Advertisement

Novel Inorganic Compound Based Sensors for Their Application in Nuclear Energy Programs

  • V. Jayaraman
  • T. GnanasekaranEmail author
Living reference work entry

Abstract

Structure of the inorganic compounds determines their electrical conductivity, dielectric, optical, magnetic properties, etc. These structure and properties together decide the suitability of employing these materials for a given technological application. If electrical conductivity of materials is exploited for application as sensor, the type of conductivity, viz., ionic, electron/hole, and ionic-cum-electronic, exhibited by them needs to be understood. Depending on the type of conduction, they are classified as solid electrolytes, semiconductors, and mixed conductors. Several solid electrolyte systems where conductivity due to cations such as H+, Li+, Na+, Ag+, etc. are known, while only a few systems for anions such as H-, O2-, and F- are known. The conducting ion present in the solid electrolyte dictates its application as sensor in a chosen process stream, although indirect methods can also be deployed to use a solid electrolyte whose ion of conduction is different from the species to be sensed. The magnitude of ionic conductivity, transport number of the conducting ions, and the stability of the solid electrolyte in the environment of the application need to be evaluated before its selection. Although several semiconducting elements and compounds (oxides, sulfides, nitrides, etc.) are known, the use of elemental semiconductors is generally restricted to electrical and electronic devices. On the other hand, oxide semiconductors find a large application as chemical sensors for process and environmental monitoring. The bandgap, intrinsic and extrinsic conductivity, stability of the compound in the operating environment, temperature, etc. are important parameters that decide their application as sensors. This chapter deals with the selection of solid electrolyte based on oxides, hydridehalides, aluminates, phosphates, and halides their application in various nuclear energy programs. The experience of using semiconducting oxides, niobates, molybdates, etc. for various process monitoring is discussed. A brief mention on the use of titanates for piezoelectric sensor application and molten electrolyte-based sensor systems is made.

Keywords

Solid electrolytes Semiconducting oxides Hydridehalides Silver halides Sodium aluminates Phophates Molybdates Niobates Zirconates Thorates Sensors for hydrogen Oxygen Ammonia Chlorine Iodine Lithium Sodium aerosol 

