Skip to main content

Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy

  • Living reference work entry
  • First Online:
Handbook of Advanced Ceramics and Composites

Abstract

Functional materials such as electro-optic or opto-electric ceramics are of fundamental as well as of technological interest in the context to energy application. Natural resources those include sunlight, wind, water, are available in abundance on our planet earth, ever-growing human energy requirements necessitates and demands a way to make their use for generation of renewable energy. Ceramics are excellent candidates in view of their exciting optical, mechanical, thermal, electrical, and corrosion-resistant properties. Photocatalytic material systems have fascinating ability to split water molecules under the presence of photon and electrical energy, by virtue of their suitable band energetics with respect to water redox levels. The water splitting phenomenon is an important wrt hydrogen energy technology which demands energy production via renewable energy sources. Photo−/electrocatalysts which are capable of efficiently splitting water molecule with a sustainable performance are highly desirable. The physicochemical study of materials to identify best suited photocatalyst has been a topic of prime interest. The present chapter discusses nano-configured photocatalysts reported till date and compares their performance and scope wrt their commercialization for hydrogen-producing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Patra KK et al (2017) Possibly scalable solar hydrogen generation with quasi-artificial leaf approach. Sci Rep 7:6515

    Article  CAS  Google Scholar 

  2. Reece SY et al (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334:645–648

    Article  CAS  Google Scholar 

  3. Chen X et al (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  Google Scholar 

  4. Kamat PV et al (2010) Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem Rev 110:6664–6688

    Article  CAS  Google Scholar 

  5. Kudo A et al (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  6. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  7. Kment S (2017) Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chem Soc Rev 46:3716–3769

    Article  CAS  Google Scholar 

  8. Zou Z (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  CAS  Google Scholar 

  9. Scaife DE (1980) Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol Energy 25:41

    Article  CAS  Google Scholar 

  10. Cheng L et al (2018) CdS-based photocatalysts. Energy Environ Sci 11:1362–1391

    Article  CAS  Google Scholar 

  11. Tian B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nature Commn 9:1397. Zhu M et al (2017) Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl Catal B Eviron 217:285–292

    Article  CAS  Google Scholar 

  12. Asahi R et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  13. Borse PH (2017) Hydrogen from water. In: Mondal/Dalai (eds) Sustainable utilization of natural resources. Taylor & Francis group, Boca Raton, CRC Press. pp 441–457

    Google Scholar 

  14. Gratzel M et al (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  CAS  Google Scholar 

  15. Murphy AB et al (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrog Energy 31:1999–2017

    Article  CAS  Google Scholar 

  16. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C1(1):1–21

    Google Scholar 

  17. Borse PH et al (2002) Synthesis and investigations of rutile phase nanoparticles of TiO2. J Mater Sci Mater Electron 13(9):553–559

    Article  CAS  Google Scholar 

  18. Ranade MR et al (2002) Energetics of nanocrystalline TiO2. Proc Natl Acad Sci 99(2):6476–6481

    Article  CAS  Google Scholar 

  19. Luttrell T et al (2014) Why is anatase a better photocatalyst than rutile? – Model studies on epitaxial TiO2 films. Sci Rep 4:4043

    Article  CAS  Google Scholar 

  20. Asahi R et al (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852

    Article  CAS  Google Scholar 

  21. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–22429

    Article  CAS  Google Scholar 

  22. Yamaguti K et al (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday Trans I 81:1237–1246

    Article  CAS  Google Scholar 

  23. Kudo A et al (1987) Photocatalytic activities of TiOa loaded with NiO. Chem Phys Lett 133:517–519

    Article  CAS  Google Scholar 

  24. Sayama K et al (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over catalyst. J Chem Soc Faraday Trans 93:1647–1654

    Article  CAS  Google Scholar 

  25. Tabata S et al (1995) Stoichiometric photocatalytic decomposition of pure water in Pt/TiO 2 aqueous suspension system, K. Catal Lett 34:245–249

    Article  CAS  Google Scholar 

  26. Shi J et al (2007) Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J Phys Chem C 111:693–669

    Article  CAS  Google Scholar 

  27. Zhang J et al (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2, C. Angew Chem Int Ed 47:1766–1769

    Article  CAS  Google Scholar 

  28. Duonghong D et al (1981) Dynamics of light-induced water cleavage in colloidal systems. J Am Chem Soc 103:4685–4690

    Article  CAS  Google Scholar 

  29. Sreethawong T et al (2007) Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol–gel process with surfactant template. J Power Sources 165:861–869

    Article  CAS  Google Scholar 

  30. Jitputti J et al (2008) Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal Commun 9:1265–1271

    Article  CAS  Google Scholar 

  31. Jitputti J et al (2008) Synthesis of TiO2 nanotubes and its photocatalytic activity for H2 evolution. Jpn J Appl Phys 47:751–756

    Article  CAS  Google Scholar 

  32. Jitputti J et al (2009) Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catal Commun 10:378–382

    Article  CAS  Google Scholar 

  33. Domen K et al (1980) Photocatalytic decomposition of water vapour on an NiO-SrTiO3 catalyst, K. J Chem Soc Chem Commun 12:543–544

    Article  Google Scholar 

  34. Zielinska B et al (2008) Photocatalytic hydrogen generation over alkaline-earth titanates in the presence of electron donors. Int J Hydrog Energy 33:1797–1180

    Article  CAS  Google Scholar 

  35. Kajiwara T et al (1982) Dynamics of luminescence from Ru(bpy)3Cl2 adsorbed on semiconductor surfaces. J Phys Chem 86:4516–4452

    Article  CAS  Google Scholar 

  36. Yamaguti K et al (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday Trans 1(81):1237–1246

    Article  Google Scholar 

  37. Zhang Z et al (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrog Energy 35:8528–8535

    Article  CAS  Google Scholar 

  38. Konta R et al (2004) Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation. J Phys Chem B 108(26):8992–8995

    Article  CAS  Google Scholar 

  39. Bae SW et al (2008) Dopant dependent band gap tailoring of hydrothermally prepared cubic SrTixM1-xO3 (M=Ru,Rh,Ir,Pt,Pd) nanoparticles as visible light photocatalyst. Appl Phys Lett 92(10):104107–104110

    Article  CAS  Google Scholar 

  40. Iwashina K et al (2011) Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation. J Amer Chem Soc 133(34):13272–13275

    Article  CAS  Google Scholar 

  41. Liu M et al (2011) Water photolysis with a cross-linked titanium dioxide nanowire anode. Chem Sci 2:80–87

    Article  CAS  Google Scholar 

  42. Kim J et al (2005) Highly efficient overall water splitting through optimization of preparation and operation conditions of layered perovskite photocatalysts. Top Catal 35:295–230

    Article  CAS  Google Scholar 

  43. Kim HG et al (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1077–107

    Google Scholar 

  44. Song H et al (2007) Hydrothermal synthesis of flaky crystallized La2Ti 2O7 for producing hydrogen from photocatalytic water splitting. Catal Lett 113:54–58

    Article  CAS  Google Scholar 

  45. Ji SM et al (2007) Photocatalytic hydrogen production from natural seawater. J Photochem Photobiol 189:141–144

    Article  CAS  Google Scholar 

  46. Takahashi H et al (1999) Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. J Alloys Compd 285:77–78

    Article  CAS  Google Scholar 

  47. Inoue Y, et al (1990) Photocatalytic activity of sodium hexatitanate, Na2Ti6O13, with a tunnel structure for decomposition of water. J Chem Soc Chem Commun 1298–129

    Google Scholar 

  48. Chen X et al (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  CAS  Google Scholar 

  49. Katal R, Salehi M, Davood Abadi Farahani MH, Masudy-Panah S, Ong SL, Hu J (2018) Preparation of a new type of black TiO2 under vacuum atmosphere for sunlight photocatalysis. ACS Appl Mater Interfaces 10(41):35316–35326E

    Article  CAS  Google Scholar 

  50. Jeong D, Borse PH, Jang JS, Lee JS, Cho CR, Bae JS, Park S, Jung OS, Ryu SM, Won MS, Kim HG (2009) Physical and optical properties of nanocrystalline calcium ferrite synthesized by the polymerized complex method. J Nanosci Nanotech 9:3568

    Article  CAS  Google Scholar 

  51. McDonald KJ et al (2011) Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem Mater 23(21):4863–4869

    Article  CAS  Google Scholar 

  52. Borse et al (2008) Phase and photoelectrochemical behavior of solution-processed Fe2O3 nanocrystals for oxidation of water under solar light. Appl Phys Lett 93:173103

    Article  CAS  Google Scholar 

  53. Joshi UA et al (2008) Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl Phys Lett 92(24):242106–242108

    Article  CAS  Google Scholar 

  54. Kim HG et al (2009) Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis 5889–5891

    Google Scholar 

  55. Jang JS et al (2009) Synthesis of zinc ferrite and its photocatalytic application under visible light. J Korean Phys Soc 54(1):204–208

    Article  CAS  Google Scholar 

  56. Tahir AA et al (2010) Photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes. J Photochem Photobio A-Chem 216:119–125

    Article  CAS  Google Scholar 

  57. Dom R et al (2011) Synthesis of a hydrogen producing nanocrystalline ZnFe2O4 visible light photocatalyst using a rapid microwave irradiation method. RSC Adv 2(33):12782–12791

    Article  CAS  Google Scholar 

  58. Dom R et al (2011) Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Sol Stat Commun 151:470–473

    Article  CAS  Google Scholar 

  59. Mayer MT, Lin Y, Yuan G, Wang D (2013) Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc Chem Res 46:1558–1566

    Article  CAS  Google Scholar 

  60. Kennedy H, Frese KW (1978) Photooxidation of water at α-Fe2O3 electrodes. J Electrochem Soc 125:709

    Google Scholar 

  61. Dom R et al (2013) Investigation of solar photoelectrochemical hydrogen generation ability of ferrites for energy production. Mater Sci Forum 764:97–115

    Article  CAS  Google Scholar 

  62. Nathan T et al (2010) Reactive ballistic deposition of α-Fe2O3 thin films for photoelectrochemical water oxidation. ACS Nano 4:1977–1986

    Article  CAS  Google Scholar 

  63. Tilley SD et al (2010) Light-induced water splitting with hematite: improved nanostructure and iridium oxide. Int Ed 49:6405–6408

    Article  CAS  Google Scholar 

  64. Khan SUM et al (1999) Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J Phys Chem B 103:7184–7189

    Article  CAS  Google Scholar 

  65. Satsangi VR et al (2008) Nanostructured hematite for photoelectrochemical generation of hydrogen. Int J Hydrog Energy 33:312–318

    Article  CAS  Google Scholar 

  66. Chang CY et al (2012) Self-oriented iron oxide nanorod array thin film for photoelectrochemical hydrogen production. Int J Hydrogen Energy 37:13616–13622

    Article  CAS  Google Scholar 

  67. Souza FL et al (2009) Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting. Sol Energy Mat Sol Cells 93:362–368

    Article  CAS  Google Scholar 

  68. Boris DC et al (2012) Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 23:194009–194017

    Article  CAS  Google Scholar 

  69. Lin Y et al (2011) Nanonet-based hematite hetero nanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401

    Article  CAS  Google Scholar 

  70. Yarahmadi SS et al (2009) Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation. Mater Lett 63:523–526

    Article  CAS  Google Scholar 

  71. Tahir AA et al (2009) Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem Mater 21:3763–3772

    Article  CAS  Google Scholar 

  72. Majumder SA et al (1994) Photo electrolysis of water at bare and electrocatalyst covered thin film iron oxide electrode. Int J Hydrog Energy 19:881–888

    Article  CAS  Google Scholar 

  73. Ingler WB et al (2004) Photo response of spray pyrolytically synthesized magnesium doped iron (III) oxide (p- Fe2O3) thin films under solar simulated light illumination. Thin Sol Films 461:301–308

    Article  CAS  Google Scholar 

  74. Tamirat AG et al (2015) Photoelectrochemical water splitting at low applied potential using a NiOOH coated codoped (Sn, Zr) α-Fe2O3 photoanode. J Mat Chem A 3:5949–5961

    Article  CAS  Google Scholar 

  75. Lee DK et al. (2019) Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting, Chem Soc Rev 1–32. https://doi.org/10.1039/C8CS00761F

    Article  CAS  Google Scholar 

  76. Kim JH et al (2015) Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Adv Energy Mater 5(6):1401933

    Article  CAS  Google Scholar 

  77. Kim JH et al (2015) Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale 7(45):19144–19151

    Article  CAS  Google Scholar 

  78. Guijarro N et al (2018) Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: prospects and limitations. Sustain Energy Fuels 2:103–117

    Article  CAS  Google Scholar 

  79. Kim JH (2018) A multitude of modifications strategy of ZnFe2O4 nanorod photoanodes for enhanced photoelectrochemical water splitting activity. J Mater Chem A 6:12693–12700

    Article  CAS  Google Scholar 

  80. Zhu X (2018) Spinel structural disorder influences solar-water-splitting performance of ZnFe2O4 nanorod photoanodes. Adv Mater 30:1801612

    Article  CAS  Google Scholar 

  81. Hufnagel AG (2016) Zinc ferrite photoanode nanomorphologies with favorable kinetics for water-splitting. Adv Funct Mater 26:4435–4443

    Article  CAS  Google Scholar 

  82. Guo Y (2017) A facile spray pyrolysis method to prepare Ti-doped ZnFe2O4 for boosting photoelectrochemical water splitting. J Mater Chem A 2017(5):7571–7577

    Article  Google Scholar 

  83. Bignozzi CA et al (2013) Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes. Chem Soc Rev 42:2228–2246

    Article  CAS  Google Scholar 

  84. Hong SJ et al (2009) Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrog Energy 34:3234–3242

    Article  CAS  Google Scholar 

  85. Zheng JY et al (2015) Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 17(32):6070–6093

    Article  CAS  Google Scholar 

  86. Arutanit O et al (2016) Tailored synthesis of macroporous Pt/WO3 photocatalyst with nanoaggregates via flame assisted spray pyrolysis. AIChE J 62(11):3864–3873

    Article  CAS  Google Scholar 

  87. Tahir MB et al (2018) WO3 nanostructures-based photocatalyst approach towards degradation of RhB dye. J Inorg Organomet Polym Mater 28(3):1107–1113

    Article  CAS  Google Scholar 

  88. Wu K et al (2018) One-step synthesis of sulfur and tungstate co-doped porous g-C3N4 microrods with remarkably enhanced visible-light photocatalytic performances. Appl Surf Sci 462:991–1001

    Article  CAS  Google Scholar 

  89. Do TH et al (2016) Superior photoelectrochemical activity of self-assembled NiWO4-WO3 heteroepitaxy. Nano Energy 23:153–160

    Article  CAS  Google Scholar 

  90. Priya A et al (2018) A low-cost visible light activeBiFeWO6/TiO2nanocompositewith an efficient photocatalytic and photoelectrochemical performance. Opt Mater 81:84–92. 269

    Article  CAS  Google Scholar 

  91. Lopez XA et al (2016) Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni, Co, Cu and Mn) tungstates. Int J Hydrog Energy 41(48):23312–23317

    Article  CAS  Google Scholar 

  92. Hu T et al (2018) Iron-doped bismuth tungstate with an excellent photocatalytic performance. ChemCatChem 10(14):3040–3048. Nakajima T et al (2016) WO3 nanosponge photoanodes with high applied bias photon-to-current efficiency for solar hydrogen and peroxydisulfate production. J Mater Chem A 4:17809–1781

    Article  CAS  Google Scholar 

  93. Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117:17879–17893. Gratzel M et al (1983) Energy resources through photochemistry and catalysis. Academic Press, New York

    Article  CAS  Google Scholar 

  94. Saito N et al (2004) A new photocatalyst of RuO2-loaded PbWO4 for overall splitting of water. Chem Lett 33:1452–1453

    Article  CAS  Google Scholar 

  95. Kudo A et al (1999) H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chem Lett 28:1103–1104

    Article  Google Scholar 

  96. Kudo A et al (1998) Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3solution. Catal Lett 53:229–230

    Article  CAS  Google Scholar 

  97. Kim TW, Choi K-S (2014) Nanoporous BiVO4 Photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343:990–994

    Article  CAS  Google Scholar 

  98. Yoon H et al (2015) Nanotextured pillars of electro sprayed bismuth vanadate for efficient photoelectrochemical water splitting. Langmuir 31(12):3727–3737

    Article  CAS  Google Scholar 

  99. Nasiri A et al (2017) Manganese vanadate nanostructure: facile precipitation preparation, characterization, and investigation of their photocatalyst activity. J Mater Sci Mater Electron 28(12):9096–9101

    Article  CAS  Google Scholar 

  100. Yao X et al (2018) Scale-up of BiVO4 photoanode for water splitting in photoelectrochemical cell: issues and challenges. Energy Technol 6(1):100–110

    Article  CAS  Google Scholar 

  101. Cooper JK et al (2014) Electronic structure of monoclinic BiVO4. Chem Mater 26(18):5365–5365

    Article  CAS  Google Scholar 

  102. Cooper JK et al (2015) Indirect bandgap and optical properties of monoclinic bismuth vanadate. J Phys Chem C 119:2969–2974

    Article  CAS  Google Scholar 

  103. Abdi FF et al (2013) The origin of slow carrier transport in BiVO4 thin film photoanodes: a time-resolved microwave conductivity study. J Phys Chem Lett 4:2752–2757

    Article  CAS  Google Scholar 

  104. Pihosh Y et al (2015) Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Sci Rep 5:11141

    Article  Google Scholar 

  105. Liu H et al (2005) Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem 6:2499–2250

    Article  CAS  Google Scholar 

  106. Liu H et al (2006) A visible – light responsive photocatalyst, BiZn2VO6 for efficient O2 – photoevolution from aqueous particulate suspension. Electrochem Solid-State Lett 9:G187. Abdi FF et al (2017) Recent developments in complex metal oxide photoelectrodes. J Phys D Appl Phys 50:193002–19302

    Article  CAS  Google Scholar 

  107. Zhang K et al (2013) Metal sulphide semiconductors for photocatalytic hydrogen production. Catal Sci Technol 1–19. https://doi.org/10.1039/c3cy00018d

    Article  CAS  Google Scholar 

  108. Pareek A et al (2013) Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique. Int J Hydrog Energy 38:36–44

    Article  CAS  Google Scholar 

  109. Pareek A et al (2014) Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation. Int J Hydrog Energy 39:4170–4180

    Article  CAS  Google Scholar 

  110. Pareek A et al (2014) Nano-niobia modification of CdS photoanode for efficient and stable photoelectrochemical cell. Langmuir 30:15540

    Article  CAS  Google Scholar 

  111. Pareek A et al (2013) Fabrication of a highly efficient and stable nano-modified photoanode for solar H2 generation. RSC Adv 3:19905–19908

    Article  CAS  Google Scholar 

  112. Pareek A et al (2017) Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes. Mater Res Express 4:026203

    Article  CAS  Google Scholar 

  113. Pareek A et al (2017) Ultrathin MoS2–MoO3 nanosheets functionalized CdS photoanodes for effective charge transfer in photoelectrochemical (PEC) cells. J Mater Chem A 5:1541–1547

    Article  CAS  Google Scholar 

  114. Kirni M et al (2012) Preparation of Cu-doped Cd0.1Zn0.9S solid solution by hydrothermal method and its enhanced activity for hydrogen production under visible light irradiation. J Photochem Photobiol A 230:15–22

    Article  CAS  Google Scholar 

  115. Chai B et al (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155

    Article  CAS  Google Scholar 

  116. Bhirud A et al (2011) Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int J Hydrog Energy 36:11628–11639

    Article  CAS  Google Scholar 

  117. Matsumura M et al (1983) Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J Phys Chem 87:3807–3808

    Article  CAS  Google Scholar 

  118. Reber JF et al (1984) Photochemical production of hydrogen with zinc sulfide suspensions. J Phys Chem 88:5903–5913

    Article  CAS  Google Scholar 

  119. Xing C et al (2006) Band structure-controlled solid solution of Cd1 - xZnx S photocatalyst for hydrogen production by water splitting. Int J Hydrog Energy 31:2018–2024

    Article  CAS  Google Scholar 

  120. Jang JS et al (2007) Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J Phys Chem C 111:13280–13287

    Article  CAS  Google Scholar 

  121. Zong X et al (2008) Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176–7177

    Article  CAS  Google Scholar 

  122. Yan H et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168

    Article  CAS  Google Scholar 

  123. Jang JS et al (2008) Role of platinum-like tungsten carbide as cocatalyst of CdS photocatalyst for hydrogen production under visible light irradiation. Appl Catal A 346:149–154

    Article  CAS  Google Scholar 

  124. Zhang K et al (2007) Significantly improved photocatalytic hydrogen production activity over Cd1- x Znx S photocatalysts prepared by a novel thermal sulfuration method. Int J Hydrog Energy 32:4685–4691

    Article  CAS  Google Scholar 

  125. Tsuji I et al (2004) Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (Agln)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J Am Chem Soc 126:13406–13413

    Article  CAS  Google Scholar 

  126. Lei Z et al (2003) Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem Commun 17:2142–2143

    Article  CAS  Google Scholar 

  127. Shen S et al (2009) Optical and photocatalytic properties of visible-light-driven ZnIn2S4 photocatalysts synthesized via a surfactant-assisted hydrothermal method. Mater Res Bull 44:100–105

    Article  CAS  Google Scholar 

  128. Jang JS et al (2008) Indium induced band gap tailoring in Ag Ga1-x Inx S2 chalcopyrite structure for visible light photocatalysis. J Chem Phys 128:1–6

    Google Scholar 

  129. Kale BB et al (2006) CdIn2S4 nanotubes and “marigold” nanostructures: a visible-light photocatalyst. Adv Funct Mater 16:1349–1354

    Article  CAS  Google Scholar 

  130. Bhirud A et al (2011) Surfactant tunable hierarchical nanostructures of CdIn2S4 and their photohydrogen production under solar light. Int J Hydrog Energy 36:11628–11639

    Article  CAS  Google Scholar 

  131. Pareek A et al (2017) Nanostructure Zn–Cu co-doped CdS chalcogenide electrodes for opto-electric-power and H2 generation. Int J Hydrog Energy 42(1):125–132

    Article  CAS  Google Scholar 

  132. Roy AM et al (2003) Immobilization of CdS, ZnS and mixed ZnS-CdS on filter paper. Effect of hydrogen production from alkaline Na2S/Na2S2O3 solution. J Photochem Photobiol A 157:87–92

    Article  CAS  Google Scholar 

  133. Chai B et al (2011) Template-free hydrothermal synthesis of ZnIn2S4 floriated microsphere as an efficient photocatalyst for H2 production under visible-light irradiation. J Phys Chem C 115:6149–6155

    Article  CAS  Google Scholar 

  134. Kaga H et al (2010) Solar hydrogen production over novel metal sulfide photocatalysts of AGa2In3S8 (A = Cu or Ag) with layered structures. Chem Commun 46:3779–3781

    Article  CAS  Google Scholar 

  135. Kudo A et al (2002) AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem Commun 2(17):1958–1959

    Article  CAS  Google Scholar 

  136. Gregory DH et al (1999) Structural families in nitride chemistry. J Chem Soc Dalton Trans 3:259–270

    Google Scholar 

  137. Su J et al (2017) Stability and performance of sulfide-, nitride-, and phosphide-based. J Phys Chem Letts 8:5228–5238

    Article  CAS  Google Scholar 

  138. Liu G et al (2016) Enabling an integrated tantalum nitride photoanode to approach the theoretical photocurrent limit for solar water splitting. Energy Environ Sci 9:1327–1334

    Article  CAS  Google Scholar 

  139. Wang D et al (2011) Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy. Nano Lett 11:2353–2357

    Article  CAS  Google Scholar 

  140. Gholipour MR et al (2017) Post-calcined carbon nitride nanosheets as an efficient photocatalyst for hydrogen production under visible light irradiation. ACS Sustain Chem Eng 5:213–220

    Article  CAS  Google Scholar 

  141. Island JO et al (2015) Environmental instability of few-layer black phosphorus. 2D Mater 2:011002

    Article  CAS  Google Scholar 

  142. Zhu M et al (2017) Black phosphorus: a promising two dimensional visible andnear-infrared-activated photocatalyst for hydrogen evolution. Appl Catal 217:285–229

    Article  CAS  Google Scholar 

  143. Tian B et al (2018) Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proc Natl Acad Sci 1–6. https://doi.org/10.1073/pnas.1800069115

    Article  CAS  Google Scholar 

  144. Wen M et al (2018) A low-cost metal-free photocatalyst based on black phosphorus. Adv Sci 1801321:1–7

    Google Scholar 

  145. Yuan Y-J et al (2018) Bandgap-tunable black phosphorus quantum dots: visible-light-active photocatalysts. Chem Commun 54:960–963

    Article  CAS  Google Scholar 

  146. Tian B et al (2018) Supported black phosphorus nanosheets as hydrogen-evolving photocatalyst achieving 5.4% energy conversion efficiency at 353 K. Nat Commun 9:1397. -1-11

    Article  CAS  Google Scholar 

  147. Paulose M et al (2006) Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B 110:16179–16184

    Article  CAS  Google Scholar 

  148. Xiang Q (2013) Hierarchical porous CdS nanosheet-assembled flowers with enhanced visible-light photocatalytic H2-production performance. Appl Cat B 138:299–303

    Article  CAS  Google Scholar 

  149. Zha R (2015) Ultraviolet photocatalytic degradation of methyl orange by nanostructured TiO2/ZnO heterojunctions. J Mater Chem A 3:6565–6657

    Article  CAS  Google Scholar 

  150. Chen F (2013) Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity. J Colloid Interface Sci 404:110–116

    Article  CAS  Google Scholar 

  151. Liu Y (2012) A magnetically separable photocatalyst based on nest – like γ- Fe2O3/ZnO double – shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4:183–187

    Article  CAS  Google Scholar 

  152. Chen CK et al (2014) Quantum-dot-sensitized nitrogen-doped ZnO for efficient photoelectrochemical water splitting. Eur J Inorg Chem 2014:773–779

    Article  CAS  Google Scholar 

  153. Chandrasekaran S et al (2015) Highly – ordered maghemite/reduced graphene oxide nanocomposites for high performance photoelectrochemical water splitting. RSC Adv 5:29159–29166

    Article  CAS  Google Scholar 

  154. Kim JH et al (2016) Hetero – type dual photoanodes for unbiased solar water splitting with extended light harvesting. Nat Commun 7:1–9

    CAS  Google Scholar 

  155. Zhang S et al (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136:1734–1173

    Article  CAS  Google Scholar 

  156. Asadi M et al (2014) Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun 5:1–8

    Article  CAS  Google Scholar 

  157. Gao L et al (2014) Photoelectrochemical hydrogen production on InP nanowire arrays with molybdenum sulfide electrocatalysts. Nano Lett 14:3715–37191

    Article  CAS  Google Scholar 

  158. Wang H-P et al (2015) High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Lett 15:2817–2282

    Article  CAS  Google Scholar 

  159. Song JT et al (2017) Bimetallic cobalt-based phosphide zeolitic imidazolate framework: CoPx phase-dependent electrical conductivity and hydrogen atom adsorption energy for efficient overall water splitting. Adv Energy Mater 7:16011003

    Google Scholar 

  160. Kast MG et al (2014) Solution-deposited F:SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathode. ACS Appl Mater Interfaces 6:22830–22837

    Article  CAS  Google Scholar 

  161. Zhou X et al (2016) Solar driven reduction of 1 atm of CO2 to formate at 10% energy – conversion efficiency by use of a TiO2 protected III – V tandem Photoanode in conjunction with a bipolar membrane and a Pd/C cathode. ACS Energy Lett 1:764–777

    Article  CAS  Google Scholar 

  162. Ji L et al (2014) A silicon based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nat Nanotachnol 10:84

    Article  CAS  Google Scholar 

  163. Kang D et al (2017) Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted water splitting. Nat Energy 2:17043

    Article  CAS  Google Scholar 

  164. Kumagai H et al (2015) Efficient solar hydrogen production from neutral electrolytes using surface modified Cu(In, Ga)Se2 photocathodes. J Mater Chem A 3:8300–8307

    Article  CAS  Google Scholar 

  165. Fan S et al (2015) High efficiency solar to hydrogen conversion on monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. Nano Lett 15:2721–2272

    Article  CAS  Google Scholar 

  166. Morales-Guio CG et al (2015) Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth – abundant hydrogen evolution catalysts. Angew Chem Int Ed Engl 54:664

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of the Director, ARCI, DST Lab, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod H. Borse .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Borse, P.H. (2019). Nano-configured Opto-electric Ceramic Systems for Photo-electrochemical Hydrogen Energy. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics