Skip to main content

High-Temperature Environmental Degradation Behavior of Ultrahigh-Temperature Ceramic Composites

Case Examples of Zirconium and Hafnium Diboride

  • Living reference work entry
  • First Online:

Abstract

In recent years, there is a very strong interest for the development of zirconium and hafnium diboride-based ultrahigh-temperature composites (UHTCs) for use in nose cones and leading edges of hypersonic vehicles, which are subjected to high temperatures and ablative environment during reentry into the earth atmosphere. An overview of the literature on high-temperature environmental degradation behavior of zirconium and hafnium diboride-based UHTCs has been presented, with emphasis on their resistance to oxidation under non-isothermal, isothermal, and cyclic conditions, as well as under ablative conditions during reentry at ~2000 °C. It has been observed that using SiC and Si-bearing reinforcements such as Si3N4 and MoSi2 aids in the formation of a borosilicate scale on the surfaces, which is capable of protecting partially or fully against further damage under extreme environments, depending on the temperature. Formation of oxidation products at grain boundaries and interfaces during creep contributes to damage by grain boundary sliding and intergranular cracking. Both nature of oxidation products and mechanisms of their formation leading to degradation are found to vary significantly with the temperature regimes of exposure. On subjecting to ablative exposure at temperatures close to 2000 °C, active oxidation of SiC along with vaporization of B2O3 influences the kinetics and mechanisms of degradation. Formation of ZrO2-rich oxide scale at such temperatures is believed to play the role of an in situ formed thermal barrier coating, which protects the composite underneath from damage. The effects of reinforcements and their volume fractions on oxidation and ablative behavior have been discussed.

This is a preview of subscription content, log in via an institution.

References

  1. Jackson TA, Eklund DR, Fink AJ (2004) High speed propulsion: performance advantage of advanced materials. J Mater Sci 39:5905–5913

    Article  CAS  Google Scholar 

  2. Vanwie DM, Drewary DG Jr, King DE, Hudson CM (2004) The hypersonic environment: required operating conditions and design challenges. J Mater Sci 39:5915–5924

    Article  CAS  Google Scholar 

  3. Kolodziej P (1997) Aerothermal performance constraints for hypervelocity small radius unswept leading edges and nose-tips, vol 112204. Ames Research Centre, Moffett Field, California, USA: NASA Technical Memorandum

    Google Scholar 

  4. Cutler RA (1992) Engineering properties of borides. In: Schneider SJ (ed) Ceramics and glasses, Engineered materials handbook, vol 4. ASM International, Materials Park, pp 787–803

    Google Scholar 

  5. Opeka MM, Talmy IG, Wuchina EJ, Zaykoski JA, Causey SJ (1999) Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J Eur Ceram Soc 19:2405–2414

    Article  CAS  Google Scholar 

  6. Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–3276

    Article  CAS  Google Scholar 

  7. Talmy IG, Zaykoski JA, Opeka MM (2008) High- temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2. J Am Ceram Soc 91:2250–2257

    Article  CAS  Google Scholar 

  8. Sciti D, Brach M, Bellosi A (2005) Long-term oxidation behavior and mechanical strength degradation of a pressurelessly sintered ZrB2-MoSi2 ceramic. Scr Mater 53:1297–1302

    Article  CAS  Google Scholar 

  9. Bellosi A, Montevede F (2003) Ultra-refractory ceramics: the use of sintering aids to obtain microstructural control and properties improvement. Key Eng Mater 264–268:787–792

    Google Scholar 

  10. Monteverde F, Bellosi A (2005) The resistance to oxidation of an HfB2–SiC composite. J Eur Ceram Soc 25:1025–1031

    Article  CAS  Google Scholar 

  11. Meier GH, Pettit FS (1992) The oxidation behavior of intermetallic compounds. Mater Sci Eng A 153:548–560

    Article  Google Scholar 

  12. Kuriakose AK, Margrave JL (1964) The oxidation kinetics of zirconium diboride and zirconium carbide at high temperatures. J Electrochem Soc 111:827–831

    Article  CAS  Google Scholar 

  13. Berkowitz-Mattuck JB (1966) High-temperature oxidation III. Zirconium and hafnium Diboride. J Electrochem Soc 113(9):908–994

