Processing of Ceramic and Cermet Composite Coatings for Strategic and Aerospace Applications

  • L. Rama KrishnaEmail author
  • P. Suresh Babu
  • Manish Tak
  • D. Srinivasa Rao
  • G. Padmanabham
  • G. Sundararajan
Living reference work entry


This chapter deals with a variety of ceramic and cermet composite coatings capable of protecting the industrial components including strategic and aerospace sectors from various damage mechanisms such as wear, corrosion, oxidation, thermal, fatigue, and combinations thereof. To enable such coating deposition, a spectrum of processing techniques such as plasma spray, high-velocity oxy-fuel spray, detonation spray, micro-arc oxidation, and laser cladding techniques were utilized and considered for detailed discussion. Under each of the aforementioned techniques, the processing fundamentals, influence of process variables, typical microstructures, properties, and performance of the resulting coatings were briefly presented. However, only the coatings that are functionally relevant in the working temperature up to 800 °C were considered in this chapter. A special emphasis has been placed to provide the understanding of structure-property-performance aspects of different coatings such that the information can be correlated with the typical industrial requirements. Further, both the demonstrated and potential applications specifically pertaining to strategic and aerospace sectors were exemplified.


Thermal spray Plasma spray HVOF Detonation spray Micro-arc oxidation Plasma electrolytic oxidation Laser cladding Wear Corrosion Oxidation 


  1. 1.
    Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International, Materials ParkGoogle Scholar
  2. 2.
    Pawlowski L (2008) The science and engineering of thermal spray coatings. Wiley, ChichesterGoogle Scholar
  3. 3.
    Fauchais PL, Heberlien JVR, Boulos M (2014) Thermal spray fundamentals: from powder to part. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Heimann RB (1994) Plasma –spray coatings. VCH publishers, WeinhienGoogle Scholar
  5. 5.
    Sundararajan G, Rao DS, Kumar GS, Joshi SV (2013) Detonation spray coatings. In: Wang J, Chung W (eds) Encyclopedia of tribology. Springer, Boston, MA, pp 736–742CrossRefGoogle Scholar
  6. 6.
    Wood RJK (2010) Tribology of thermal sprayed WC-Co coatings. Int J Refract Met Hard Mater 28:82–94CrossRefGoogle Scholar
  7. 7.
    Kadyrov E (1996) Gas-particle interaction in detonation spraying systems. J Therm Spray Technol 5:185–195CrossRefGoogle Scholar
  8. 8.
    Smurov I, Ulianitsky V (2011) Computer controlled detonation spraying: a spraying process upgraded to advanced applications. WIT Trans Eng Sci 71:265–276CrossRefGoogle Scholar
  9. 9.
    Qiao Y, Fischer TE, Dent A (2003) The effects of fuel chemistry and feedstock powder on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structures. Surf Coat Technol 172:24–41CrossRefGoogle Scholar
  10. 10.
    Raju KRCS, Rao DS, Kumar GS, Sen D, Sundararajan G (2000) The influence of powder characteristics on the properties of detonation sprayed Cr3C2-25NiCr coatings. In: Proceedings of the ITSC 2000, Canada, pp 309–316Google Scholar
  11. 11.
    Babu PS, Rao DS, Rao GVN, Sundararajan G (2007) Effect of feedstock size and its distribution on the properties of detonation sprayed coatings. J Therm Spray Technol 16:281–290CrossRefGoogle Scholar
  12. 12.
    Sundararaajn G, Kumar GS, Rao DS (2001) The interrelationship between particle temperature and velocity, splat formation and deposition efficiency in detonation sprayed Al2O3 coatings. In: Proceedings of the ITSC 2001, Singapore, pp 849–858Google Scholar
  13. 13.
    Krishna LR, Rao DS, Sundararajan G (2003) Coatability and characterization of fly ash deposited on mild steel by detonation spraying. J Therm Spray Technol 12:77–79CrossRefGoogle Scholar
  14. 14.
    Krishna LR, Sen D, Rao YS, Rao GVN, Sundararajan G (2002) Thermal spray coating of aluminum nitride utilizing detonation spray technique. J Mater Res 17:2514–2523CrossRefGoogle Scholar
  15. 15.
