. Kim
  • M. T. Sebastian
Living reference work entry

Abstract

Microwave materials are fundamental building blocks for defense and aerospace applications, which have been used as dielectric resonators, radomes, multilayer packages, electromagnetic shield, and so on. These materials and devices made of them should survive in harsh environmental conditions, and hence the availability of suitable materials is limited. Microwave materials are used for signal propagation as well as shielding unwanted signals in military and aerospace applications depending on their properties. The essential material characteristics required for signal propagation applications are very low relative permittivity, low dielectric loss, low-temperature variation of relative permittivity/resonant frequency, and low coefficient of thermal expansion. The materials used for these applications are in the form of substrates, foams, inks, bulk resonators, high-temperature co-fired ceramics (HTCC), low-temperature co-fired ceramics (LTCC), printed circuit boards (PCBs), etc. The materials should absorb or reflect microwaves for electromagnetic interference (EMI) shielding applications. The present chapter gives an overview of microwave material requirements, properties, and their applications in antennas, filters, and oscillators in the military and aerospace sector.

Keywords

Microwave materials HTCC LTCC ULTCC EMI Shielding Composites Rubber-Ceramics PCBs Dielectric Resonators Microstrip antenna Dielectric Resonator Antenna Bandwidth Metamaterials Oscillator Filter Reflection Coefficient Gain Beamwidth 

Abbreviations

5G

Fifth generation

AESA

Active electronically steered antennas

BoPET

Biaxially oriented poly-ethylene terephthalate

BSE

Bore sight errors

CTE

Coefficients of thermal expansion

DR

Dielectric resonator

DRA

Dielectric resonator antenna

DRO

Dielectric resonator oscillator

EBG

Electromagnetic bandgap

ECM

Electronic countermeasures

EMI

Electromagnetic interference

EMP

Electromagnetic pulse

ESD

Electrostatic discharge

GPS

Global positioning systems

HARP

Halpern anti-radiation paint

HPSN

Hot-pressed silicon nitride

HTCC

High-temperature co-fired ceramics

HTPAHs

Heat-treated polyaromatic hydrocarbons

ICs

Integrated circuits

IoT

Internet of Things

IT

Information technology

ITS

Intelligent transport system

LTCC

Low-temperature co-fired ceramics

MCM

Multi-chip module

MCMB

Mesocarbon microbead

MICs

Microwave integrated circuits

MLC

Multilayer capacitor

MMICs

Monolithic microwave integrated circuits

MP

Melting point

MWCNT

Multiwall carbon nanotube

NRI

Negative refractive index

PCB

Printed circuit board

POE

Polyolefin elastomer

PPCP

Polypropylene random copolymer

PTFE

Polytetrafluoroeten

RBSN

Reaction-bonded silicon nitride

RF

Radio-frequency

RFI

Radio-frequency interference

RFID

Radio-frequency identification

SCFS

Slip-cast fused silica

SiP

System in package

SOP

System on package

TC

Thermal conductivity

UWB

Ultra-wideband

Wi-Fi

Wireless fidelity

WiMAX

Worldwide interoperability for microwave access

WLAN

Wireless local area network

References

  1. 1.
    Richtmeyer R (1939) Dielectric resonators. J Appl Phys 15:391–398CrossRefGoogle Scholar
  2. 2.
    Okaya A (1960) The rutile microwave resonator. T Proc IRE 48:1921–1921Google Scholar
  3. 3.
    Cohen S (1968) Microwave band pass filters containing high Q dielectric resonators. IEEE Trans Microw Theory Tech MTT-16:1628–1629Google Scholar
  4. 4.
    Masse DJ, Purcel RA, Ready DW, Maguire EA, Hartwig C (1971) A new low loss high K temperature compensated dielectric for microwave applications. Proc IEEE 59:1628–1629CrossRefGoogle Scholar
  5. 5.
    Wakino K, Nishikawa T, Tamura S, Ishikawa Y (1975) Microwave bandpass filters containing dielectric resonators with improved temperature stability and spurious response. IEEE-MTT-S Int Microw Symp Dig, Palo Alton, CA, 63–65Google Scholar
  6. 6.
    Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Sebastian MT, Ubic R, Jantunen H (2017) Microwave materials and applications. Two Volume sets John Wiley & Sons Inc., West SussexCrossRefGoogle Scholar
  8. 8.
    Sebastian MT, Ubic R, Jantunen H (2015) Low-loss dielectric ceramic materials and their properties. Int Mater Rev 60(7):392–412CrossRefGoogle Scholar
  9. 9.
    Jain T (2013) Technology advancement in wireless communications. Int J Sci Technol Res 2(8):2277–8616Google Scholar
  10. 10.
    Seraphim DP, Feinberg I (1981) Electronic packaging evolution in IBM. IBM J Res Dev Res Dev 25:617–618CrossRefGoogle Scholar
  11. 11.
    Tummula PK (1996) Microelectronic packaging handbook. Springer, New YorkGoogle Scholar
  12. 12.
    Varghese J (2016) Zircon based hard. LAP LAMBERT Academic Publisher, Soft Microwave Substrates and DevicesGoogle Scholar
  13. 13.
    Ralf R, Patrick S, Martin O (2014) SMTR® module – evolution towards Airborne Applications. International Radar Conference-2014,  https://doi.org/10.1109/RADAR.2014.7060400
  14. 14.
    Schuh H (2009) X-band T/R-module front-end based on GaN MMICs. Intern J Microw Wirel Technol 1:387–394CrossRefGoogle Scholar
  15. 15.
    Yu H, Liu J, Zhang W, Zhang S (2015) Ultra-low sintering temperature ceramics for LTCC applications: a review. J Mater Sci Mater Electron [Internet]:1–10. Springer. Available from: http://link.springer.com/10.1007/s10854-015-3282-y
  16. 16.
    Jin Y, Wang Z, Chen J (2010) Introduction to microsystem packaging technology. CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Chen L-Y, HiTEC, HiTEN, & CICMT (2014), Vol. 2014, No. HITEC, pp. Dielectr. Perform. a High Purity HTCC Alumina High Temp. – a comparison study with other polycrystalline alumina,” Additional Conferences Device Packaging HiTEC, HiTEN, & CICMT; January 2014, p 000271–7Google Scholar
  18. 18.
    Chen L-Y, Neudeck PG, Hunter G (2016) Electrical Performance of a High Temperature 32-I/O HTCC Alumina Package. 21000 Brookpark Road Cleveland, Ohio 44135 2 NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135Google Scholar
  19. 19.
    Blackwell E, Raton B (2000) The electronic packaging handbook. Press CRC, Boca RatonGoogle Scholar
  20. 20.
    Harper C (2000) Electronic packaging and interconnection handbook, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Varghese J, Vahera T, Ohsato H, Iwata M, Jantunen H (2017) Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics. Jap J Appl Phys 56:10PE01CrossRefGoogle Scholar
  22. 22.
    Varghese J, Joseph T, Sebastian MT (2011) ZrSiO4 ceramics for microwave integrated circuit applications. Mater Lett 65(7):1092–1094CrossRefGoogle Scholar
  23. 23.
    Pullanchiyodan A, Surendran KP (2016) Formulation of Sol–Gel derived bismuth silicate dielectric ink for flexible electronics applications. Ind Eng Chem Res:7108–7115. Available from: http://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b00871CrossRefGoogle Scholar
  24. 24.
    Arun S, Sebastian MT, Surendran KP (2017) Li2ZnTi3O8 based high κ LTCC tapes for improved thermal management in hybrid circuit applications. Ceram Int 43(7):5509–5516CrossRefGoogle Scholar
  25. 25.
    Ferro Corporation (2015) Low temperature co – fired ceramic systems A6M/A6M – E high frequency LTCC tape system [Internet]. Tech. data sheet LTCC. 2015. pp 1–2. Available from: http://www.ferro.com/Our+Products/ColorsGlass/Electronic/Electronic-Materials/docs/A6M-E LTCC Tape System.pdf
  26. 26.
  27. 27.
    Thomas D, Abhilash P, Sebastian MT (2013) Casting and characterization of LiMgPO4 glass free LTCC tape for microwave applications. J Eur Ceram Soc 33(1):87–93CrossRefGoogle Scholar
  28. 28.
    Roshni SB, Sebastian MT, Surendran KP (2017) Can zinc aluminate-titania composite be an alternative for alumina as microelectronic substrate? Sci Rep[Internet] 7:40839. Nature Publishing Group; Available from: http://www.nature.com/articles/srep40839
  29. 29.
    Kaneko T, Watanabe H, Akaishi M, Wada K (1999) AlN HTCC super miniaturized millimeter wave transceiver MCMs, the novel structure for the high reliability, the high performance and the mass productivity. IEEE MlT-S Dig 2:449–452. (0–7803–5135–5/99/$10.00 0 1999 IEEE)Google Scholar
  30. 30.
    Cressler JD, Mantooth HA (2013) Extreme environment electronics. Chapters 1–5. CRC Press, Boca Raton\Florida, pp 1–47Google Scholar
  31. 31.
    Spry DJ, Neudeck PG, Chen L, Lukco D, Chang CW, Beheim GM, Krasowski MJ, Prokop N (2016) Processing and characterization of thousand-hour 500 °C durable 4H-SiC JFET integrated circuits. In: Proceedings of the 2016 IMAPs international conference on high temperature electronics (HiTEC 2016). International Albuquerque, New MexicoCrossRefGoogle Scholar
  32. 32.
    Catalog Smt (2017) HTCC QFN Packages to 40 GHz [Internet]. 2017 [cited 1 Jan 2017]. p 1. Available from: https://smtnet.com/company/index.cfm?fuseaction=view_company&company_id=47300&component=catalog&catalog_id=19408
  33. 33.
    Dupont (2009) DuPont™ Green Tape™ 951 Technical Datasheet. 2009;3Google Scholar
  34. 34.
    Sebastian MT, Jantunen H (2008) Low loss dielectric materials for LTCC applications: a review. Int Mater Rev 53:57–90CrossRefGoogle Scholar
  35. 35.
    Sebastian MT, Wang H, Jantunen H (2016) Low temperature co-fired ceramics with ultra-low sintering temperature: a review. Curr Opin Solid State Mater Sci 20:151–170CrossRefGoogle Scholar
  36. 36.
    Suresh EK, Prasad K, Arun NS, Ratheesh R (2016) Synthesis and microwave dielectric properties of A16V18O61 (a = Ba, Sr and ca) ceramics for LTCC applications. J Electron Mater 45(6):2996–3002CrossRefGoogle Scholar
  37. 37.
    Varghese J, Ramachandran P, Sobocinski M, Vahera T, Jantunen H (2019) ULTCC glass composites based on rutile and anatase with co-firing at 400 °C for high frequency applications. ACS Sustain Chem Eng 7(4):4274–4283CrossRefGoogle Scholar
  38. 38.
    Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2018) Ultra-low sintering temperature ceramic composites of CuMoO 4 through Ag 2 O addition for microwave applications. Compos Part B 141:214–220CrossRefGoogle Scholar
  39. 39.
    Joseph N, Varghese J, Teirikangas M, Sebastian MT, Jantunen H (2016) Glass-free CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature co-fired ceramic applications. ACS Sustain Chem Eng 4(10):5632–5639CrossRefGoogle Scholar
  40. 40.
    Varghese J, Surendran KP, Sebastian MT (2014) Room temperature curable silica ink. RSC Adv 4(88):47701–47707CrossRefGoogle Scholar
  41. 41.
    Varghese J, Teirikangas M, Puustinen J, Jantunen H, Sebastian MT (2015) Room temperature curable zirconium silicate dielectric ink for electronic applications. J Mater Chem C 3(35):9240–9246CrossRefGoogle Scholar
  42. 42.
    Joseph AM, Nagendra B, Bhoje Gowd E, Surendran KP (2016a) Screen-printable electronic ink of ultrathin boron nitride Nanosheets. ACS Omega 1(6):1220–1228CrossRefGoogle Scholar
  43. 43.
    Joseph N, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008CrossRefGoogle Scholar
  44. 44.
    Liu W, Wang H, Zhou D, Li K (2010) Dielectric properties of low-firing Bi2Mo2O9 thick films screen printed on Al foils and alumina substrates. J Am Ceram Soc 93(8):2202–2206CrossRefGoogle Scholar
  45. 45.
    Pullanchiyodan A, Surendran KP (2016) Formulation of sol–gel derived bismuth silicate dielectric ink for flexible electronics applications. J Eur Ceram Soc 36(8):1939–1944CrossRefGoogle Scholar
  46. 46.
    Sebastian MT, Jantunen H (2010a) Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7(4):415–434Google Scholar
  47. 47.
    Wall L (1972) Fluoropolymers. Wiley, New YorkGoogle Scholar
  48. 48.
    Willis OR (2008) Characterizing fluroropolymeric materials for microelectronics and MEMS packaging, ProQuest Information and Learning Company, USAGoogle Scholar
  49. 49.
    Bur A (1985) Dielectric properties of polymers at microwave frequencies: a review. Polymer (Guildf) 26:963–977CrossRefGoogle Scholar
  50. 50.
    Allen F, Robert L, Michael E (1996) Ceramic filled composite polymeric electrical substrate materials exhibiting high dielectric constant and low thermal coefficient of dielectric constantGoogle Scholar
  51. 51.
    Allen FHIII (1994) Fluoropolymeric electrical substrate material exhibiting low thermal coefficient of dielectric constant, US Patent No. 5358775Google Scholar
  52. 52.
    Sebastian MT, Krupka J, Arun S, Kim CH, Kim HT (2018) Polypropylene-high resistivity silicon composite for high frequency applications. Mater Lett (232):92–94CrossRefGoogle Scholar
  53. 53.
    Popielarz R, Chiang C (2007) Polymer composites with dielectric constant comparable to that of barium titanate ceramics. Mater Sci Eng B 139:48–54CrossRefGoogle Scholar
  54. 54.
    Sun Y, Rogers J (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916CrossRefGoogle Scholar
  55. 55.
    Rogers J, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci 106:10875–10876CrossRefGoogle Scholar
  56. 56.
    Seol Y, Noh H, Lee S (2008) Mechanically flexible low-leakage multilayer gate dielectrics for flexible organic thin film transistor. Appl Phys Lett 93:013305–1–013305–3CrossRefGoogle Scholar
  57. 57.
    Gubbels F, Jaeger R, Gleria M (2007) Silicones in industrial applications. In: Jaeger R, Gleria M (eds) Inorganic polymers. Nova Science Publishers, New York, pp 61–162Google Scholar
  58. 58.
    Yang S, Jiang K (2012) Elastomer Application in Microsystem and Microfluidics. In: Boczkowska A (ed) Advanced elastomers – technology, properties and applications. InTech. Open Science mind, Rijeka, pp 203–222Google Scholar
  59. 59.
    Sebastian MT, Chameswary J (2016) Flexible and stretchable electronic composites, springer series on polymer and composite materials. In: Ponnamma D (ed) Poly(Isobutylene-co-Isoprene) compos flex electron appl. Springer International Publishing, Switzerland, pp 335–365Google Scholar
  60. 60.
    Sebastian MT, Ananthalumar S, Subodh G, Juuti J, Teirinkangas M, Jantunen H (2012) Composite electroceramics. In: Nicolais L, Borzacchiello A (eds) Wiley encyclopedia of composites, 2nd edn. Wiley, Inc., BostonGoogle Scholar
  61. 61.
    Amin A, Sierakowski R (1990) Effect of thermomechanical coupling on the response of elastic solids. AIAA J 28(7):1319–1322CrossRefGoogle Scholar
  62. 62.
    Dasgupta S (2015) Polymer matrix composites for electromagnetic applications in aircraft structures. J Indian Inst Sci 952:75–296Google Scholar
  63. 63.
    Chen F, Shen Q, Zhang L (2010) Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure. Prog Electromagn Res 105:445–461CrossRefGoogle Scholar
  64. 64.
    Hong T, Song M-Z, Liu Y (2011) RF directional modulation technique using a switched antenna array for communication and direction-finding applications. Prog Electromagn Res 120:195–213CrossRefGoogle Scholar
  65. 65.
    Military aerospace (2011) Shielding-against-electromagnetic-and-rf-interference-for-safety-and-mission-success [Internet]. Technol. Focus. 2017 [cited 20 Jul 2011]. Available from: http://www.militaryaerospace.com/articles/print/volume-28/issue-7/technology-focus/shielding-against-electromagnetic-and-rf-interference-for-safety-and-mission-success.html
  66. 66.
    Chauhan S, Abraham M, Choudhary V (2016) Superior EMI shielding performance of thermally stable carbon nanofiber/poly(ether-ketone) composites in 26.5–40 GHz frequency range. J Mater Sci 51:9705–9715CrossRefGoogle Scholar
  67. 67.
    Pascucci N. (2016) EMI shielding caulk delivers superior performance in military radar systems, [internet]. Available from: www.parker.com/chomerics
  68. 68.
    Wen B, Cao M, Lu M, Cao W, Long H, Wang X et al (2014) Reduced graphene oxides light weight and high efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26:3484–3489CrossRefGoogle Scholar
  69. 69.
    Saville P (2005) Review of Radar Absorbing Materials. RDC Atl. TM 2005-003Google Scholar
  70. 70.
    Halpern O (1960) Method and means for minimizing reflection of high frequency radio waves, US Patent No. 2923934Google Scholar
  71. 71.
    Halpern O, Johnson MHJ, Wright RW (1960) Isotropic absorbing layers, US Patent No. 2951247Google Scholar
  72. 72.
    Joseph N, Singh S, Sirugudu R, Murthy V, Ananthakumar S, Sebastian MT (2013) Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 48:1681–1687CrossRefGoogle Scholar
  73. 73.
    Chauhan S, Abrahamand M, Choudhary V (2016) Electromagnetic shielding and mechanical properties of thermally stable poly (ether ketone) multiwalled carbon nanotube composites prepared using twin screw extruder equipped with novel fractional mixing elements. RSC Adv 6(2016):113781–113790CrossRefGoogle Scholar
  74. 74.
    Klemperer C, Maharaj D (2009) Composite electromagnetic interference shielding materials for aerospace applications. Compos Struct 91:467–472CrossRefGoogle Scholar
  75. 75.
    Byeon J, Kim J-W (2011) Aerosol based fabrication of a Cu/polymer and its application for electromagnetic interference shielding. Thin Solid Films 520:1048–1052CrossRefGoogle Scholar
  76. 76.
    Kumar A, Singh A, Kumari S, Dutta P, Dhawan S, Dhar A (2014) Polyaromatic-hydrocarbon-based carbon copper composites for the suppression of electromagnetic pollution. J Mater Chem A 2:16632CrossRefGoogle Scholar
  77. 77.
    Al-Ghamdi AA, El-Tantawy F, Aal N, El-Mossalamy E, Mahmoud W (2009) Stability of new electrostatic discharge protection and electromagnetic wave shielding effectiveness from poly(vinyl chloride)/graphite/nickel nanoconducting composites. Polym Degrad Stab 94:980–986CrossRefGoogle Scholar
  78. 78.
    Al-Ghamdi A, El-Tantawy F (2010) New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles. Compos Part A 41:1693–1701CrossRefGoogle Scholar
  79. 79.
    Shahzad F, Alhabeb M, Hatter C, Anasori B, Hong SM, Koo C et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:1137–1140CrossRefGoogle Scholar
  80. 80.
    Skotheim TA, Elsenbaumer R, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New YorkGoogle Scholar
  81. 81.
    Chaudhary A, Kumari S, Kumar R, Teotia S, Singh B, Singh A et al (2016) Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces 8:10600–10608CrossRefGoogle Scholar
  82. 82.
    Joseph N, Varghese J, Sebastian MT (2017a) Graphite reinforced polyvinylidene fluoride composites an efficient and sustainable solution for electromagnetic pollution. Compos Part B Eng 123:271–278CrossRefGoogle Scholar
  83. 83.
    Al-Saleh M (2015) Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth Met 205:78–84CrossRefGoogle Scholar
  84. 84.
    Sun X, Liu X, Shen X, Wu Y, Wang Z, Kim J-K (2016) Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding. Compos Part A 85:199–206CrossRefGoogle Scholar
  85. 85.
    Al-Saleh M, Saadeh W, Sundararaj U (2013) EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon NY 60:146–156CrossRefGoogle Scholar
  86. 86.
    Kumar R, Dhawan S, Singh H, Kaur A (2016) Charge transport mechanism of thermally reduced graphene oxide and their fabrication for high performance shield against electromagnetic pollution. Mater Chem Phys 180:413–421CrossRefGoogle Scholar
  87. 87.
    Goyal R (2013) Cost-efficient high performance polyetheretherketone/expanded graphite nanocomposites with high conductivity for EMI shielding application. Mater Chem Phys 142:195–198CrossRefGoogle Scholar
  88. 88.
    Modak P, Kondawar S, Nandanwar D (2015) Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Mater Sci 10:588–594CrossRefGoogle Scholar
  89. 89.
    Theilmann P, Yun D-J, Asbeck P, Park S-H (2013) Superior electromagnetic interference shielding and dielectric properties of carbon nanotube composites through the use of high aspect ratio CNTs and three-roll milling. Org Electron 14:1531–1537CrossRefGoogle Scholar
  90. 90.
    Wang H, Zheng K, Zhang X, Ding X, Zhang Z, Bao C et al (2016) 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos Sci Technol 125:22–29CrossRefGoogle Scholar
  91. 91.
    Li Y, Shen B, Pei X, Zhang Y, Yi D, Zhai W et al (2016) Ultrathin carbon foams for effective electromagnetic interference shielding. Carbon NY 100:375–385CrossRefGoogle Scholar
  92. 92.
    Luo X, Chugh R, Biller BC, Hoi Y, Chung D (2002) Electronic applications of flexible graphite. J Electron Mater 31(5):535–544CrossRefGoogle Scholar
  93. 93.
    Luo X, Chung D (1996) Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon NY 34:1293–1299CrossRefGoogle Scholar
  94. 94.
    Al-Ghamdi A, Al-Ghamdi A, Al-Turki Y, Yakuphanoglu F, El-Tantawy F (2016) Electromagnetic shielding properties of graphene/acrylonitrile butadiene rubber nanocomposites for portable and flexible electronic devices. Compos Part B 88:212–219CrossRefGoogle Scholar
  95. 95.
    Gupta A, Varshney S, Goyal A, Sambyal P, Gupta B, Dhawan S (2015) Enhanced electromagnetic shielding behavior of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett 158:167–169CrossRefGoogle Scholar
  96. 96.
    Verma P, Saini P, Malik R, Choudhary V (2015) Excellent electromagnetic interference shielding and mechanical properties of high loading carbon nanotubes/polymer composites designed using melt recirculation equipped twin-screw extruder. Carbon NY 89:308–317CrossRefGoogle Scholar
  97. 97.
    Mishra M, Singh A, Dhawan S (2013) Expanded graphite–nanoferrite–fly ash composites for shielding of electromagnetic pollution. J Alloys Compd 557:244–251CrossRefGoogle Scholar
  98. 98.
    Zhang L, Alvarez N, Zhang M, Haase M, Malik R, Mast D et al (2015) Preparation and characterization of graphene paper for electromagnetic interference shielding. Carbon N Y 82:353–359CrossRefGoogle Scholar
  99. 99.
    Dhawan R, Kumari S, Kumar R, Dhawan S, Dhakate S (2015) Mesocarbon microsphere composites with Fe3O4 nanoparticles for outstanding electromagnetic interference shielding effectiveness. RSC Adv 5:43279CrossRefGoogle Scholar
  100. 100.
    Farhan S, Wang R, Li K (2016) Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires. Ceram Int 42:11330–11340CrossRefGoogle Scholar
  101. 101.
    Kaur A (2012) Ishpal, Dhawan S. tuning of EMI shielding properties of polypyrrole nanoparticles with surfactant concentration. Synth Met 162:1471–1477CrossRefGoogle Scholar
  102. 102.
    Joseph N, Varghese J, Sebastian MT (2015) Self-assembled polyaniline nanofibers withenhanced electromagnetic shielding properties. RSC Adv 5:20459–20466CrossRefGoogle Scholar
  103. 103.
    Bayat M, Yang H, Ko F, Michelson D, Mei A (2014) Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer (Guildf). 55:936–943CrossRefGoogle Scholar
  104. 104.
    Cabrera C, Miranda F (2015) Advanced nanomaterials for aerospace applications. CRC press, Taylor and Francis groupGoogle Scholar
  105. 105.
    Joseph N, Janardhanan C, Sebastian MT (2014) Electromagnetic interference shielding properties of butyl rubber-single walled carbon nanotube composites. Compos Sci Technol 1:139–144CrossRefGoogle Scholar
  106. 106.
    Tong X (2009) Advanced materials and design for electromagnetic interference shielding. CRC Press, Taylor and Francis group, Now YorkGoogle Scholar
  107. 107.
    Joseph N, Varghese J, Sebastian MT (2016) A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks. J Mater Chem C 4:999–1008CrossRefGoogle Scholar
  108. 108.
    Joseph N, Varghese J, Sebastian MT (2017b) In situ polymerized polyaniline nanofiber-based functional cotton and nylon fabrics as millimeter-wave absorbers. Nat Polym 49:391–399Google Scholar
  109. 109.
    Zhou P, Chen J, Liu M, Jiang P, Li B, Hou X-M (2017) Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range. Int J Miner Metall Mater 24:804–813CrossRefGoogle Scholar
  110. 110.
    Kong L, Li Z, Liu L, Huang R, Abshinova M, Yang Z et al (2013) Recent progress in some composite materials and structures for specific, electromagnetic applications. Int Mater Rev 58:203CrossRefGoogle Scholar
  111. 111.
    Folgueras L, Alves M, Rezende M (2010) Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J Aerosp Technol Manag 1:63–70CrossRefGoogle Scholar
  112. 112.
    Kajfez D, Guillon P (1986) Dielectric resonators. Artech House, NorwoodGoogle Scholar
  113. 113.
    Mcallister M, Long S (1983) Rectangular dielectric resonator antenna. IEEE Electron Lett 19:218–219CrossRefGoogle Scholar
  114. 114.
    Luk K, Leung K (2002) Dielectric resonator antennas. Electronic & electrical engineering research studies series. Research Studies Press, TauntonGoogle Scholar
  115. 115.
    Petosa A (2007) Dielectric resonator antenna handbook. Artech House, BostonGoogle Scholar
  116. 116.
    Garg R, Bhartia P, Bahl I, Ittipiboon A (2000) Microstrip antenna design hand book. Artech house Inc., NorwoodGoogle Scholar
  117. 117.
    Garg R (2001) Microstrip antenna design handbook. Artech house Inc., NorwoodGoogle Scholar
  118. 118.
    Imbriale W (ed) (2006) Spaceborne antennas for planetary exploration. Wiley, HobokenGoogle Scholar
  119. 119.
    Kumar G, Ray K (2003) Broadband microstrip antennas. Artech House, BostonGoogle Scholar
  120. 120.
    Pozar D, Schaube D (eds) (1995) Microstrip antennas: the analysis and design of microstrip antennas and arrays. Institute of Electrical and Electronics Engineers, New YorkGoogle Scholar
  121. 121.
    Petoso A, Ittipiboon A (2010) Dielectric resonator antennas. A historical review and the current state of the art. IEEE Antennas Propag Mag 52:91–116CrossRefGoogle Scholar
  122. 122.
    Soren D, Ghatak R, Mishra R, Poddar D (2014) Dielectric resonator antennas: designs and advances. Progr Electromag Res B 60:195–213CrossRefGoogle Scholar
  123. 123.
    Ozzaim C (2014) Monopole antenna loaded by stacked annular ring dielectric resonators for ultrawide bandwidth. Microw Opt Technol Lett 56:2395–2398CrossRefGoogle Scholar
  124. 124.
    Kingley S, OKeefe S (1999) Beam steering and monopulse processing of probe fed dielectric resonator antenna. Proc Rada Sonar Navig 3:121–125CrossRefGoogle Scholar
  125. 125.
    Svedin J, Huss L, Karlen D, Enoksson P, Rusu C (2007) A micromachined 94 GHz dielectric resonator antenna for focal plane array applications. In: IEEE international microwave symposium, Honolulu, –IEEE MTT-S, pp 1375–1378Google Scholar
  126. 126.
    Liflander J (2010) Ceramic chip antennas vs. PCB trace antennas: a comparison. MPDIGEST [Internet]. 2010; Available from: Feature article, White paper, www.pulseelectronics.com/download/3721/g041/pdf
  127. 127.
    Bijumon P, Menon S, Lethakumari B, Sebastian MT, Mohanan P (2006) Broad band elliptical dielectric resonator antennas excited with geometry modified microstrip lines. Microw Opt Technol Lett 48:65–67CrossRefGoogle Scholar
  128. 128.
    Kumari R, Behera S (2014) Investigation on log periodic dielectric resonator antenna array for Ku band applications electromagnetics. Electromagnetics 34(1):19–33. Taylor FrancisCrossRefGoogle Scholar
  129. 129.
    Kumari R, Behera S (2013b) Nine element frequency independent dielectric resonator array for X- band applications. Microw Opt Technol Lett 55(2):400–403CrossRefGoogle Scholar
  130. 130.
    Menon S, Lethakumary B, Bijumon P, Sebastian M, Mohanan P (2005) L-strip fed wide band rectangular dielectric resonator antenna. Microw Opt Technol Lett 45:227–228CrossRefGoogle Scholar
  131. 131.
    Suma M, Menon S, Bijumon P, Sebastian M, Mohanan P (2005) Rectangular dielectric resonator antenna on a conductor -backed co-planar waveguide. Microw Opt Technol Lett 45(2):154–156CrossRefGoogle Scholar
  132. 132.
    Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. Piscataway, WileyGoogle Scholar
  133. 133.
    Ganguly D, Guha D, George S, Kumar C, Sebastian M, Antar Y (2017) New design approach for hybrid monopole antenna to achieve increased ultra-wide bandwidth. IEEE Antennas Propag Mag 11:139–144Google Scholar
  134. 134.
    Ghosh S, Chakrabarty A (2008) Ultrawide band performance of dielectric loaded T-shaped monopole transmit and receive antenna/EMI sensor. IEEE Antennas Wirel Propag Lett 7:358–361CrossRefGoogle Scholar
  135. 135.
    Guha D, Gupta B, Antar Y (2012) Hybrid monopole-DRAs using hemispherical/conical-shaped dielectric ring resonators: improved ultrawide band designs. IEEE Trans Antennas Propag 60:393–398CrossRefGoogle Scholar
  136. 136.
    Guha D, Gupta B, Antar Y (2009) New pawn-shaped dielectric ring resonator loaded hybrid monopole antenna for improved ultrawide bandwidth. IEEE Antennas Wirel Propag Lett 8:1178–1181CrossRefGoogle Scholar
  137. 137.
    Guha D, Antar Y, Ittipiboon A, Petosa A, Lee D (2006) Improved design guidelines for the ultra wideband monopole-dielectric resonator antenna. EEE Antennas Wirel Propag Lett 5:373–377CrossRefGoogle Scholar
  138. 138.
    Jazi M, Denidni T (2008) A new hybrid skirt monopole dielectric resonator antenna. In: Proceedings of the IEEE antennas propagation society international symposium, pp 1–4Google Scholar
  139. 139.
    Kumari R, Behera S (2013c) Mushroom shaped dielectric resonator antenna for WiMAX applications. Microw Opt Technol Lett 55:1360–1365CrossRefGoogle Scholar
  140. 140.
    Ozzaim C, Ustuner S, Tarim N (2013) Stacked conical ring dielectric resonator antenna excited by a monopole for improved ultrawide bandwidth. IEEE Trans Antennas Propag 61:1435–1438CrossRefGoogle Scholar
  141. 141.
    Sheeja K, Behera S, Sahu P (2012) Bandwidth improvement of a zeroth order resonant antenna for WiMax applications. Int J RF Microw Comput Eng 22(4):569–574CrossRefGoogle Scholar
  142. 142.
    Ullah U, Ain M, Mahyuddin N, Othman M, Ahmad Z, Abdullah M et al (2015) Antenna in LTCC technologies: a review and the current state of the art. IEEE Antennas Propag Mag 57:241–260CrossRefGoogle Scholar
  143. 143.
    Kim D, Kang D, Shin M, Jung H, Lim J (2016) Design of a low temperature co-fired ceramic (LTCC) based antenna with broadband and high gain at 60 GHz bands. In: IEEE international conference on consumer electronics Asia. ICCE-Asia, pp 1–3Google Scholar
  144. 144.
    Abbosh A, Bialkowski M, Jacob M, Mazierska J (2005) Investigations into an LTCC based ultra-wide band antenna. In: Asia-Pacific microwave conference (APMC), p 4Google Scholar
  145. 145.
    Imbert M (2017) Assessment of LTCC based dielectric flat lens antennas and switched beam arrays for future 5G millimeter – wave communication systems. IEEE Trans Antennas Propag 65:6453–6473CrossRefGoogle Scholar
  146. 146.
    Li J, Zhan Y, Qin W, Wu Y, Chen J-X (2017) Differential dielectric resonator filters. IEEE Trans Compon Packag Manuf Technol 7:637–645CrossRefGoogle Scholar
  147. 147.
    Qin W, Chen J-X (2017) Balanced/balun filters based on dielectric resonators. In: IEEE global symposium on millimeter-wavesGoogle Scholar
  148. 148.
    Wang ZK (2007) Dielectric resonators and filters. IEEE Microw Mag 8:115–127CrossRefGoogle Scholar
  149. 149.
    Zhu L, Mansour R, Yu M (2017) Triple-band dielectric resonator bandpass filters. In: IEEE MTT-S international microwave symposium. pp 745–747Google Scholar
  150. 150.
    Webster J (1999) Dielectric resonator oscillators. In: Wiley encyclopedia of electrical and electronics engineering. Wiley, ChichesterCrossRefGoogle Scholar
  151. 151.
    Ugurlu S (2011) Dielectric resonator oscillator design and realization at 4.25 GHz. In: International conference 2011, p II-205-II-208Google Scholar
  152. 152.
    Hamed K, Freundorfer A, Antar Y (2007) A monolithic differential coupling mechanism for dielectric resonators excitation in conductive silicon substrates. IEEE Microw Wirel Components Lett 17:25–27CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Varghese
    • 1
    Email author
  • N. Joseph
    • 1
  • H. Jantunen
    • 1
  • S. K. Behera
    • 2
  • H. T. Kim
    • 3
  • M. T. Sebastian
    • 3
  1. 1.Microelectronics Research UnitUniversity of OuluOuluFinland
  2. 2.Department of Electronics and Communication EngineeringNIT RourkelaRourkelaIndia
  3. 3.Korean Institute for Ceramic Engineering and TechnologyJinju-siSouth Korea

Section editors and affiliations

  • Himadri Sekhar Maiti
    • 1
    • 2
  1. 1.CSIR-Central Glass and Ceramic Research InstituteKolkataIndia
  2. 2.Govt. College of Engg. and Ceramic TechnologyKolkataIndia

Personalised recommendations