    Article  CAS  Google Scholar 

  14. Tripp WC, Graham HC (1971) Thermogravimetric study of the oxidation of ZrB2 in the temperature range of 800–1500 °C. J Electrochem Soc 118:1195–1199

    Article  CAS  Google Scholar 

  15. Fahrenholtz WG (2005) The ZrB2 volatility diagram. J Am Ceram Soc 88(12):3509–3512

    Article  CAS  Google Scholar 

  16. Levine SR, Opila EJ, Halbig MC, Kiser JD, Singh M, Salem JA (2002) Evaluation of ultra-high temperature ceramics for aeropropulsion use. J Eur Ceram Soc 22:2757–2767

    Article  CAS  Google Scholar 

  17. Monteverde F (2005) The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures. Corr Sci 47:2020–2033

    Article  CAS  Google Scholar 

  18. Loehman RE (2004) Ultrahigh-temperature ceramics for hypersonic vehicle applications. Indus Heating Pittsburgh and Troy 71:36–38

    Google Scholar 

  19. Fahrenholtz WG, Hilmas GE, Chamberlain AL, Zimmermann JW (2004) Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J Mater Sci 39:5951–5957

    Article  CAS  Google Scholar 

  20. Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Effect of hot pressing time and temperature on the microstructure and mechanical properties of ZrB2–SiC. J Mater Sci 42:2735–2744

    Article  CAS  Google Scholar 

  21. Chemberlain A, Fahrenholtz W, Hilmas G, Ellerby D (2005) Oxidation of ZrB2-SiC ceramics under atmospheric and re-entry conditions. Refract Appl Trans 1(2):1–8

    Google Scholar 

  22. Chase MW Jr (1998) NIST-JANAF thermochemical tables, 4th edn. American Chemical Society and the American Institute of Physics, Woodbury

    Google Scholar 

  23. Barin I (1995) Therrnochernical data of pure substances, 3rd edn. VCH Publishers, Inc., New York

    Book  Google Scholar 

  24. Raj SV (1995) An evaluation of the properties of Cr3Si alloyed with Mo. Mater Sci Eng A 201:229–241

    Article  Google Scholar 

  25. Nesbitt JM, Lowell CE (1993) High temperature oxidation of intermetallics. In: High temperature ordered intermetallic alloys V. MRS Symposium Proceedings, vol 288, pp 107–118

    Google Scholar 

  26. Rockett TJ, Foster WR (1965) Phase relations in the system boron oxide-silica. J Am Ceram Soc 48(2):75–80

    Article  CAS  Google Scholar 

  27. Monteverde F, Bellosi A (2003) Oxidation of ZrB2-based ceramics in dry air. J Electrochem Soc 150:B552–B559

    Article  CAS  Google Scholar 

  28. Mitra R, Upender S, Mallik M, Chakraborty S, Ray KK (2009) Mechanical, thermal, and oxidation behaviour of zirconium diboride based ultra-high temperature ceramic composites. Key Eng Mater 395:55–68

    Article  CAS  Google Scholar 

  29. Mallik M, Ray KK, Mitra R (2011) Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites. J Eur Ceram Soc 31(1–2):199–215

    Article  CAS  Google Scholar 

  30. Tripp WC, Davis HH, Graham HC (1973) Effect of an SiC addition on the oxidation of ZrB2. Am Ceram Soc Bull 52:612–616

    CAS  Google Scholar 

  31. Shimada S, Ishil T (1990) Oxidation kinetics of zirconium carbide at relatively low temperatures. J Am Ceram Soc 73(10):2804–2808

    Article  CAS  Google Scholar 

  32. Sciti D, Medri V, Silvestroni L (2010) Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures. Scr Mater 63:601–604

    Article  CAS  Google Scholar 

  33. Monteverde F (2009) The addition of SiC particles into a MoSi2-doped ZrB2 matrix: effects on densification, microstructure and thermo-physical properties. Mater Chem Phy 113:626–633

    Article  CAS  Google Scholar 

  34. Guo WM, Zhang GJ (2010) Oxidation resistance and strength retention of ZrB2–SiC ceramics. J Eur Ceram Soc 30:2387–2395

    Article  CAS  Google Scholar 

  35. Opila E, Levine S, Lorincz J (2004) Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions. J Mater Sci 39:5969–5977