    Babu PS, Basu B, Sundararajan G (2008) Processing–structure–property correlation and decarburization phenomenon in detonation sprayed WC–12Co coatings. Acta Mater 56:5012–5026CrossRefGoogle Scholar
  16. 16.
    Legoux JG, Arsenault B, Hawthorne H, Immarigeon JP (2003) Erosion behavior of WC-10Co-4Cr HVOF coatings. In: Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, pp 405–410Google Scholar
  17. 17.
    Lovelock HLDV, Vanwyk P (1998) Effect of powder type and composition on the erosion and abrasion of HP/HVOF deposited WC-Co coatings. In: Proceedings of the ITSC, 25–29 May, Nice, France, pp 193–198Google Scholar
  18. 18.
    Niemi K, Rekola S, Vuoristo P, Laurila J, Vippola M, Mantyla T (2003) Advanced oxide ceramic coatings for applications demanding high wear resistance. In: Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, pp 233–236Google Scholar
  19. 19.
    Leblanc L (2003) Abrasion and sliding wear of nanostructured ceramic coatings. In: Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, pp 291–299Google Scholar
  20. 20.
    Bolelli G, Cannillo V, Lusvarghi L, Manfredini T (2006) Wear behavior of thermally sprayed ceramic oxide coatings. Wear 261:1298–1315CrossRefGoogle Scholar
  21. 21.
    Westergard R, Erickson LC, Axen N, Hawthorne HM, Hogmark S (1998) The erosion and characteristics of alumina coatings by plasma sprayed under different spraying conditions. Tribol Int 31:271–279CrossRefGoogle Scholar
  22. 22.
    McPherson R (1980) On the formation of thermally sprayed alumina coatings. J Mater Sci 15:3141–3149CrossRefGoogle Scholar
  23. 23.
    Krishna LR, Gupta PSVNB, Sundararajan G (2015) The influence of phase gradient within the micro arc oxidation (MAO) coatings on mechanical and tribological behaviors. Surf Coat Technol 269:54–63CrossRefGoogle Scholar
  24. 24.
    Yilmaz R, Kurt AO, Demir A, Tatli Z (2007) Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating. J Eur Ceram Soc 27:1319–1323CrossRefGoogle Scholar
  25. 25.
    Jia SK, Zou Y, Xu J-Y, Wang J, Yu L (2015) Effect of TiO2 content on properties of Al2O3 thermal barrier coatings by plasma spraying. Trans Nonferrous Metals Soc China 25:175–183CrossRefGoogle Scholar
  26. 26.
    Ramachandran K, Selvarajan V, Ananthapadmanabhan PV, Sreekumar KP (1998) Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina–titania coatings. Thin Solid Films 315:144–152CrossRefGoogle Scholar
  27. 27.
    Celik E, Sengil IA, Avci E (1997) Effect of some parameters on corrosion behavior of plasma-sprayed coatings. Surf Coat Technol 97:355–360CrossRefGoogle Scholar
  28. 28.
    Lima RS, Leblanc L, Marple BR (2004) Abrasion behavior of nano-structured and conventional titania coatings thermally sprayed via APS, VPS and HVOF. In: Proceedings of the ITSC2004, Osaka, Japan, ASM International, pp 1034–1039Google Scholar
  29. 29.
    Lima RS, Marple BR (2007) Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol 16:40–63CrossRefGoogle Scholar
  30. 30.
    Dosta S, Robotti M, Garcia Segura S, Brillas E, Cano IG, Guilemany JM (2016) Influence of atmospheric plasma spraying on the solar photoelectron-catalytic properties of TiO2 coatings. Appl Catal B Environ 189:151–159CrossRefGoogle Scholar
  31. 31.
    Westergard R, Axen N, Wiklund U, Hogmark S (2000) An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing. Wear 246:12–19CrossRefGoogle Scholar
  32. 32.
    Zamani P, Valefi Z (2017) Microstructure, phase composition and mechanical properties of plasma sprayed Al2O3, Cr2O3 and Cr2O3-Al2O3 composite coatings. Surf Coat Technol 316:138–145CrossRefGoogle Scholar
  33. 33.
    Erickson LC, Westergard R, Wiklund U, Axen N, Hawthrone M, Hogmark S (1998) Cohesion in plasma sprayed coatings-A comparison between evaluation methods. Wear 214:30–37CrossRefGoogle Scholar
  34. 34.
    Babu PS, Sen D, Jyothirmayi A, Krishana LR, Rao DS (2018) Influence of microstructure on the wear and corrosion behavior of detonation sprayed Cr2O3-Al2O3 and plasma sprayed Cr2O3 coatings. Ceram Int 44:2351–2357CrossRefGoogle Scholar
  35. 35.
    Lima RS, Marple BR (2005) Superior performance of high-velocity oxyfuel-sprayed nano-structured TiO2 in comparison to air plasma-sprayed conventional Al2O3-TiO2. J Therm Spray Technol 14:397–404CrossRefGoogle Scholar
  36. 36.
    Lima RS, Marple BR (2006) From APS to HVOF spraying of conventional and nanostructured titania feedstock powders: a study on the enhancement of the mechanical properties. Suf Coat Technol 200:3428–3437CrossRefGoogle Scholar
  37. 37.
    Rodrigues M, Klisans J, Bavaresco L, Scagni A, Arenas F (2001) Wear resistance of HVOF sprayed carbide coatings. In: Thermal spray 2001. ASM International, Materials ParkGoogle Scholar
  38. 38.
    Berger LM, Saaro S, Naumann T, Kasparova M, Zahalka F (2010) Influence of feedstock powder characteristics and spray processes on microstructure and properties of WC-(W, Cr)2C-Ni hardmetal coatings. Surf Coat Technol 205:1080–1087CrossRefGoogle Scholar
  39. 39.
    Magnani M, Suegama PH, Espallargas N, Dosta S, Fugivara CS, Guilemany JM, Benedetti AV (2008) Influence of HVOF parameters on the corrosion and wear resistance of WC-Co coatings sprayed on AA7050 T7. Surf Coat Technol 202:4746–4757CrossRefGoogle Scholar
  40. 40.
    Bozzi AC, de Mello JDB (1999) Wear resistance and wear mechanism of WC-12%Co thermal sprayed coatings in three-body abrasion. Wear 233–235:575–587CrossRefGoogle Scholar
  41. 41.
    Stewart DA, Shipway PH, McCartney DG (1999) Abrasive wear behavior of conventional and nanocomposite HVOF-sprayed WC-Co coatings. Wear 225–229:789–798CrossRefGoogle Scholar
  42. 42.
    Babu PS, Basu B, Sundararajan G (2010) Abrasive wear behavior of detonation sprayed WC-12Co coatings: influence of decarburization and abrasive characteristics. Wear 268:1387–1399CrossRefGoogle Scholar
  43. 43.
    Babu PS, Basu B, Sundararajan G (2011) The influence of erodent hardness on the erosion behavior of detonation sprayed WC-12Co coatings. Wear 270:903–913CrossRefGoogle Scholar
  44. 44.
    Chen H, Hutchings IM (1998) Abrasive wear resistance of plasma sprayed tungsten carbide cobalt coatings. Surf Coat Technol 107:106–114CrossRefGoogle Scholar
  45. 45.
    Liao H, Normand B, Coddet C (2000) Influence of coating microstructure on the abrasive wear resistance of WC/Co cermet coatings. Surf Coat Technol 124:235–242CrossRefGoogle Scholar
  46. 46.
    Zhao LD, Maurer M, Fischer F, Dicks R, Lugscheider E (2004) Influence of spray parameters on the particles in-flight properties and properties of HVOF coating of WC-CoCr. Wear 257:41–46CrossRefGoogle Scholar
  47. 47.
    Schwetzke R, Kreye H (1999) Microstructure and properties of tungsten carbide coatings sprayed with various high velocity oxygen fuel spray systems. J Therm Spray Technol 8:433–439CrossRefGoogle Scholar
  48. 48.
    Sobolev VV, Guilemany JM, Miguel JR, Calero JA (1996) Investigation of the development of coating structure during high velocity oxy-fuel (HVOF) spraying of WC-Ni powder particles. Surf Coat Technol 82:114–120CrossRefGoogle Scholar
  49. 49.
    Wijewardane S (2015) Thermal spray coatings in renewable energy applications. In: Future development of thermal spray coatings: Types, Designs, Manufacture & Applications, Ed: Nuria Esparallargas, Woodhead Publishing, Cambridge, UK pp 241–257 Google Scholar
  50. 50.
    Babu PS, Basu B, Sundararajan G (2013) A comparison of mechanical and tribological behavior of nanostructured and conventional WC-12Co detonation-sprayed coatings. J Therm Spray Technol 22:479–490Google Scholar
  51. 51.
    Liu YR, Qiao YF, He JH, Lavernia EJ, Fischer TE (2002) Near-nanostructured WC-18 pct Co coatings with low amounts of non-WC carbide phase: Part II. Hardness and resistance to sliding and abrasive wear. Metal Mater Trans A 33:159–164CrossRefGoogle Scholar
  52. 52.
    Babu PS, Rao PC, Jyothirmayi A, Phani PS, Krishna LR, Rao DS (2018) Evaluation of microstructure, property and performance of detonation sprayed WC-(W,Cr)2C-Ni coatings, Surf Coat Technol 335:345–354Google Scholar
  53. 53.
    Savarimuthu AC, Taber HF, Megat I, Shadley JR, Rybicki EF, Cornell WC, Emery WA, Somerville DA, Nuse JD (2001) Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications. J Therm Spray Technol 10:502–510CrossRefGoogle Scholar
  54. 54.
    Nascimento MP, Souza RC, Miguel IM, Pigatin WL, Voorwald HJC (2001) Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel. Surf Coat Technol 138:113–124CrossRefGoogle Scholar
  55. 55.
    Aguero A, Camon F, de Blas JG, del Hoyo JC, Muelas R, Santaballa A, Ulargui S, Valles P (2011) HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators. J Therm Spray Technol 20(6):1292–1309CrossRefGoogle Scholar
  56. 56.
    Junior GS, Voorwald HJC, Vieira LFS, Cioffi MOH, Bonora RG (2010) Evaluation of WC-10Ni thermal spray coating with shot peening on the fatigue strength of AISI 4340 steel. Procedia Eng 2:649–656CrossRefGoogle Scholar
  57. 57.
    Bonora RG, Voorwald HJC, Cioffi MOH, Junior GS, Santos LFV (2010) Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application. Procedia Eng 2:1617–1623CrossRefGoogle Scholar
  58. 58.
    Souza RC, Voorwald HJC, Cioffi MOH (2008) Fatigue strength of HVOF sprayed Cr3C2-25NiCr and WC-10Ni on AISI 4340 steel. Surf Coat Technol 203:191–198CrossRefGoogle Scholar
  59. 59.
    Hermosilla WAG, Chicot D, Lesage J, Sosa JGLB, Gruescu IC, Staia MH, Cabrera ESP (2010) Effect of substrate roughness on the fatigue behavior of a SAE 1045 steel coated with a WC-10Co-4Cr cermet, deposited by HVOF thermal spray. Mater Sci Eng A 527:6551–6561CrossRefGoogle Scholar
  60. 60.
    Vackel A, Sampath S (2017) Fatigue behavior of thermal sprayed WC-CoCr- steel systems: role of process and deposition parameters. Surf Coat Technol 315:408–416CrossRefGoogle Scholar
  61. 61.
    Sosa JGLB, Santana YY, Gutierrez CJV, Chicot D, Lesage J, Decoopman X, Lost A, Staia MH, Cabrera ESP (2013) Fatigue behavior of a structural steel coated with a WC-10Co-4Cr/Colmonoy 88 deposit by HVOF thermal spraying. Surf Coat Technol 220:248–256CrossRefGoogle Scholar
  62. 62.
    Varis T, Suhonen T, Calonius O, Cuban J, Pietola M (2016) Optimization of HVOF Cr3C2-NiCr coating for increased fatigue performance. Surf Coat Technol 305:123–131CrossRefGoogle Scholar
  63. 63.
    Vackel A, Dwivedi G, Sampath S (2015) Structurally integrated, damage-tolerant, thermal spray coatings. JOM 67:1540–1553CrossRefGoogle Scholar
  64. 64.