List of Abbreviations

ADSS

Accelerator-driven subcritical systems

BCC

Body-centered cubic

BIT

Bismuth titanate

CSZ

Calcia-stabilized zirconia

FBR

Fast breeder reactor

LBE

Lead-bismuth eutectic

MPB

Morphotropic phase boundary

NASICON

Sodium super ionic conductor

PSZ

Partially stabilized zirconia

PZT

Lead zirconate titanate

YDT

Yttria-doped thoria

YSZ

Yttria-stabilized zirconia

References

  1. 1.
    Geller S (ed) (1977) Solid electrolytes. Springer, BerlinGoogle Scholar
  2. 2.
    Nafe H (1984) Ionic conductivity of ThO2- and ZrO2-based electrolytes between 300 and 2000 K. Solid State Ionics 13:255–263CrossRefGoogle Scholar
  3. 3.
    Patterson JW (1971) Conduction domains for solid electrolytes. J Electrochem Soc 118:1033–1039CrossRefGoogle Scholar
  4. 4.
    Jayaraman V, Gnanasekaran T (2016) Review – evolution of the development of in-sodium oxygen sensor and its present status. J Electrochem Soc 163:B395–B402CrossRefGoogle Scholar
  5. 5.
    Borgstedt HU, Mathews CK (1987) Applied chemistry of alkali metals, chapter 5. Plenum Press, New YorkGoogle Scholar
  6. 6.
    Hobdell MR, Smith CA (1982) Electrochemical techniques for monitoring dissolved carbon, hydrogen and oxygen in liquid sodium. J Nucl Mater 110:125–139CrossRefGoogle Scholar
  7. 7.
    Minushkin B, Kolodney M (1967) United Nuclear Corporation, United States Atomic Energy Commission (USAEC) Report UNC-5131Google Scholar
  8. 8.
    Iyer VS, Venugopal V, Mohapatra S, Singh Z, Roy KN, Prasad R, Sood DD (1988) Standard molar Gibbs free energy of formation of NaZrO3 J. Chem Thermodyn 20:781–784Google Scholar
  9. 9.
    Maier J, Warhus U (1986) Thermodynamic investigations of Na2ZrO3 by electrochemical means. J Chem Thermodyn 18:309–316CrossRefGoogle Scholar
  10. 10.
    Dash S, Singh Z, Parida SC, Venugopal V (2005) Thermodynamic studies on Rb2ThO3(S). J Alloys Compd 398:219–227CrossRefGoogle Scholar
  11. 11.
    Carter CB, Norton MG (2007) Ceramics materials – science and engineering, chapter 34. Springer, New YorkGoogle Scholar
  12. 12.
    Kingery WD, Bowen HK, Uhlmann DR (2004) Introduction to ceramics, 2nd edn. Wiley, New YorkGoogle Scholar
  13. 13.
    Greskovich C, O’Clair CR, Curran MJ (1972) Preparation of Y2O3 doped ThO2. J Am Ceram Soc 55:324–325CrossRefGoogle Scholar
  14. 14.
    Ganesan R, Vivekanandhan S, Gnanasekaran T, Periaswami G, Srinivasa RS (2004) Novel approach for the bulk synthesis of nanocrystalline yttria doped thoria powders via polymeric precursor routes. J Nucl Mater 325:134–140CrossRefGoogle Scholar
  15. 15.
    Jayaraman V, Krishnamurthy D, Ganesan R, Thiruvengadasami A, Sudha R, Prasad MVR, Gnanasekaran T (2007) Development of yttria-doped thoria solid electrolyte for use in liquid sodium systems. Ionics 13:299–303CrossRefGoogle Scholar
  16. 16.
    Ganesan R, Jayaraman V, Rajan Babu S, Sridharan R, Gnanasekaran T (2011) Development of sensors for on-line monitoring of nonmetallic impurities in liquid sodium. J Nucl Sci Technol 48:483–489CrossRefGoogle Scholar
  17. 17.
    Takizuka T, Tsujimoto K, Sasa T, Kenji NK, Takano H (2002) Design study of lead-bismuth cooled ADS dedicated to nuclear waste transmutation. Prog Nucl Energy 40:505–512CrossRefGoogle Scholar
  18. 18.
    Gorynin IV, Korzov GP, Markov VC, Lavrukhin VS, Yakovlev VA (1998) Structural materials for power plants with heavy liquid metals as coolants. In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, vol 1, pp 120–132Google Scholar
  19. 19.
    Gromov BF, Orlov YI, Martynov PN, Gulevsky VA (1998) The problems of technology of the heavy liquid metal coolants (Lead-Bismuth, Lead), In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, Russia, Vol 1, pp 87–91Google Scholar
  20. 20.
    Martynov PN, Orlov YI (1998) Slagging process in lead-bismuth loop- prevention and elimination of critical situations, In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, Russia, Vol 2, pp 565–576Google Scholar
  21. 21.
    Li N (2002) Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination. J Nucl Mater 300:73–81CrossRefGoogle Scholar