    Article  CAS  Google Scholar 

  36. Li X, Zhang X, Han J, Hong C, Han W (2008) A technique for ultrahigh temperature oxidation studies of ZrB2-SiC. Mater Let 62(17–18):2848–2850

    Article  CAS  Google Scholar 

  37. Carney CM (2009) Oxidation resistance of hafnium diboride–silicon carbide from 1400 to 2000 °C. J Mater Sci 44:5673–5681

    Article  CAS  Google Scholar 

  38. Sciti D, Balbo A, Bellosi A (2009) Oxidation behaviour of a pressureless sintered HfB2–MoSi2 composite. J Eur Ceram Soc 29(9):1809–1815

    Article  CAS  Google Scholar 

  39. Monteverde F (2005) Progress in the fabrication of ultra-high-temperature ceramics, “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite. Comp Sci Tech 65:1869–1879

    Article  CAS  Google Scholar 

  40. Han J, Hu P, Zhang X, Meng S (2007) Oxidation behavior of zirconium diboride–silicon carbide at 1800 °C. Scr Mater 57:825–828

    Article  CAS  Google Scholar 

  41. Han W, Hu P, Zhang X, Han J, Meng S (2008) High-temperature oxidation at 1900 °C of ZrB2–xSiC ultrahigh-temperature ceramic composites. J Am Ceram Soc 91(10):3328–3334

    Article  CAS  Google Scholar 

  42. Han J, Hu P, Zhang X, Meng S, Han W (2008b) Oxidation-resistant ZrB2–SiC composites at 2200 °C. Comp Sci Tech 68:799–806

    Article  CAS  Google Scholar 

  43. Hu P, Zhang X, Han J, Luo DS (2010) Effect of various additives on the oxidation behavior of ZrB2–based ultra-high-temperature ceramics at 1800 °C. J Am Ceram Soc 93(2):345–349

    Article  CAS  Google Scholar 

  44. Peng F, Speyer RF (2008) Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives. J Am Ceram Soc 91(5):1489–1494

    Article  CAS  Google Scholar 

  45. Zhang SC, Hilmas GE, Fahrenholtz WG (2008) Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J Am Ceram Soc 91(11):3530–3535

    Article  CAS  Google Scholar 

  46. Mallik M, Mitra R, Ray KK (2009) Oxidation behavior of three ZrB2 based ultra-high temperature ceramic composites. In: Sampe Europe 30th international jubilee conference and forum session, vol 7B, pp 467–474

    Google Scholar 

  47. Mallik M, Ray KK, Mitra R (2017) Effect of Si3N4 addition on oxidation resistance of ZrB2-SiC composites. Coatings 7:92. https://doi.org/10.3390/coatings7070092

    Article  CAS  Google Scholar 

  48. Opeka MM, Talmy IG, Zaykoski JA (2004) Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 39:5887–5904

    Article  CAS  Google Scholar 

  49. Mallik M (2014) Structure-property relations in zirconium and hafnium diboride based ultra high temperature ceramic composites. Ph.D dissertation, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal

    Google Scholar 

  50. Talmy IG, Zaykoski JA, Opeka MM, Dallek S (2001) Oxidation of ZrB2 ceramics modified with SiC and group IV-VI transition metal borides. In: McNallan M, Opila E (eds) High temperature corrosion and materials chemistry III. The Electrochemical Society, Inc., Pennington, pp 144–158

    Google Scholar 

  51. Parthasarathy TA, Rapp RA, Opeka M, Kerans RJ (2009) Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2. J Am Ceram Soc 92(5):1079–1086

    Article  CAS  Google Scholar 

  52. Krishnamurty R, Srolovitz DJ (2003) Stress distributions in growing oxide films. Acta Mater 51(8):2171–2190

    Article  CAS  Google Scholar 

  53. Chatterjee UK, Bose SK, Roy SK (2001) Environmental degradation of metals. Marcel Dakker Inc., New York

    Book  Google Scholar 

  54. Mallik M, Ray KK, Mitra R (2014) Effect of Si3N4 addition on compressive creep behavior of hot pressed ZrB2-SiC composites. J Am Ceram Soc 97(9):2957–2964

    Article  CAS  Google Scholar 

  55. Kashyap SK, Mitra R (2019) Effect of LaB6 additions on densification, microstructure, and creep with oxide scale formation in ZrB2-SiC composites sintered by spark plasma sintering. J Eur Ceram Soc 39:2782–2793