    Gutierrez CJV, Chacon GEG, Sosa JGLB, Pineiro A, Staia MH, Lesage J, Chicot D, Mesmacque G, Cabrera ESP (2008) Fatigue and corrosion fatigue behavior of an AA6063-T6 aluminum alloy coated with a WC-10Co-4Cr alloy deposited by HVOF thermal spraying. Surf Coat Technol 202:4572–4577CrossRefGoogle Scholar
  65. 65.
    Cabrera ESP, Staia MH, Santana YY, Zorrilla EJM, Lesage J, Chicot D, Sosa JGLB, Perez EO, Gutierrez CJV (2013) Fatigue behavior of AA7075-T6 aluminum alloy coated with a WC-10Co-4Cr cermet by HVOF thermal spray. Surf Coat Technol 220:122–130CrossRefGoogle Scholar
  66. 66.
  67. 67.
    Kim GE, Walker J (2007) Successful application of nanostructured Titanium Dioxide coating for high-pressure acid-leach application. J Therm Spray Technol 16:34–39CrossRefGoogle Scholar
  68. 68.
    Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ (1999) Plasma electrolysis for surface engineering. Surf Coat Technol 122(2–3):73–93CrossRefGoogle Scholar
  69. 69.
    Coquillat AS, Campos EM, Mohedano M, Corria RM, Ramos V, Arrabal R, Matykina E (2018) In vitro and in vivo evaluation of PEO modified titanium for bone implant applications. Surf Coat Technol 347:358–368CrossRefGoogle Scholar
  70. 70.
    Sowa M, Simka W (2018) Electrochemical impedance and polarization corrosion studies of tantalum surface modified by DC plasma electrolytic oxidation. Materials 11(4):545. Scholar
  71. 71.
    Farrakhov RG, Mukaeva VR, Fatkullin AR, Gorbatkov MV, Tarasov PV, Lazarev DM, Ramesh Babu N, Parfenov EV (2018) Plasma electrolytic oxidation treatment mode influence on corrosion properties of coatings obtained on Zr-1Nb alloy in silicate-phosphate electrolyte. Mater Sci Eng 291(1):012006Google Scholar
  72. 72.
    Krishna LR, Purnima AS, Sundararajan G (2006) A comparative study of tribological behavior of micro arc oxidation and hard-anodized coatings. Wear 261:1095–1101CrossRefGoogle Scholar
  73. 73.
    Kumar SA, Pradhan S, Raman SGS, Gnanamoorthy R (2014) Performance of alumina coatings prepared by hard anodizing, micro arc oxidation and detonation spray processes on Al-Mg-Si alloy under fretting wear loading. Proc Inst Mech Eng Part J J Eng Tribol 228(4):454–462CrossRefGoogle Scholar
  74. 74.
    Venugopal A, Srinath J, Narayanan PR, Sharma SC, George KM (2014) Corrosion and multi-scale mechanical behavior of plasma electrolytic oxidation (PEO) and hard anodized (HA) coatings on AA 2219 aluminum alloy. Mater Sci Forum 830–831:627–630Google Scholar
  75. 75.
    Krishna LR, Somaraju KRC, Sundararajan G (2003) The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation. Surf Coat Technol 163–164:484–490CrossRefGoogle Scholar
  76. 76.
    Dehnavi V, Luan BL, Liu XY, Shoesmith DW, Rohani S (2015) Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode. Surf Coat Technol 269:91–99CrossRefGoogle Scholar
  77. 77.
    Gowtham S, Arunnellaiappan T, Babu NR (2016) An investigation on pulsed DC plasma electrolytic oxidation of cp-Ti and its corrosion behavior in simulated body fluid. Surf Coat Technol 301:63–73CrossRefGoogle Scholar
  78. 78.
    Yerokhin AL, Shatrov A, Samsonov V, Shashkov P, Pilkington A, Leyland A, Matthews A (2005) Oxide ceramic coatings on aluminum alloys produced by pulsed bipolar plasma electrolytic oxidation process. Surf Coat Technol 199:150–157CrossRefGoogle Scholar
  79. 79.
    Krishna LR, Rybalko AV, Sundararajan G (2005) Process for forming coatings on metallic bodies and an apparatus for carrying out the process. US Patent 6,893,551Google Scholar
  80. 80.
    Lerner LM (2010) Hard anodizing of aerospace aluminum alloys. Trans Inst Met Finish 88:21–24CrossRefGoogle Scholar
  81. 81.
    Dujardin L, Viola A, Henrion G (2005) Diagnostics of an electrolytic micro arc process for aluminium alloy oxidation. Surf Coat Technol 2000:804–808Google Scholar
  82. 82.
    Curran JA, Clyne TW (2006) Porosity in plasma electrolytic oxide coatings. Acta Mater 54:1985–1993CrossRefGoogle Scholar
  83. 83.
    Sundararajan G, Krishna LR (2003) Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology. Surf Coat Technol 167:269–277CrossRefGoogle Scholar
  84. 84.
    Arunnellaiappan T, Ashfaq M, Rama Krishna L, Rameshbabu N (2016) Fabrication of corrosion-resistant Al2O3-CeO2 composite coatings on AA7075 via plasma electrolytic oxidation coupled with electrophoretic deposition. Ceram Int 42:5897–5905CrossRefGoogle Scholar
  85. 85.
    Sandhyarani M, Rameshbabu N, Venkateswarlu K, Krishna LR (2014) Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium. Surf Coat Technol 238:58–67CrossRefGoogle Scholar
  86. 86.
    Arunnellaiappan T, Arun S, Hariprasad S, Gowtham S, Krishna LR, Rameshbabu N (2018) Fabrication of corrosion resistant hydrophobic ceramic nanocomposite coatings on PEO treated AA7075. Ceram Int 44(1):874–884CrossRefGoogle Scholar
  87. 87.
    Arunnellaiappan T, Krishna LR, Anoop S, Uma Rani R, Rameshbabu N (2016) Fabrication of multifunctional black PEO coatings on AA7075 for spacecraft applications. Surf Coat Technol 307:735–746CrossRefGoogle Scholar
  88. 88.
    Ma KJ, Al Bosta MMS, Wu WT (2014) Preparation of self-lubricating composite coatings through a micro arc oxidation with graphite in electrolyte solution. Surf Coat Technol 259:318–324CrossRefGoogle Scholar
  89. 89.
    Li HX, Song RG, Ji ZG (2012) Effect of nano-additive TiO2 on performance of micro arc oxidation coatings formed on 6063 aluminum alloy. Trans Nonferrous Metals Soc China 23:406–411CrossRefGoogle Scholar
  90. 90.
    Huang D, Zhang X, Wu D, Zhou X (2014) Effects of rare earth (RE) additives on performances of micro arc oxidation coatings formed on aluminum alloy. Adv Mater Res 850–851:140–143Google Scholar
  91. 91.
    Nie X, Meletis EI, Jiang JC, Leyland A, Yerokhin AL, Matthews A (2002) Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surf Coat Technol 149(2–3):245–251CrossRefGoogle Scholar
  92. 92.
    Xie HJ, Cheng YL, Li SX, Cao JH, Cao L (2017) Wear and corrosion resistant coatings on surface of cast A356 aluminum alloy by plasma electrolytic oxidation in moderately concentrated aluminate electrolytes. Trans Nonferrous Metals Soc China 27:336–351CrossRefGoogle Scholar
  93. 93.
    Yin B, Peng Z, Liang J, Jin K, Zhu S, Yang J, Qiao Z (2016) Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribol Int 97:97–107CrossRefGoogle Scholar
  94. 94.
    Krishna LR, Purnima AS, Wasekar NP, Sundararajan G (2007) Kinetics and properties of micro arc oxidation coatings deposited on commercial Al alloys. Metall Mater Trans A 38A:370–378CrossRefGoogle Scholar
  95. 95.
    Wasekar NP, Jyothirmayi A, Krishna LR, Sundararajan G (2008) Effect of micro arc oxidation coatings on corrosion resistance of 6061 Al alloy. J Mater Eng Perform 17(5):708–713CrossRefGoogle Scholar
  96. 96.
    Krishna LR, Poshal G, Sundararajan G (2010) Influence of electrolyte chemistry on morphology and corrosion resistance of micro arc oxidation coatings deposited on magnesium. Mater Metall Trans A 41(13):3499–3508CrossRefGoogle Scholar
  97. 97.
    Krishna LR, Sundararajan G (2014) Aqueous corrosion behaviour of micro arc oxidation (MAO) coated magnesium alloys – a critical review. JOM 66(6):1045–1060CrossRefGoogle Scholar
  98. 98.
    Venugopal A, Srinath J, Krishna LR, Narayanan PR, Sharma SC, Venkitakrishnan PV (2016) Corrosion and nanomechanical behaviors of plasma electrolytic oxidation coated AA7020-T6 aluminum alloy. Mater Sci Eng A 660:39–46CrossRefGoogle Scholar
  99. 99.
    Venugopal A, Panda R, Manwatkar S, Sreekumar K, Krishna LR, Sundararajan G (2012) Effect of microstructure on the localized corrosion and stress corrosion behaviours of plasma-electrolytic-oxidation-treated AA7075 aluminum alloy forging in 3.5wt.%NaCl solution. Int J Corros:823967. Scholar
  100. 100.
    Wasekar NP, Ravi N, Babu PS, Rama Krishna L, Sundararajan G (2010) High-cycle fatigue behavior of microarc oxidation coatings deposited on a 6061-T6 Al alloy. Metall Mater Trans A 41(1):255–265CrossRefGoogle Scholar
  101. 101.
    Sundararajan G, Wasekar NP, Ravi N (2010) The influence of the coating technique on the high cycle fatigue life of alumina coated Al 6061 alloy. Trans Indian Inst Metals 62:203–208CrossRefGoogle Scholar
  102. 102.
    Camargo A, Voorwald H (2007) Influence of anodization on the fatigue strength of 7050-T7451 aluminum alloy. Fatigue Fract Eng Mater Struct 30:993–1007CrossRefGoogle Scholar
  103. 103.
    Krishna LR, Madhavi Y, Sahithi T, Wasekar NP, Chavan NM, Rao DS (2018) Influence of prior shot peening variables on the fatigue life of micro arc oxidation coated 6061-T6 Al alloy. Int J Fatigue 106:165–174CrossRefGoogle Scholar
  104. 104.
    Krishna LR, Wasekar NP, Sundararajan G (2013) A process for continuous coating deposition and an apparatus for carrying out the process. US Patent 8,486,237Google Scholar
  105. 105.
    Krishna LR, Wasekar NP, Sundararajan G (2016) Process for continuous coating deposition and an apparatus for carrying out the process. US Patent 9,365,945Google Scholar
  106. 106.
    Lin Y, Yao J, Lei Y, Fu H, Wang L (2016) Microstructure and properties of TiB2–TiB reinforced titanium matrix composite coating by laser cladding. Opt Lasers Eng 86:216–227CrossRefGoogle Scholar
  107. 107.
    Sun RL, Lei YW, Niu W (2009) Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser. Surf Coat Technol 203:1395–1399CrossRefGoogle Scholar
  108. 108.
    Xiang Z-F, Liu X-B, Ren J, Luo J, Shi S-H, Chen Y, Shi G-L, Wu S-H (2014) Investigation of laser cladding high temperature anti-wear composite coatings on Ti6Al4V alloy with the addition of self-lubricant CaF2. Appl Surf Sci 313:243–250CrossRefGoogle Scholar
  109. 109.
    Liu X-B, Meng X-J, Liu H-Q, Shi G-L, Wu S-H, Sun C-F, Wang M-D, Qi L-H (2014) Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy. Mater Des 55:404–409CrossRefGoogle Scholar
  110. 110.
    Yang Y, Zhang D, Yan W, Zheng Y (2010) Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding. Opt Lasers Eng 48:119–124CrossRefGoogle Scholar
  111. 111.
    Shariff SM, Tak M, Ojha H, Padmanabham G (2009) Characteristics and erosive wear performance of Ni-Cr based coatings on SS-310 steel by diode-laser cladding and weld-overlay processes. In: Proceedings of international conference on surface modification technologies (SMT-23), ChennaiGoogle Scholar
  112. 112.
    Tak M, Shariff SM, Sake V, Padmanabham G (2012) A novel method of pulsed laser-cladding or effective control of melting of WC particulates in NiCr-WC composite coatings. In: Proceedings of 31st international congress on applications of lasers & electro-optics (ICALEO 2012), pp 515–523Google Scholar
  113. 113.
    Venkatesh L, Samajdar I, Tak M, Doherty RD, Gundakaram RC, Prasad KS, Joshi SV (2015) Microstructure and phase evolution in laser clad chromium carbide-NiCrMoNb. Appl Surf Sci 357:2391–2401CrossRefGoogle Scholar
  114. 114.
    Yang Y, Guo N, Li J (2013) Synthesizing, microstructure and microhardness distribution of Ti–Si–C–N/TiCN composite coating on Ti–6Al–4V by laser cladding. Surf Coat Technol 219:1–7CrossRefGoogle Scholar
  115. 115.
    Li J, Chen C, Squartini T, He Q (2010) A study on wear resistance and microcrack of the Ti3Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy. Appl Surf Sci 257:1550–1555CrossRefGoogle Scholar
  116. 116.
    Yuping P, Guo B, Zhou J, Zhang S, Zhou H, Chen J (2008) Microstructure and tribological properties of in situ synthesized TiC, TiN, and SiC reinforced Ti3Al intermetallic matrix composite coatings on pure Ti by laser cladding. Appl Surf Sci 255:2697–2703CrossRefGoogle Scholar
  117. 117.
    Ochonogor OF, Meacock C, Abdulwahab M, Pityana S, Popoola API (2012) Effects of Ti and TiC ceramic powder on laser-cladded Ti–6Al–4V in situ intermetallic composite. Appl Surf Sci 263:591–596CrossRefGoogle Scholar
  118. 118.
    Dhanda M, Haldar B, Saha P (2014) Development and characterization of hard and wear resistant MMC coating on Ti-6Al-4V substrate by laser cladding. Procedia Mater Sci 6:1226–1232CrossRefGoogle Scholar
  119. 119.
    Wu F, Chen T, Wang H, Liu D (2017) Effect of Mo on microstructures and wear properties of in situ synthesized Ti(C,N)/Ni-based composite coatings by laser cladding. Materials 10:1047–1059CrossRefGoogle Scholar
  120. 120.
    Weng F, Yu H, Liu J, Chen C, Dai J, Zhao Z (2017) Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V. Opt Laser Technol 92:156–162CrossRefGoogle Scholar
  121. 121.
    Liu X-B, Wang H-M (2006) Modification of tribology and high-temperature behaviour of Ti–48Al–2Cr–2Nb intermetallic alloy by laser cladding. Appl Surf Sci 252:5735–5744CrossRefGoogle Scholar
  122. 122.
    Lv YH, Li J, Tao YF, Hu LF (2017) High-temperature wear and oxidation behaviours of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding. Appl Surf Sci 402:478–494CrossRefGoogle Scholar
  123. 123.
    Li GJ, Li J, Luo X (2014) Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate. Mater Charact 98:83–92CrossRefGoogle Scholar
  124. 124.
    Lin Y, Lei Y, Li X, Zhi X, Fu H (2016) A study of TiB2/TiB gradient coating by laser cladding on titanium alloy. Opt Lasers Eng 82:48–55CrossRefGoogle Scholar
  125. 125.
    Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A (2017) Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev 62:241–302CrossRefGoogle Scholar
  126. 126.
    Balani K, Rao SB, Yao Chen, Tapas L, Agarwal A (2007) Role of powder treatment and carbon nanotube dispersion in the fracture toughening of plasma-sprayed aluminum oxide-carbon nanotube nanocomposites. J Nanosci Nanotechnol 7:3553–3562Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • L. Rama Krishna
    • 1
    Email author
  • P. Suresh Babu
    • 1
  • Manish Tak
    • 1
  • D. Srinivasa Rao
    • 1
  • G. Padmanabham
    • 1
  • G. Sundararajan
    • 1
  1. 1.International Advanced Research Centre for Powder Metallurgy and New MaterialsBalapur, HyderabadIndia

Section editors and affiliations

  • L Rama Krishna
    • 1
  1. 1.Centre for Engineered CoatingsInternational Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Personalised recommendations