  22. 22.
    Zhang J, Li N (2008) Review of the studies on fundamental issues in LBE corrosion. J Nucl Mater 373:351–377CrossRefGoogle Scholar
  23. 23.
    Blokhin VA, Budylov EG, Velikanovich RI, Gorelov IN, Deryugin AN, Ivleva JI, Kozina MI, Musikhin YA, Ponimash ID, Sorokin AD, Shimkevich AL, Shmatko AB, Sherbakov EG (1998) Experience gained in creating and operating solid electrolyte meters of oxygen activity in lead-bismuth coolant. In: Proceedings of the conference on heavy metal liquid coolants in nuclear technology (HLMC-98), Obninsk, vol 2, pp 631–635Google Scholar
  24. 24.
    Konys J, Schroer C, Wedemeyer O (2009) Electrochemical oxygen sensors for corrosion control in lead-cooled nuclear reactors. Corros Sci 65:798–808CrossRefGoogle Scholar
  25. 25.
    Sahu SK, Ganesan R, Jayaraman V, Gnanasekaran T (2012) Development of zirconia based oxygen sensor for lead and lead-bismuth eutectic. Mat Sci Forum 710:751–756CrossRefGoogle Scholar
  26. 26.
    Kiukkola K, Wagner C (1957) Galvanic cells for the determination of the standard molar free energy of formation of metal halides, oxides, and sulfides at elevated temperatures. J Electrochem Soc 104:308–316CrossRefGoogle Scholar
  27. 27.
    Kiukkola K, Wagner C (1957) Measurements on galvanic cells involving solid electrolytes, J Electrochem Soc 104:379–387CrossRefGoogle Scholar
  28. 28.
    Jacob KT, Alcock CB (1973) Activity of indium in α-solid solutions of Cu + In, Au + In and Cu + Au + In alloys. Acta Metall 21:1011–1016CrossRefGoogle Scholar
  29. 29.
    Katayama I, Shimazawa K, Zivkovic D, Manasijevic D, Zivkovic Z, Yamashita H (2005) Experimental study on gallium activity in the Ga-In-Tl alloys by EMF method with zirconia solid electrolyte. Thermochim Acta 431:138–143CrossRefGoogle Scholar
  30. 30.
    Jendrzejczyk-Handzli D (2018) Thermodynamic properties of liquid silver-gold–gallium alloys determined from EMF measurements with solid YSZ electrolyte. Thermochim Acta 662:126–134CrossRefGoogle Scholar
  31. 31.
    Jacob KT, Gupta P (2015) Oxygen potentials and phase equilibria in the system Ca–Co–O and thermodynamic properties of Ca3Co2O6 and Ca3Co4O9. J Solid State Chem 221:57–65CrossRefGoogle Scholar
  32. 32.
    Jacob KT, Gupta P, Han D, Uda T (2013) Thermodynamics of NdRhO3 and phase relations in the system Nd–Rh–O. Calphad 43:71–79CrossRefGoogle Scholar
  33. 33.
    Aiswarya PM, Ganesan R, Gnanasekaran T (2017) Partial phase diagrams of Pb-Mo-O system and the standard molar Gibbs energy of formation of PbMoO4 and Pb2MoO5. J Nucl Mater 493:310–321CrossRefGoogle Scholar
  34. 34.
    Gnanasekaran T, Mahendran KH, Kutty KVG, Mathews CK (1989) Phase diagram studies on the Na-Mo-O system. J Nucl Mater 165:210–216CrossRefGoogle Scholar
  35. 35.
    Gnanasekaran T, Mahendran KH, Periaswami G, Mathews CK, Borgstedt HU (1987) Stability of ternary oxygen compounds of molybdenum in liquid sodium. J Nucl Mater 150:113–127CrossRefGoogle Scholar
  36. 36.
    Knights CF, Phillips BA (1977) Phase diagrams and thermodynamic studies of the Cs-Cr-O, Na-Cr-O and Na-Fe-O systems and their relationships to the corrosion of steels by caesium and sodium. In: Glasser FP, Potter PE (eds) High temperature chemistry of inorganic and ceramic materials, Special publication no. 30. Chemical Society, London, pp 134–145Google Scholar
  37. 37.
    Sreedharan OM, Madan BS, Gnanamoorthy JB (1983) Threshold oxygen levels in Na(l) for the formation of NaCrO2(s) on 18-8 stainless steels from accurate thermodynamic measurements. J Nucl Mater 119:296–300CrossRefGoogle Scholar
  38. 38.
    Gnanasekaran T, Mathews CK (1986) Threshold oxygen levels in sodium necessary for the formation of NaCrO2 in sodium-steel systems. J Nucl Mater 140:202–213CrossRefGoogle Scholar
  39. 39.
    Moseley PT, Toefield BC (eds) (1987) Solid state gas sensors. Adam Hilger, BristolGoogle Scholar
  40. 40.
    Yamazoe N, Miura N (1991) Some basic aspects of semiconductor gas sensors. In: Yamaguchi S (ed) Chemical sensor technology, vol 3. Kodansha Ltd., Tokyo. (1992), pp 19–42Google Scholar
  41. 41.
    Morrison SR (1978) Adsorption and desorption. In: The chemical physics of surfaces. Plenum Press, New York, pp 251–295Google Scholar
  42. 42.
    Seiyama T (1988) Surface reactivity of oxide materials in oxidation-reduction environment. In: Nowotny J, Dufour LC (eds) Materials science monographs, vol 47. Elsevier, New York, pp 189–217Google Scholar
  43. 43.
    Sunu S (2004) Investigations on electrical and gas sensing properties of pure and doped MoO3 and WO3, PhD Thesis, University of MadrasGoogle Scholar
  44. 44.
    Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B 5:7–19CrossRefGoogle Scholar
  45. 45.
    Mitsudo H (1980) Ceramics for gas and humidity sensors (part 1) – gas sensor. Ceramics 15:339–345Google Scholar
  46. 46.
    Kanefusa S, Nitta M, Haradome M (1980) Thick film gas leak detector for town gas. J Chem Soc Jpn 75:1591–1595Google Scholar
  47. 47.
    Yamazoe N, Kurokawa Y, Seiyama T (1983) Effects of additives on semiconductor gas sensors. Sensors Actuators 4:283–289CrossRefGoogle Scholar
  48. 48.
    Suzuki T, Yamazaki T, Yoshioka H, Hikichi K (1988) Influence of thickness on H2 gas sensor properties in polycrystalline SnOx films prepared by ion-beam sputtering. J Mater Sci 23:1106–1111CrossRefGoogle Scholar
  49. 49.
    McAleer JF, Moseley PT, Norris JOW, Williams DE, Tofield BC (1988) Tin dioxide gas sensors. Part 2 – the role of surface additives. J Chem Soc Faraday Trans 1 84:441–457CrossRefGoogle Scholar
  50. 50.
    Sree Rama Murthy A, Ashok Kumar A, Prabhu E, Clinsha PC, Lakshmigandhan I, Chandramouli S, Mahendran KH, Gnanasekar KI, Jayaraman V, Nashine BK, Rajan KK, Gnanasekaran T (2014) Performance of semiconducting oxide based hydrogen sensor for argon cover gas in engineering scale sodium facility. Nucl Engg Design 273:555–559CrossRefGoogle Scholar
  51. 51.
    Shekhar C, Gnanasekar KI, Prabhu E, Jayaraman V, Gnanasekaran T (2011) In2O3 + x BaO (x = 0.5 – 5 at.%) – a novel material for trace level detection of NOx in the Ambient. Sensors Actuators B Chem 155:19–27CrossRefGoogle Scholar
  52. 52.
    Mangamma G, Jayaraman V, Gnanasekaran T, Periaswami G (1998) Effect of Silica addition on H2S sensing properties of CuO-SnO2 sensors. Sensors Actuators B 53:133–139CrossRefGoogle Scholar
  53. 53.
    Gnanasekaran T (1999) Thermochemistry of binary Na–NaH and ternary Na–O–H systems and the kinetics of reaction of hydrogen/water with liquid sodium – a review. J Nucl Mater 274:252–272CrossRefGoogle Scholar
  54. 54.
    Müller U (2006) Inorganic structural chemistry, 2nd edn. Wiley, West SussexCrossRefGoogle Scholar
  55. 55.
    Ehrlich P, Peik K, Koch E (1963) Thermochemische Messungen an den Hydridhalogeniden der Erdalkalimetalle. Z fuer Anorganische und Allegemeine Chemie 324:113–224CrossRefGoogle Scholar
  56. 56.
    Ramanathan V, Babu B, Rajendran B, Sahu HK (2001) Nickel diffuser based instrumentation for real time detection of hydrogen concentration in liquid sodium in fast breeder test reactor. In: Proceedings eighth national seminar on physics and technology of sensors, Kalpakkam, 27 Feb –1 Mar 2001, C-11.1-3Google Scholar
  57. 57.
    Funada T, Nihei I, Yuhara S, Nakasuji T (1979) Measurements of hydrogen concentration in liquid sodium by using an inert gas carrier method. Nucl Technol 45:158–165CrossRefGoogle Scholar
  58. 58.
    Hills MP, Thompson C, Henson MA, Moores A, Schwandt C, Kumar RV (2009) Accurate measurement of hydrogen in molten aluminium using current reversal mode. In: Bearne G (ed) Proceedings of the technical sessions presented by the TMS aluminum committee at the TMS 2009 annual meeting & exhibition, San Francisco, 15–19 Feb 2009. Minerals, Metals and Materials Society, Warrendale, pp 707–712Google Scholar
  59. 59.
    Sridharan R, Mahendran KH, Gnanasekaran T, Periaswami G, Varadaraju UV, Mathews CK (1995) On the phase relationships and electrical properties in the CaCl2 – CaH2 system. J Nucl Mater 223:72–79CrossRefGoogle Scholar
  60. 60.
    Joseph K, Sujatha K, Nagaraj S, Mahendran KH, Sridharan R, Periaswami G, Gnanasekaran T (2000) Investigations on the phase equilibria of some hydride ion conducting electrolyte systems and their application for hydrogen monitoring in sodium coolant. J Nucl Mater 344:285–290CrossRefGoogle Scholar
  61. 61.
    Smith CA (1972) An electrochemical hydrogen concentration cell – with application to sodium systems, British Nuclear Laboratories, CEGB Report, RD/B/N-2331Google Scholar
  62. 62.
    Bouchacourt M, Debergh P, Oberlin C and Saint Paul P (1984), EdF experience on analysis of non-metallic impurities in sodium. In: Proceedings of the 3rd international conference on liquid metal engineering and technology, Oxford, 9–13 Apr 1984, vol 1, pp 45–52Google Scholar
  63. 63.
    Mason L, Morrison NS, Robertson CM, Trevillion A (1984) The monitoring of oxygen, hydrogen and carbon in the sodium circuits of PFR. In: Proceedings of the 3rd international conference on liquid metal engineering and technology, Oxford, 9–13 Apr 1984, vol 1, pp 53–60Google Scholar
  64. 64.
    Smith CA, Simm PA (1984) Calibration and performance of galvanic cell hydrogen and oxygen meters in sodium. In: Proceedings of the 3rd international conference on liquid metal engineering and technology, Oxford, 9–13 Apr 1984, vol 3, pp 111–116Google Scholar
  65. 65.
    Pankratz LB (1984) Thermodynamic properties of halides, Bulletin 874, US Department of the Interior, Bureau of Mines, 830 ppGoogle Scholar
  66. 66.
    Makiura R, Yonemura T, Yamada T, Yamauchi M, Ikeda R, Kitagawa H, Takata M (2009) Size-controlled stabilisation of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nat Mater 8:476–480CrossRefGoogle Scholar
  67. 67.
    Hull S (2004) Superionics: crystal structures and conduction processes. Rep Prog Phys 67:1233–1314CrossRefGoogle Scholar
  68. 68.
    West AR (1989) Solid state chemistry and its applications. Wiley, New YorkGoogle Scholar
  69. 69.
    Rodriguez LA, Zapata J, Vargas RA, Pena Lara D, Diosa JE (2016) Superionic behaviour in the xAgI – (1-x)CsAg2I3 polycrystalline system. J Phys Chem Solids 93:126–130CrossRefGoogle Scholar
  70. 70.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cyrstallogr Sect A A32:751–767CrossRefGoogle Scholar
  71. 71.
    Bazan JC, Schmidt JA (1976) A Cu(I) ion conductor obtained by replacement of Ag(I) in α–AgI. J Appl Electrochem 6:411–415CrossRefGoogle Scholar
  72. 72.
    Armstrong RD, Bulmer RS, Dickinson T (1973) Some factors responsible for high ionic conductivity in simple solid compounds. In: van Gool W (ed) Fast ion transport in solids. North Holland Publishing Company, Amsterdam, pp 269–284CrossRefGoogle Scholar
  73. 73.
    Shahi K, Wagner JB Jr (1980) Anomalous ionic conduction in AgBr-AgI mixed crystals and multiphase systems. Phy Rev B 23:6417–6421CrossRefGoogle Scholar
  74. 74.
    Bazan JC, Pettigrosso RS (1994) A DSC and conductivity study of the influence of cesium ion on the beta to alpha transition in silver iodide. In: Chowdari BVR, Yahaya M, Talib IB, Salleh MM (eds) Solid state ionics materials. World Scientific, Singapore, pp 205–210Google Scholar
  75. 75.
    Rifuiddin MH (2007) Superionic conducting phase in Cd-substituted CsAgI3. Solid State Commn 144:293–295CrossRefGoogle Scholar
  76. 76.
    El Kettai M, Malugani JP, Mercier R, Tachez M (1986) Phase transitions and conductivity in superionic Ag3SI1-xBrx solid solutions. Solid State Ionics 20:87–92CrossRefGoogle Scholar
  77. 77.
    Beeken RB, Wright TJ, Sakuma T (1999) Effect of chloride substitution in the fast ion conductor Ag3SBr. J Appl Phys 85:7635–7638CrossRefGoogle Scholar
  78. 78.
    West AR (2007) Solid state chemistry and its applications. Wiley, New YorkGoogle Scholar
  79. 79.
    Ihara S, Warita Y, Suzuki K (1984) Ionic conductivity in AgI-xClx. Phys Status Solidi A 86:729–734CrossRefGoogle Scholar
  80. 80.
    Clinsha PC, Gnanasekar KI, Jayaraman V, Gnanasekaran T (2015) AgI1-xClx (x = 0–0.05) electrolytes for trace level sensing of chlorine. In: Proceedings 2nd international symposium of physics and technology of sensors, IEEE Xplore, pp 94–96Google Scholar
  81. 81.
    Clinsha PC (2017) Studies on synthesis, characterization of AgI1-xClx solid solutions for I2 and Cl2 sensing properties, PhD Thesis, Homi Bhabha National Institute (University)Google Scholar
  82. 82.
    Kummer JT (1992) β-Alumina electrolytes. Prog Solid State Chem 7:141–175CrossRefGoogle Scholar
  83. 83.
    DeVries RC, Roth WI (1969) Critical evaluation of the literature data on beta alumina and related phases: I-phase equilibria and characterization of beta alumina phases. Am Ceram Soc 52:364–369CrossRefGoogle Scholar
  84. 84.
    Bragg WL, Gottfried C, West J (1931) The structure of β alumina. Z Krist 77:255–274Google Scholar
  85. 85.
    Sudworth JL, Tilley AR (1985) The sodium sulphur battery. Chapman & Hall, LondonGoogle Scholar
  86. 86.
    Takikawa O, Imai A, Harata M (1982) Characteristics of the Na/beta-alumina/Na cell as a sodium vapor pressure sensor. Solid State Ionics 7:101–107CrossRefGoogle Scholar
  87. 87.
    Jayaraman V, Prabhu E, Sree Rama Murthy A, Clinsha PC, Gnanasekar KI, Gnanasekaran T (2014) Na – β – Al2O3 based sensor for sodium aerosol. Sensors Actuators B 202:9–13CrossRefGoogle Scholar
  88. 88.
    Asuvathraman R, Gnanasekar KI, Clinsha PC, Ravindran TR, Govindan Kutty KV (2015) Investigations on the charge compensation on Ca and U substitution in CePO4 by using XPS, XRD and Raman spectroscopy. Ceram Int 41:3731–3739CrossRefGoogle Scholar
  89. 89.
    Jena H, Maji BK, Asuvathraman R, Govindan Kutty KV (2012) Synthesis and thermal characterization of glass bonded Ca-chloroapatite matrices for pyrochemical chloride waste immobilization. J Non-Crystalline Solids 358:1681–1686CrossRefGoogle Scholar
  90. 90.
    Hong HYP (1976) Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater Res Bull 11:173–182CrossRefGoogle Scholar
  91. 91.
    Goodenough JB, Hong HYP, Kafalas JA (1976) Fast Na+ ion transport in skeleton structures. Mater Res Bull 11:203–220CrossRefGoogle Scholar
  92. 92.
    Chavez ML, Quintana P, West AR (1986) New Li+ ion conductors, Li2−4xZr1+x(PO4)2. Mat Res Bull 21:1411–1416CrossRefGoogle Scholar
  93. 93.
    Sree Rama Murthy A, Jayaraman V, Gnanasekaran T (2017) Preparation and characterization of some lithium – ion conductors. Solid State Ionics 303:138–143CrossRefGoogle Scholar
  94. 94.
    Vella G, Aiello G, Füetterer MA, Giancarli L, Oliveri E, Tavassoli F (1998) Water-cooled Pb–17Li test blanket module for ITER: impact of the structural material grade on the neutronic responses. J Nucl Mater 258–263:357–361CrossRefGoogle Scholar
  95. 95.
    Tas H, Malang S, Reiter F, Sannier J (1988) Liquid breeder materials. J Nucl Mater 155–157:178–187CrossRefGoogle Scholar
  96. 96.
    Hubberstey P (1997) Pb-17Li and lithium: a thermodynamic rationalisation of their radically different chemistry. J Nucl Mater 247:208–214CrossRefGoogle Scholar
  97. 97.
    Hubberstey P, Sample T, Barker MG (1991) Continuous monitoring of the composition of liquid Pb-17Li eutectic using electrical resistivity methods. J Nucl Mater 179–181:886–890CrossRefGoogle Scholar
  98. 98.
    Conrad R (1991) Irradiation experiments on liquid tritium breeding material Pb-17Li in the HFR Petten. Fusion Eng Des 14:289–297CrossRefGoogle Scholar
  99. 99.
    Conrad R, Debarberis L, Coen V, Flament T (1991) Irradiation of liquid breeder material Pb-17Li with in-situ tritium release measurements in the LIBRETTO 2 experiment. J Nucl Mater 179–181:875–878CrossRefGoogle Scholar
  100. 100.
    Yamazoe N, Fuchigami J, Kishikawa M, Seiyama T (1979) Interactions of tin oxide surface with O2, H2O and H2. Suf Sci 86:335–344CrossRefGoogle Scholar
  101. 101.
    Watson J, Ihokura K (1999) Gas sensing materials. MRS Bull 24:14–17CrossRefGoogle Scholar
  102. 102.
    Bielanski A, Haber J (1979) Oxygen in catalysis on transition metal oxides. Catal Rev – Sci Eng 19:1–41CrossRefGoogle Scholar
  103. 103.
    Kadam RM, Sastry MD, Iyer RM, Gopalakrishnan IK, Yakhmi JV (1997) Electron paramagnetic resonance studies in HgMo6S8 doped with Cu2+: evidence for cationic mobility. J Phys Condens Matter 9:551–556CrossRefGoogle Scholar
  104. 104.
    Sunu SS, Prabhu E, Jayaraman V, Gnanasekar KI, Gnanasekaran T (2004) Electrical conductivity and gas sensing properties of MoO3. Sensors Actuators B Chem 101:161–174CrossRefGoogle Scholar
  105. 105.
    Huffman DE (1987) Studies in molybdenum catalysts – I. Metal vapor reactions of molybdenum trioxide with various alkoxy silanes, II. Investigations of oxide supported molybdenum catalysts prepared from molybdenum (VI) dioxodiethoxide, PhD Thesis, Oregon State UniversityGoogle Scholar
  106. 106.
    Brazdol JF, Suresh DD, Grasselli RK (1980) Redox kinetics of bismuth molybdate ammoxidation catalysts. J Catalysis 66:347–367CrossRefGoogle Scholar
  107. 107.
    Zhai Z, Getsoian AB, Bell AT (2013) The kinetics of selective oxidation of propene on bismuth vanadium molybdenum oxide catalysts. J Catalysis 308:25–36CrossRefGoogle Scholar
  108. 108.
    Mars P, van Krevelen DW (1954) Oxidations carried out by means of vanadium oxides catalysts. Chem Eng Sci 3:41–59CrossRefGoogle Scholar
  109. 109.
    Sunu SS, Jayaraman V, Prabhu E, Gnanasekar KI, Gnanasekaran T (2004) Ag6Mo10O33 – a new silver ion conducting ammonia sensor material. Ionics 10:244253CrossRefGoogle Scholar
  110. 110.
    Prabhu E, Muthuraja S, Gnanasekar KI, Jayaraman V, Sivabalan S, Gnanasekaran T (2008) Ammonia sensing properties of thick and thin films of Ag6Mo10O33 and Cr1.8Ti0.2O3+δ. Surf Engg 24:170–175CrossRefGoogle Scholar
  111. 111.
    Kohli A, Wang CC, Akbar SA (1999) Niobium pentoxide as a lean-range oxygen sensor. Sensors Actuators B 56:121–128CrossRefGoogle Scholar
  112. 112.
    Kukli K, Ritala M, Leskela M (2001) Development of dielectric properties of niobium oxide, tantalum oxide and aluminium oxide based nanolayeredmaterials. J Electrochem Soc 148:F35–F41CrossRefGoogle Scholar
  113. 113.
    Wang Z, Hu Y, Wang W, Zhang X, Wang B, Tian H et al (2012) Fast and highly-sensitive hydrogen sensing of Nb2O5 nanowires at room temperature. Int J Hydrog Energy 37:4526–4532CrossRefGoogle Scholar
  114. 114.
    Yu J, Yuan L, Wen H, Shafiei M, Field MR, Liang J et al (2013) Hydrothermally formed functional niobium oxide doped tungsten nanorods. Nanotechnology 24:495–501Google Scholar
  115. 115.
    Yu J, Wen H, Shafiei M, Field MR, Liu ZF, Wlodarski W et al (2013) A hydrogen/methane sensor based on niobium tungsten oxide nanorods synthesized by hydrothermal method. Sensors Actuators B 184:118–129CrossRefGoogle Scholar
  116. 116.
    Meixner H, Lampe U (1996) Metal oxide sensors. Sensors Actuators B 33:198–202CrossRefGoogle Scholar
  117. 117.
    Henshaw GS, Dusastre V, Williams DE (1996) Selectivity and composition dependence of gas sensitive resistors. Part 3 – properties of the solid solution series (CrNbO4)x (Sn1-ySbO2)1-x (0≤ x ≤1, y= 0, 0.01, 0.5). J Mater Chem 6:1351–1354CrossRefGoogle Scholar
  118. 118.
    Henshaw GS, Morris L, Gellman LJ, Williams DE (1996) Selectivity and composition dependence of gas sensitive resistors. Part 4 – properties of some rutile solid solution compounds. J Mater Chem 6:1883–1887CrossRefGoogle Scholar
  119. 119.
    Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier Science, AmsterdamCrossRefGoogle Scholar
  120. 120.
    Christensen AN, Johanssen A, Lebech B (1976) Magnetic properties and structure of chromium niobium oxide and iron tantalum oxide. J Phys C Solid State Phys 9:2601–2610CrossRefGoogle Scholar
  121. 121.
    Sree Rama Murthy A (2016) PhD thesis, Indian Institute of Science, BangaloreGoogle Scholar
  122. 122.
    Sree Rama Murthy A, Gnanasekar KI, Jayaraman V, Umarji AM, Gnanasekaran T (2015) Conductometric sensing of H2 by chromium niobate. IEEE Sensors J 15:7054–7460CrossRefGoogle Scholar
  123. 123.
    Salzano FJ, Newman L, Hobdell MR (1971) An electrochemical carbon meter for use in sodium. Nucl Technol 10:335–347CrossRefGoogle Scholar
  124. 124.
    Hobdell MR, Gwyther JR (1975) The use of alkali carbonates in carbon concentration cells. J Appl Electrochem 5:263–269CrossRefGoogle Scholar
  125. 125.
    Hobdell MR, Trevillion EA, Gwyther JR, Tyfield SP (1982) Calibration tests of an electrochemical carbon meter. J Electrochem Soc 129:2746–2748CrossRefGoogle Scholar
  126. 126.
    Hobdell MR, Gwyther JR (1973) Development and use of electrochemical techniques for studying carbon behavior in liquid alkali metal systems, in: Proc. of the international conference on liquid alkali metals, Nottingham University, England, 4–6 Apr 1973, British Nuclear Energy Society, London, pp 127–132Google Scholar
  127. 127.
    Rajan Babu S, Reshmi PR, Gnanasekaran T (2012) An electrochemical meter for measuring carbon potential in molten sodium. Electrochim Acta 59:522–530CrossRefGoogle Scholar
  128. 128.
    Cassir M, Moutiers G, Daynck J (1993) Stability and characterization of oxygen species in alkali molten carbonate: a thermodynamic and electrochemical approach. J Electrochem Soc 140:3114–3123CrossRefGoogle Scholar
  129. 129.
    Appleby AJ, Nicholson S (1977) Reduction of oxygen in alkali carbonate melts. J Electroanal Chem 83:309–328CrossRefGoogle Scholar
  130. 130.
    Appleby AJ, Nicholson S (1980) Reduction of oxygen in lithium-potassium carbonate melt. J Electroanal Chem 112:71–76CrossRefGoogle Scholar
  131. 131.
    Barker MG, Hubberstey P, Dadd AT, Frankham SA (1983) The interaction of chromium with nitrogen dissolved in liquid lithium. J Nucl Mater 114:143–149CrossRefGoogle Scholar
  132. 132.
    Adams PF, Down MG, Hubberstey P, Pulham RJ (1975) Solubilities, and solution and solvation enthalpies, for nitrogen and hydrogen in liquid lithium. J Less-Common Met 42:325–334CrossRefGoogle Scholar
  133. 133.
    Barker MG, Chamberlain DK, Frankham SA, Moon NJ, Smith SE (1988) Electrochemical measurements in liquid alkali metals. In: Proceedings of the 4th international conference on liquid metal engineering and technology, Avignon, 7–21 Oct 1988, vol 3, pp 606-1–606-10Google Scholar
  134. 134.
    Jaffe B, Cook WR Jr, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, p 131Google Scholar
  135. 135.
    Hong SH, McKinstry ST, Messing GL (2000) Dielectric and electromechanical properties of textured niobium-doped bismuth titanate ceramics. J Am Ceram Soc 83:113–118CrossRefGoogle Scholar
  136. 136.
    Sakai T, Watanabe T, Osada M, Kakihana M, Noguchui Y, Miyayama M, Funakubo H (2003) Crystal structure and ferroelectric property of tungsten-substituted Bi4Ti3O12 thin films prepared by metal-organic chemical vapor deposition. J Appl Phys 42:2850–2852CrossRefGoogle Scholar
  137. 137.
    Kim JK, Song TK, Kim SS, Kim J (2002) Ferroelectric properties of tungsten-doped bismuth titanate thin film prepared by sol–gel route. Mater Letter 57:964–968CrossRefGoogle Scholar
  138. 138.
    Ng SH, Xue J, Wang J (2002) Bismuth titanate from mechanical activation of a chemically coprecipitated precursor. J Am Ceram Soc 85:2660–2665CrossRefGoogle Scholar
  139. 139.
    Takenaka T, Sakata K (1980) Grain orientation and electrical properties of hot forged Bi4Ti3O12 ceramics. Jpn J Appl Phys 19:31–39Google Scholar
  140. 140.
    Fuierer PA, Nichtawitz A (1994) Electric field assisted hot forging of bismuth titanate. In: Proceedings of 1994 IEEA symposium on applications of ferroelectrics, University Park, 7–10 Aug 1994, pp 126–129Google Scholar
  141. 141.
    Zaremba T (2009) Anisotropic grain growth of bismuth titanate in molten salt fluxes. Z Kristallogr Suppl 30:477–482CrossRefGoogle Scholar
  142. 142.
    Chen Jie G, Song ZC (2011) Molten salt synthesis of anisotropic Bi4Ti3O12 particles. Adv Mater Res 284:1452–1455Google Scholar
  143. 143.
    Kimura T, Yamaguchi Y (1983) Fused salt synthesis of Bi4Ti3O12. Ceram Int 9:13–17CrossRefGoogle Scholar
  144. 144.
    Asokane C et al Indira Gandhi Centre for Atomic Research, Kalpakkam (unpublished results)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Materials Chemistry DivisionMaterials Chemsitry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic ResearchKalpakkamIndia

Section editors and affiliations

  • Tetsuji NODA

There are no affiliations available

Personalised recommendations