    Article  CAS  Google Scholar 

  56. Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johson S (2004) Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra-high temperature ceramics. J Mater Sci 39(19):5925–5937

    Article  CAS  Google Scholar 

  57. Savino R, Fumo MDS, Silvestroni L, Sciti D (2008) Arc-jet testing on HfB2 and HfC-based ultra-high temperature ceramic materials. J Eur Ceram Soc 28:1899–1907

    Article  CAS  Google Scholar 

  58. Bull J, White MJ, Kaufman L (1998) Ablation resistant zirconium and hafnium ceramics. US Patent No 5 750 450

    Google Scholar 

  59. Zhang X, Hu P, Han J, Meng S (2008) Ablation behavior of ZrB2–SiC ultra-high temperature ceramics under simulated atmospheric re-entry conditions. Comp Sci Tech 68:1718–1726

    Article  CAS  Google Scholar 

  60. Wang C, Wang H, Huang Y, Fang D (2007) Preparation and flame ablation/oxidation behavior of ZrB2/SiC ultra-high temperature ceramic composites. Key Eng Mater 351:142–146

    Article  CAS  Google Scholar 

  61. Cheng Z, Zhou C, Tian T, Sun C, Shi Z, Fan J (2008) Pressureless sintering of ultra-high temperature ZrB2–SiC ceramics. Key Eng Mater 368-372:1746–1749

    Article  CAS  Google Scholar 

  62. Li G, Han W, Zhang X, Han J, Meng S (2009) Ablation resistance of ZrB2–SiC–AlN ceramic composites. J Alloys Comp 479:299–302

    Article  CAS  Google Scholar 

  63. Weng L, Zhang X, Han W, Han J (2009) Fabrication and evaluation on thermal stability of hafnium diboride matrix composite at severe oxidation condition. Int J Ref Met Hard Mater 27:711–717

    Article  CAS  Google Scholar 

  64. Wu H, Zhang W (2009) Mechanical properties and ablation behavior of machinable ZrB2-SiC-BN ceramics. Adv Mater Res 79-82:2011–2014

    Article  CAS  Google Scholar 

  65. Zhou S, Li W, Hu P, Hong C, Weng L (2009) Ablation behavior of ZrB2–SiC–ZrO2 ceramic composites by means of the oxyacetylene torch. Corr Sci 51:2071–2079

    Article  CAS  Google Scholar 

  66. Zhou C, Wang Y, Cheng Z, Wang C, Sun JC, Feng B (2010) Ablation resistance of pressureless sintered ZrB2-based ceramics. Adv Mater Res 105-106:199–202

    Article  CAS  Google Scholar 

  67. Mallik M, Kailath AJ, Ray KK, Mitra R (2017) Effect of SiC content on electrical, thermal, and ablative properties of pressureless sintered ZrB2-based ultrahigh temperature ceramic composites. J Eur Ceram Soc 37(2):559–572

    Article  CAS  Google Scholar 

  68. Rezaie A, Fahrenholtz WG, Hilmas GE (2007) Evolution of structure during the oxidation of zirconium diboride-silicon carbide in air up to 1500 °C. J Eur Ceram Soc 27:2495–2501

    Article  CAS  Google Scholar 

  69. Suzuki M, Sodeoka S, Inoue T (2005) Structure control of plasma sprayed zircon coating by substrate preheating and post heat treatment. Mater Trans JIM 46:669–674

    Article  CAS  Google Scholar 

  70. Nguyen QGN, Opila EJ, Robinson RC (2004) Oxidation of ultrahigh temperature ceramics in water vapor. J Electrochem Soc 151(8):B558–B562

    Article  CAS  Google Scholar 

  71. Guérineau V, Julian-Jankowiak A (2018) Oxidation mechanisms under water vapour conditions of ZrB2-SiC and HfB2-SiC based materials up to 2400 °C. J Eur Ceram Soc 38:421–432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mitra .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mitra, R., Mallik, M., Kashyap, S. (2019). High-Temperature Environmental Degradation Behavior of Ultrahigh-Temperature Ceramic Composites. In: Mahajan, Y., Roy, J. (eds) Handbook of Advanced Ceramics and Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-73255-8_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73255-8_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73255-8

  • Online ISBN: 978-3-319-73255-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics