Advertisement

Development of PLZT Electroceramics with Ultrahigh Piezoelectric Properties by a Novel Material Engineering Approach

  • A. R. JamesEmail author
  • Ajeet Kumar
Living reference work entry

Abstract

Lead lanthanum zirconium titanate (PLZT) ceramics belong to the family of materials known as smart materials, which can be used as sensors and actuators; however, the high dielectric, ferroelectric (Pr), and piezoelectric (d33 and g33) properties decide the end applications. The d33 is related to charge generation or electric field-induced strain in the materials. On the other hand, g33 and kp are related to the voltage generation and conversion of mechanical stress to the electric charge, respectively. High values of d33, g33, and kp are good for energy harvesting applications; however, the high-strain materials are more useful for actuators. The remanent polarization (Pr) and coercive field (Ec) are taken into cognizance for memory and energy density applications. High dielectric constant materials can be used for charge storage applications. (Pb0.92La0.08)(Zr0.60Ti0.40)O3 (PLZT 8/60/40) ceramics are known to show all of the above electrical properties. Further improvement of these properties is possible by modified processing approaches. In this study, it was found that a combination of mechanical activation (high-energy milling or HEM) with a cold isostatic process (CIP) not only reduces the processing temperatures and time but also circumvents the need to add any excess PbO in the starting materials. At the same time, the high density of ceramics was not compromised. No binder was added in this process, thereby avoiding the contamination risk involved and also the possibility of reduced density. Apart from the above two processes, yet another process that was used to improve the electrical properties output was a scientific study of the electrical poling process. The optimized poling results in the significant enhancement of electrical properties, which successfully increased piezoelectric properties multiple times. The PLZT 8/60/40 ceramics were effectively poled at fields less than the coercive field (<0.5Ec), which could be very advantageous especially in the case of ceramics have poor resistivity. Such PLZT ceramics is used for different types of defense applications.

Keywords

PLZT ceramics Mechanical activation Cold isostatic pressing Poling conditions Defense applications 

Notes

Acknowledgements

Authors would like to thank DRDO for the financial support and express their gratitude to the DG NSM Dr. S.V. Kamat and Director, DMRL, for their interest in this work.

References

  1. 1.
    Hagiwara M, Noguchi H, Hoshina T et al (2013) Growth and characterization of Ca2Al2SiO7 piezoelectric single crystals for high-temperature sensor applications. Jpn J Appl Phys 52(9S1):09KD03Google Scholar
  2. 2.
    Dittmer R, Webber KG, Aulbach E, Jo W, Tan X, Rödel J (2013) Optimal working regime of lead–zirconate–titanate for actuation applications. Sensors Actuators A Phys 189:187–194CrossRefGoogle Scholar
  3. 3.
    Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19(1):167–184CrossRefGoogle Scholar
  4. 4.
    Koduri R, Lopez M (2008) Influence of Mn on dielectric and piezoelectric properties of A-site and B-site modified PLZT nano-ceramics for sensor and actuator applications. J Mater Sci Mater Electron 19(7):669–675CrossRefGoogle Scholar
  5. 5.
    Fousek J (1991) Ferroelectricity: remarks on historical aspects and present trends. Ferroelectrics 113(1):3–20CrossRefGoogle Scholar
  6. 6.
    Jaffe B, Cook WR (1971) Piezoelectric ceramics. Academic, London/New YorkGoogle Scholar
  7. 7.
    Haertling GH (1991) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818CrossRefGoogle Scholar
  8. 8.
    Jaffe H, Berlincourt DA (1965) Piezoelectric transducer materials. Proc IEEE 53(10):1372–1386CrossRefGoogle Scholar
  9. 9.
    Corker DL, Glazer AM, Dec J, Roleder K, Whatmore RW (1997) A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction. Acta Crystallogr Sect B Struct Sci 53(1):135–142CrossRefGoogle Scholar
  10. 10.
    Glazer AM, Mabud SA (1978) Powder profile refinement of lead zirconate titanate at several temperatures. II. Pure PbTiO3. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 34(4):1065–1070CrossRefGoogle Scholar
  11. 11.
    Singh AK, Pandey D, Yoon S, Baik S, Shin N (2007) High-resolution synchrotron x-ray diffraction study of Zr-rich compositions of Pb(ZrxTi1−x)O3 (0.525⩽x⩽0.60): evidence for the absence of the rhombohedral phase. Appl Phys Lett 91(19):192904Google Scholar
  12. 12.
    Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park SE (1999) A monoclinic ferroelectric phase in the Pb(ZrxTi1−x)O3 solid solution. Appl Phys Lett 74(14):2059–2061CrossRefGoogle Scholar
  13. 13.
    Noheda B, Gonzalo JA, Cross LE et al (2000) Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B 61(13):8687–8695CrossRefGoogle Scholar
  14. 14.
    Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE (2000) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−xTixO3. Phys Rev B 63(1):014103Google Scholar
  15. 15.
    Frantti J, Ivanov S, Eriksson S et al (2000) Phase transitions of PbZr1−xTixO3 ceramics. Phys Rev B 66(6):064108CrossRefGoogle Scholar
  16. 16.
    Topolov VY, Turik AV (2001) A new monoclinic phase and features of stress relief in PbZr1−xTixO3 solid solutions. J Phys Condens Matter 13(33):L771–L775CrossRefGoogle Scholar
  17. 17.
    Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Origin of the high piezoelectric response in PbZr1−xTixO3. Phys Rev Lett 84(23):5423–5426CrossRefGoogle Scholar
  18. 18.
    Zhang N, Yokota H, Glazer AM et al (2014) The missing boundary in the phase diagram of PbZr1−xTixO3. Nat Commun 5(1):5231CrossRefGoogle Scholar
  19. 19.
    Shannigrahi SR, Choudhary RNP (2000) Structural and dielectric properties of sol-gel derived PLZT (x/60/40). J Electroceram 5(3):201–209CrossRefGoogle Scholar
  20. 20.
    Dutta S, Choudhary RNP, Sinha PK (2007) Structural, dielectric and piezoelectric properties of aluminium doped PLZT ceramics prepared by sol–gel route. J Alloys Compd 430(1–2):344–349CrossRefGoogle Scholar
  21. 21.
    Hinterstein M, Schoenau KA, Kling J et al (2010) Influence of lanthanum doping on the morphotropic phase boundary of lead zirconate titanate. J Appl Phys 108(2):024110CrossRefGoogle Scholar
  22. 22.
    Guerra JDS, García JE, Ochoa DA, Pelaíz-Barranco A, García-Zaldívar O, Calderón-Piñar F (2012) Interrelationship between phase transition characteristics and piezoelectric response in lead lanthanum zirconate titanate relaxor ceramics. J Mater Sci 47(15):5715–5720CrossRefGoogle Scholar
  23. 23.
    Craciun F, Cordero F, Ciuchi IV, Mitoseriu L, Galassi C (2015) Refining the phase diagram of Pb1−xLax(Zr0.9Ti0.1)1−x/4O3 ceramics by structural, dielectric, and anelastic spectroscopy investigations. J Appl Phys 117(18):184103Google Scholar
  24. 24.
    Guerra JDS, Silva AC, Mcintosh R, Hoque MM, Guo R, Bhalla AS (2015) Investigation of the physical properties of PLZT ferroelectric ceramics–effect of the lanthanum content. Integr Ferroelectr 166(1):158–167CrossRefGoogle Scholar
  25. 25.
    Falcão EA, Eiras JA, Garcia D, Santos IA, Medina AN, Baesso ML, Catunda T, GuO R, Bhalla AS (2015) Effects of lanthanum content on the thermo-optical properties of (Pb,La)(Zr,Ti)O3. Ferroelectrics 494(1):33–42Google Scholar
  26. 26.
    Somwan S, Funsueb N, Limpichaipanit A, Ngamjarurojana A (2016) Influence of low external magnetic field on electric field induced strain behavior of 9/70/30, 9/65/35 and 9/60/40 PLZT ceramics. Ceram Int 42(11):13223–13231CrossRefGoogle Scholar
  27. 27.
    Kumar A, Raju KCJ, James AR (2018) Micro-structural, dielectric, ferroelectric and piezoelectric properties of mechanically processed (Pb1−xLax)(Zr0.60Ti0.40)O3 ceramics. J Mater Sci Mater Electron 29(16):13483–13494CrossRefGoogle Scholar
  28. 28.
    Kumar A, Prasad VVB, Raju KCJ, Sarkar R, Ghosal P, James AR (2016) Effect of lanthanum substitution on the structural, dielectric, ferroelectric and piezoelectric properties of mechanically activated PZT electroceramics. Def Sci J 66(4):360CrossRefGoogle Scholar
  29. 29.
    Kong L, Zhu W, Tan O (2000) Preparation and characterization of Pb(Zr0.52Ti0.48)O3 ceramics from high-energy ball milling powders. Mater Lett 42(4):232–239CrossRefGoogle Scholar
  30. 30.
    Kong L, Ma J, Zhu W, Tan O (2001) Preparation and characterization of PLZT ceramics using high-energy ball milling. J Alloys Compd 322(1–2):290–297CrossRefGoogle Scholar
  31. 31.
    Kumar TS, Kumar A, James AR, Pamu D (2011) Enhanced microwave dielectric properties of MgTiO3 ceramics prepared by mechanochemical method. J Aust Ceram Soc 47(2):44–49Google Scholar
  32. 32.
    Mahesh MLV, Prasad VVB, James AR (2016) A comparison of different powder compaction processes adopted for synthesis of lead-free piezoelectric ceramics. Eur Phys J B 89(4):108CrossRefGoogle Scholar
  33. 33.
    Kumar A, Prasad VVB, James Raju KC, James AR (2014) Ultra high strain properties of lanthanum substituted PZT electro-ceramics prepared via mechanical activation. J Alloys Compd 599:53–59CrossRefGoogle Scholar
  34. 34.
    Kumar A, Prasad VVB, James Raju KC, James AR (2015) Poling electric field dependent domain switching and piezoelectric properties of mechanically activated (Pb0.92La0.08)(Zr0.60Ti0.40)O3ceramics. J Mater Sci Mater Electron 26(6):3757–3765CrossRefGoogle Scholar
  35. 35.
    Baek S-H, Rzchowski MS, Aksyuk VA (2012) Giant piezoelectricity in PMN-PT thin films: beyond PZT. MRS Bull 37(11):1022–1029CrossRefGoogle Scholar
  36. 36.
    Kumar A (2016) Structure-property correlations in ultra high strain PLZT ceramics prepared via high energy mechanical milling. Ph.D. thesis, University of HyderabadGoogle Scholar
  37. 37.
    El-Eskandarany MS (2001) Mechanical alloying for fabrication of advanced engineering materials. William Andrew Publishing/Noyes, New YorkGoogle Scholar
  38. 38.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRefGoogle Scholar
  39. 39.
    Nath AK, Jiten C, Singh KC (2010) Influence of ball milling parameters on the particle size of barium titanate nanocrystalline powders. Phys B Condens Matter 405(1):430–434CrossRefGoogle Scholar
  40. 40.
    James AR, Thakur OP (2012) Recent trends in the synthesis of ferroelectric ceramics. In: Bharadwaja SSN, Dorey RA (eds) Dielectric and ferroelectric reviews. Research Signpost, Trivandrum, pp 33–54Google Scholar
  41. 41.
    IEEE (1987) IEEE standard on piezoelectricity standards committee of the IEEE ultrasonics, ferroelectrics, and frequency control society. IEEE Standards Board American National Standards InstituteGoogle Scholar
  42. 42.
    James AR, Subrahmnayam J (2012) A process for the synthesis of lead lanthanum zirconium titanate ceramics Patent 262329Google Scholar
  43. 43.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, ReadingGoogle Scholar
  44. 44.
    Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
  45. 45.
    Roy S, James AR, Bysakh S, Subrahmanyam J (2007) Metals, materials and processes. Met Mater Process 19(1/4):143–152Google Scholar
  46. 46.
    Kumar A, James Raju KC, James AR (2017) Diffuse phase transition in mechanically activated (Pb1−xLax)(Zr0.60Ti0.40)O3 electro-ceramics. J Mater Sci Mater Electron 28(18):13928–13936CrossRefGoogle Scholar
  47. 47.
    Viehland D, Wuttig M, Cross LE (1991) The glassy behavior of relaxor ferroelectrics. Ferroelectrics 120(1):71–77CrossRefGoogle Scholar
  48. 48.
    Samara GA (2003) The relaxational properties of compositionally disordered ABO3 perovskites. J Phys Condens Matter 15(9):R367–R411CrossRefGoogle Scholar
  49. 49.
    Burns G, Dacol FH (1983) The observation of glassy polarization behavior in crystalline ferroelectric materials. Ferroelectrics 52(1):103–113CrossRefGoogle Scholar
  50. 50.
    Burns G, Dacol FH (1983) Crystalline ferroelectrics with glassy polarization behavior. Phys Rev B 28(5):2527–2530CrossRefGoogle Scholar
  51. 51.
    Burns G, Dacol FH (1983) Glassy polarization behavior in ferroelectric compounds Pb(Mg13Nb23)O3 and Pb(Zn13Nb23)O3. Solid State Commun 48(10):853–856CrossRefGoogle Scholar
  52. 52.
    Viehland D, Jang SJ, Cross LE, Wuttig M (1990) Freezing of the polarization fluctuations in lead magnesium niobate relaxors. J Appl Phys 68(6):2916–2921CrossRefGoogle Scholar
  53. 53.
    Viehland D, Li JF, Jang SJ, Cross LE, Wuttig M (1991) Dipolar-glass model for lead magnesium niobate. Phys Rev B 43(10):8316–8320CrossRefGoogle Scholar
  54. 54.
    Cross LE (1987) Relaxor ferroelectrics. Ferroelectrics 76(1):241–267CrossRefGoogle Scholar
  55. 55.
    Cross LE (1994) Relaxor ferroelectrics: an overview. Ferroelectrics 151(1):305–320CrossRefGoogle Scholar
  56. 56.
    Bell AJ (1993) Calculations of dielectric properties from the superparaelectric model of relaxors. J Phys Condens Matter 5(46):8773–8792CrossRefGoogle Scholar
  57. 57.
    Glazounov AE, Bell AJ, Tagantsev AK (1995) Relaxors as superparaelectrics with distributions of the local transition temperature. J Phys Condens Matter 7(21):4145–4168CrossRefGoogle Scholar
  58. 58.
    Lu ZG, Calvarin G (1995) Frequency dependence of the complex dielectric permittivity of ferroelectric relaxors. Phys Rev B 51(5):2694–2702CrossRefGoogle Scholar
  59. 59.
    Cheng Z, Zhang L, Yao X (1996) Investigation of glassy behavior of lead magnesium niobate relaxors. J Appl Phys 79(11):8615–8619CrossRefGoogle Scholar
  60. 60.
    Cheng Z-Y, Katiyar RS, Yao X, Guo A (1997) Dielectric behavior of lead magnesium niobate relaxors. Phys Rev B 55(13):8165–8174CrossRefGoogle Scholar
  61. 61.
    Cheng Z-Y, Katiyar RS, Yao X, Bhalla AS (1998) Temperature dependence of the dielectric constant of relaxor ferroelectrics. Phys Rev B 57(14):8166–8177CrossRefGoogle Scholar
  62. 62.
    Prabu M, Shameem Banu IB, Gobalakrishnan S, Chavali M (2013) Electrical and ferroelectric properties of undoped and La-doped PZT (52/48) electroceramics synthesized by sol–gel method. J Alloys Compd 551:200–207CrossRefGoogle Scholar
  63. 63.
    Parashar SKS, Parashar K (2010) Nanoscale effects on structural and giant dielectric of PZT synthesized by high energy ball mill. Integr Ferroelectr 121(1):106–112CrossRefGoogle Scholar
  64. 64.
    Zhu WZ, Kholkin A, Mantas PQ, Baptista JL (2001) Effect of lanthanum-doping on the dielectric and piezoelectric properties of PZN-based MPB composition. J Mater Sci 36(17):4089–4098CrossRefGoogle Scholar
  65. 65.
    Lines ME, Glass AM (2001) Principles and applications of ferroelectrics and related materials. Clarendon Press, OxfordCrossRefGoogle Scholar
  66. 66.
    Goel P, Yadav KL, James AR (2004) Double doping effect on the structural and dielectric properties of PZT ceramics. J Phys D Appl Phys 37(22):3174–3179CrossRefGoogle Scholar
  67. 67.
    Yadav K, Choudhary R (1995) Dielectric and piezoelectric properties of modified PZT ceramics. Bull Pure Appl Sci D 14:23Google Scholar
  68. 68.
    Fu S-L, Cheng S-Y, Wei C-C (1986) Effects of doping pairs on the preparation and dielectricity of PLZT ceramics. Ferroelectrics 67(1):93–102CrossRefGoogle Scholar
  69. 69.
    Kumar A, Prasad VVB, James Raju KCJ, James AR (2016) Lanthanum induced diffuse phase transition in high energy mechanochemically processed and poled PLZT 8/60/40 ceramics. J Alloys Compd 654:95–102CrossRefGoogle Scholar
  70. 70.
    Uchino K, Nomura S (1982) Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44(1):55–61CrossRefGoogle Scholar
  71. 71.
    Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61(9):1267–1324CrossRefGoogle Scholar
  72. 72.
    James AR, Kumar R, PremKumar M et al (2010) Chemical synthesis, structural, thermo-physical and electrical property characterization of PLZT ceramics. J Alloys Compd 496(1–2):624–627CrossRefGoogle Scholar
  73. 73.
    James AR, Kumar A, Prasad VVB et al (2018) Tunability, ferroelectric and leakage studies on pulsed laser ablated (Pb0.92La0.08)(Zr0.60Ti0.40)O3 thin films. Mater Chem Phys 211:295–301CrossRefGoogle Scholar
  74. 74.
    James AR, Subrahmanyam J, Yadav KL (2006) Structural and electrical properties of nanocrystalline PLZT ceramics synthesized via mechanochemical processing. J Phys D Appl Phys 39(10):2259–2263CrossRefGoogle Scholar
  75. 75.
    Su S, Zuo R, Lu S, Xu Z, Wang X, Li L (2011) Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients. Curr Appl Phys 11(3):S120–S123CrossRefGoogle Scholar
  76. 76.
    Wahab MA (2013) Solid state physics structure and properties of materials. Narosa Publishing House, New DelhiGoogle Scholar
  77. 77.
    Zhang L, Sun Q, Ma W, Zhang Y, Liu H (2012) The effect of poling condition on the piezoelectric properties of 0.3PNN-0.7PZT ceramics in the vicinity of MPB. J Mater Sci Mater Electron 23(3):688–691CrossRefGoogle Scholar
  78. 78.
    Kamel TM, Kools FXNM, de With G (2007) Poling of soft piezoceramic PZT. J Eur Ceram Soc 27(6):2471–2479CrossRefGoogle Scholar
  79. 79.
    Du H, Tang F, Luo F, Zhou W, Qu S, Pei Z (2007) Effect of poling condition on piezoelectric properties of (K0.5Na0.5)NbO3–LiNbO3 lead-free piezoelectric ceramics. Mater Sci Eng B 137(1–3):175–179CrossRefGoogle Scholar
  80. 80.
    Yan H, Inam F, Viola G et al (2011) The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J Adv Dielectr 1:107–118CrossRefGoogle Scholar
  81. 81.
    Bootchanont A, Triamnak N, Rujirawat S et al (2014) Local structure and evolution of relaxor behavior in BaTiO3–Bi(Zn0.5Ti0.5)O3 ceramics. Ceram Int 40(9):14555–14562CrossRefGoogle Scholar
  82. 82.
    James AR (2012) An improved piezoelectric power generator system. Patent 2222/DEL/2012Google Scholar
  83. 83.
    James AR (2012) Low load, low frequency piezo-electric power generator. Patent 658/DEL/2012Google Scholar
  84. 84.
    Yao K, Uchino K, Xu Y, Shuxiang D, Leong CL (2000) Compact piezoelectric stacked actuators for high power applications. IEEE Trans Ultrason Ferroelectr Freq Control 47(4):819–825CrossRefGoogle Scholar
  85. 85.
    Uchino K, Kato K, Tohda M (1988) Ultrasonic linear motors using a multilayered piezoelectric actuator. Ferroelectrics 87(1):331–334CrossRefGoogle Scholar
  86. 86.
    Saigoh H, Kawasaki M, Maruko N, Kanayama K (1995) Multilayer piezoelectric motor using the first longitudinal and the second bending vibrations. Jpn J Appl Phys 34(5B):2760–2764CrossRefGoogle Scholar
  87. 87.
    Funakubo T, Tsubata T, Taniguchi Y, Kumei K, Fujimura T, Abe C (1995) Ultrasonic linear motor using multilayer piezoelectric actuators. Jpn J Appl Phys 34(5B):2756–2759CrossRefGoogle Scholar
  88. 88.
    Vries JWC de Jedeloo P, Porath R (1996) 10th IEEE international symposium on applications of ferroelectrics ISAF’96. In: Co-fired piezoelectric multilayer transformers, pp 173–176Google Scholar
  89. 89.
    Inoue T, Yamamoto M, Kawashima S, Hirose S (1998) Third order longitudinal mode piezoelectric ceramic transformer for high voltage power inverter. IEICE Trans Commun E81-C(7):1128–1135Google Scholar
  90. 90.
    Shannigrahi SR, Tay FEH, Yao K, Choudhary RNP (2004) Effect of rare earth (La, Nd, Sm, Eu, Gd, Dy, Er and Yb) ion substitutions on the microstructural and electrical properties of sol-gel grown PZT ceramics. J Eur Ceram Soc 24(1):163–170CrossRefGoogle Scholar
  91. 91.
    Garg A, Agrawal D (2001) Effect of rare earth (Er, Gd, Eu, Nd and La) and bismuth additives on the mechanical and piezoelectric properties of lead zirconate titanate ceramics. Mater Sci Eng B 86(2):134–143CrossRefGoogle Scholar
  92. 92.
    Laurent M, Schreiner U, Langjahr P, Glazounov A, Hoffmann M (2001) Microstructural and electrical characterization of La-doped PZT ceramics prepared by a precursor route. J Eur Ceram Soc 21(10–11):1495–1498CrossRefGoogle Scholar
  93. 93.
    Zhang Y, Ding AL, Qiu PS et al (2003) Effect of La content on characterization of PLZT ceramics. Mater Sci Eng B 99(1–3):360–362CrossRefGoogle Scholar
  94. 94.
    Pdungsap L, Udomkan N, Boonyuen S, Winotai P (2005) Optimized conditions for fabrication of La-dopant in PZT ceramics. Sensors Actuators A Phys 122(2):250–256CrossRefGoogle Scholar
  95. 95.
    Singh S, Thakur OP, Prakash C (2005) Synthesis, structural and electrical properties of lanthanum-modified Lead-zirconate-titanate system. Def Sci J 55(3):349–356CrossRefGoogle Scholar
  96. 96.
    Praveenkumar B, Kumar HH, Kharat DK, Murty BS (2008) Investigation and characterization of La-doped PZT nanocrystalline ceramic prepared by mechanical activation route. Mater Chem Phys 112(1):31–34CrossRefGoogle Scholar
  97. 97.
    Thakur OP, Prakash C (2010) Structural, dielectric and piezoelectric properties of PLZT (x/60/40) ceramics. Integr Ferroelectr 122(1):100–107CrossRefGoogle Scholar
  98. 98.
    García-Zaldívar O, Peláiz-Barranco A, Guerra JDS, Mendoza ME, Calderón-Piñar F, Hall DA (2011) Influence of the A and B vacancies on the dielectric and structural properties of the PLZT 8/60/40 ferroelectric ceramic system. Phys B Condens Matter 406(8):1622–1626CrossRefGoogle Scholar
  99. 99.
    Zhang N, Feng Y, Xu Z (2011) Effects of lanthanum modification on electrical and dielectric properties of Pb(Zr0.70Ti0.30)O3 ceramics. Mater Lett 65(11):1611–1614CrossRefGoogle Scholar
  100. 100.
    da Silva PS, Venet M, Florêncio O (2015) Influence of diffuse phase transition on the anelastic behavior of Nb-doped Pb(Zr0.53Ti0.47)O3 ceramics. J Alloys Compd 647:784–789CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ceramics and Composites GroupDefence Metallurgical Research LaboratoryHyderabadIndia

Section editors and affiliations

  • Himadri Sekhar Maiti
    • 1
    • 2
  1. 1.CSIR-Central Glass and Ceramic Research InstituteKolkataIndia
  2. 2.Govt. College of Engg. and Ceramic TechnologyKolkataIndia

Personalised recommendations