Advertisement

Boron-Based Ceramics and Composites for Nuclear and Space Applications: Synthesis and Consolidation

  • Tammana S. R. C. MurthyEmail author
  • J. K. Sonber
  • K. Sairam
  • Sanjib Majumdar
  • Vivekanand Kain
Living reference work entry

Abstract

Boron is one of the few elements to possess nuclear properties, which warrant its consideration as neutron absorber material due to its high neutron absorption cross section of 3838 barns (for thermal neutrons, 0.025 ev) for 10B isotope. Boron-based ceramics are used as a control/shutoff rod, neutron shielding for the nuclear reactor as well as spent fuel storage bays, neutron sensors for measuring the neutron flux in a nuclear reactor, and space applications. Refractory and rare earth metal borides possess superior thermophysical properties, which enables to use for high-temperature structural/functional applications. These borides are potential for high-temperature nuclear reactors of Generation IV as neutron absorbers, second-generation solar (receiver materials of concentrated solar power), and space applications such as rocket and hypersonic vehicle components, nozzles, leading edges, and engine components [81, 97, 109, 115]. Refractory metal borides are suitable for space application due to attractive combination of properties such as high melting point (>3000 °C), thermal conductivity, low thermal expansion coefficient, retention of strength at high temperatures, good thermal shock, oxidation, and erosion resistance [61, 81, 105, 118]. Various boron-based ceramics such as B4C, TiB2, ZrB2, HfB2, NbB2, CrB2, LaB6, CeB6, NdB6, SmB6, YbB6, PrB6, GdB4, and EuB6 and its composites were synthesized and consolidated by various methods which are cited in the literature. This chapter reviews the work carried out on synthesis, consolidation, properties, and applications of important transition/refractory/rare earth metal borides.

Keywords

Boron Borides Nuclear Space Synthesis Consolidation 

References

  1. 1.
    Acharya R, Raja SW, Chhillar S et al (2018) Non-destructive quantification of total boron and its isotopic composition in boron based refractory materials by PIGE and an inter-comparison study using TIMS and titrimetry. J Anal At Spectrom 33:33.  https://doi.org/10.1039/c7ja00416hCrossRefGoogle Scholar
  2. 2.
    Aǧaoǧullari D, Duman I, Öveçoǧlu ML (2012) Synthesis of LaB6 powders from La2O3, B2O3 and Mg blends via a mechanochemical route. Ceram Int 38:6203–6214.  https://doi.org/10.1016/j.ceramint.2012.04.073CrossRefGoogle Scholar
  3. 3.
    Ağaoğullari D, Balcı Ö, Öveçoğlu ML, Duman İ (2016) Preparation of LaB6 powders via calciothermic reduction using mechanochemistry and acid leaching. KONA 2016:203–218.  https://doi.org/10.14356/kona.2016001CrossRefGoogle Scholar
  4. 4.
    Akin I, Hotta M, Sahin FC et al (2009) Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering. J Eur Ceram Soc 29:2379–2385.  https://doi.org/10.1016/j.jeurceramsoc.2009.01.011CrossRefGoogle Scholar
  5. 5.
    Babu MS, Sivanantham A, Chakravarthi BB et al (2017) Enhanced Photoelectrochemical water splitting behaviour of tuned band gap CdSe QDs sensitized LaB6. J Nanosci Nanotechnol 17:437–442.  https://doi.org/10.1166/jnn.2017.12410CrossRefGoogle Scholar
  6. 6.
    Baik S, Becher PF (1987) Effect of oxygen contamination on densification of TiB2. J Am Ceram Soc 70:527–530.  https://doi.org/10.1111/j.1151-2916.1987.tb05699.xCrossRefGoogle Scholar
  7. 7.
    Basu B, Raju GB, Suri AK (2006) Processing and properties of monolithic TiB2 based materials. Int Mater Rev 51:352–374.  https://doi.org/10.1179/174328006X102529CrossRefGoogle Scholar
  8. 8.
    Bedse RD, Sonber JK, Sairam K et al (2015) Processing and characterization of CrB2-based novel composites. High Temp Mater Process 34.  https://doi.org/10.1515/htmp-2014-0084
  9. 9.
    Berchmans LJ, Visuvasam A, Angappan S et al (2010) Electrosynthesis of samarium hexaboride using tetra borate melt. Ionics (Kiel) 16:833–838.  https://doi.org/10.1007/s11581-010-0469-3CrossRefGoogle Scholar
  10. 10.
    Berthon S, Malé G (1997) Infiltration of zirconium diboride by ICVI in porous materials. Compos Sci Technol 57:217–227.  https://doi.org/10.1016/S0266-3538(96)00131-5CrossRefGoogle Scholar
  11. 11.
    Bhatt B, Murthy TSRC, Limaye PK et al (2016) Tribological studies of monolithic chromium diboride against cemented tungsten carbide (WC–Co) under dry condition. Ceram Int 42.  https://doi.org/10.1016/j.ceramint.2016.06.208CrossRefGoogle Scholar
  12. 12.
    Carney CM, Parthasarathy TA, Cinibulk MK (2011) Oxidation resistance of hafnium diboride ceramics with additions of silicon carbide and tungsten boride or tungsten carbide. J Am Ceram Soc 94:2600–2607.  https://doi.org/10.1111/j.1551-2916.2011.04462.xCrossRefGoogle Scholar
  13. 13.
    Castano CE, Keefe MJO, Fahrenholtz WG (2015) Cerium-based oxide coatings. Curr Opin Solid State Mater Sci 19:69–76.  https://doi.org/10.1016/j.cossms.2014.11.005CrossRefGoogle Scholar
  14. 14.
    Chamberlain AL, Fahrenholtz WG, Hilmas GE, Ellerby DT (2004) High-strength zirconium Diboride-based ceramics. J Am Ceram Soc 87:1170–1172.  https://doi.org/10.1111/j.1551-2916.2004.01170.xCrossRefGoogle Scholar
  15. 15.
    Chamberlain AL, Fahrenholtz WG, Hilmas GE (2006) Pressureless sintering of zirconium Diboride. J Am Ceram Soc 89:450–456.  https://doi.org/10.1111/j.1551-2916.2005.00739.xCrossRefGoogle Scholar
  16. 16.
    Chiang Y, Birnie DP, Kingery WD (1997) Physical ceramics: principles for ceramic science and engineering. J. WileyGoogle Scholar
  17. 17.
    Colinet C, Tedenac J (2018) Enthalpies of formation of rare-earth borides from first principles. Comparison with experimental values. Calphad 62:49–60.  https://doi.org/10.1016/j.calphad.2018.04.004CrossRefGoogle Scholar
  18. 18.
    Craciun V, Cristea D, Socol G et al (2016) Characteristics of LaB6 thin films grown by pulsed laser deposition. J Vac Sci Technol A 34:051509.  https://doi.org/10.1116/1.4960647CrossRefGoogle Scholar
  19. 19.
    Dandekar DP, Benfanti DC (1993) Strength of titanium diboride under shock wave loading. J Appl Phys 73:673–679.  https://doi.org/10.1063/1.353350CrossRefGoogle Scholar
  20. 20.
    Demirskyi D, Solodkyi I, Nishimura T, Vasylkiv OO (2019) Fracture and property relationships in the double diboride ceramic composites by spark plasma sintering of TiB2 and NbB2. J Am Ceram Soc 102:4259.  https://doi.org/10.1111/jace.16276CrossRefGoogle Scholar
  21. 21.
    Devyatkin SV (2001) Electrosynthesis of zirconium boride from Cryolite–alumina melts containing zirconium and boron oxides. Russ J Electrochem 37:1308–1311.  https://doi.org/10.1023/A:1013295931573CrossRefGoogle Scholar
  22. 22.
    Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA (2007) Refractory Diborides of zirconium and hafnium. J Am Ceram Soc 90:1347–1364.  https://doi.org/10.1111/j.1551-2916.2007.01583.xCrossRefGoogle Scholar
  23. 23.
    Fahrenholtz WG, Hilmas GE, Zhang SC, Zhu S (2008) Pressureless sintering of zirconium Diboride: particle size and additive effects. J Am Ceram Soc 91:1398–1404.  https://doi.org/10.1111/j.1551-2916.2007.02169.xCrossRefGoogle Scholar
  24. 24.
    Fahrenholtz WG, Binner J, Zou J (2016) Synthesis of ultra-refractory transition metal diboride compounds. J Mater Res 31:2757–2772.  https://doi.org/10.1557/jmr.2016.210CrossRefGoogle Scholar
  25. 25.
    Fang Q, Knodler R (1992) Porous TiB2 electrodes for the alkali metal thermoelectric convertor. J Mater Sci 27:6725–6729.  https://doi.org/10.1007/BF01165960CrossRefGoogle Scholar
  26. 26.
    Frazer EJ, Anthony KE, Welch BJ (1975) Electrodeposition of zirconium diboride from oxides dissolved in molten cryolite. Electrodepos Surf Treat 3:169–177.  https://doi.org/10.1016/0300-9416(75)90039-5CrossRefGoogle Scholar
  27. 27.
    Frotscher M, Hölzel M, Albert B (2010) Crystal structures of the metal Diborides ReB2, RuB2, and OsB2 from neutron powder diffraction. Zeitschrift für Anorg und Allg. Chemie 636:1783–1786.  https://doi.org/10.1002/zaac.201000101CrossRefGoogle Scholar
  28. 28.
    Funke VF, Yudkovskii SI (1964) Preparation of zirconium boride. Sov Powder Metall Met Ceram 2:293–296.  https://doi.org/10.1007/BF00774035CrossRefGoogle Scholar
  29. 29.
    Guo W-M, Zhang G-J (2009) Reaction processes and characterization of ZrB2 powder prepared by Boro/Carbothermal reduction of ZrO2 in vacuum. J Am Ceram Soc 92:264–267.  https://doi.org/10.1111/j.1551-2916.2008.02836.xCrossRefGoogle Scholar
  30. 30.
    Guo S-Q, Nishimura T, Kagawa Y, Yang J-M (2008) Spark plasma sintering of zirconium Diborides. J Am Ceram Soc 91:2848–2855.  https://doi.org/10.1111/j.1551-2916.2008.02587.xCrossRefGoogle Scholar
  31. 31.
    Gupta CKK, Krishnamurthy N (1992) Extractive metallurgy of rare earths. Int Mater Rev 37:197–248.  https://doi.org/10.1179/imr.1992.37.1.197CrossRefGoogle Scholar
  32. 32.
    Hang C, Yang L, Liang Y et al (2018) Mesoporous LaB6 calcium silicate composite: preparation, NIR photothermal conversion and drug delivery properties. Ceram Int. 0–1 44:8427.  https://doi.org/10.1016/j.ceramint.2018.02.037CrossRefGoogle Scholar
  33. 33.
    Heller G, Buschbeck K-C, Niedenzu K (1986) Gmelin handbook of inorganic and organometallic chemistry. In: B Boron compounds. 3rd Supplement, Volume 2, Boron and oxygen. Springer, BerlinGoogle Scholar
  34. 34.
    Holcombe CE, Dykes NL (1991) Microwave sintering of titanium diboride. J Mater Sci 26:3730–3738.  https://doi.org/10.1007/BF01184963CrossRefGoogle Scholar
  35. 35.
    Holden M (1986) A review of aerothermal problems associated with hypersonic flight. In: 24th aerospace sciences meeting. American Institute of Aeronautics and Astronautics, RestonGoogle Scholar
  36. 36.
    Hulbert DM, Jiang D, Dudina DV, Mukherjee AK (2009) The synthesis and consolidation of hard materials by spark plasma sintering. Int J Refract Met Hard Mater 27:367–375.  https://doi.org/10.1016/j.ijrmhm.2008.09.011CrossRefGoogle Scholar
  37. 37.
    Hwang Y, Lee JK (2002) Preparation of TiB2 powders by mechanical alloying. Mater Lett 54:1–7.  https://doi.org/10.1016/S0167-577X(01)00526-2CrossRefGoogle Scholar
  38. 38.
    Iizumi K, Sekiya C, Okada S et al (2006) Mechanochemically assisted preparation of NbB2 powder. J Eur Ceram Soc 26:635–638.  https://doi.org/10.1016/J.JEURCERAMSOC.2005.06.012CrossRefGoogle Scholar
  39. 39.
    Indian Bureau of Mines (2016) Indian minerals yearbook 2015. Indian Miner Yearb 2015 (Part-III Miner Rev 54th edn) 1–9Google Scholar
  40. 40.
    Jaglin D, Binner J, Vaidhyanathan B et al (2006) Microwave heated chemical vapor infiltration: densification mechanism of SiCf/SiC composites. J Am Ceram Soc 89:2710–2717.  https://doi.org/10.1111/j.1551-2916.2006.01127.xCrossRefGoogle Scholar
  41. 41.
    Jain A, Kandan R (2017) Determination of the thermodynamic stability of europium boride. J Therm Anal Calorim 6:275.  https://doi.org/10.1007/s10973-017-6876-1CrossRefGoogle Scholar
  42. 42.
    Jain D, Reddy KM, Mukhopadhyay A, Basu B (2010) Achieving uniform microstructure and superior mechanical properties in ultrafine grained TiB2–TiSi2 composites using innovative multi stage spark plasma sintering. Mater Sci Eng A 528:200–207.  https://doi.org/10.1016/j.msea.2010.09.022CrossRefGoogle Scholar
  43. 43.
    Karuna Purnapu Rupa P, Sharma P, Mohanty RM, Balasubramanian K (2010) Microstructure and phase composition of composite coatings formed by plasma spraying of ZrO2 and B4C powders. J Therm Spray Technol 19:816–823.  https://doi.org/10.1007/s11666-010-9479-yCrossRefGoogle Scholar
  44. 44.
    Khanra AK, Pathak LC, Mishra SK, Godkhindi MM (2004) Effect of NaCl on the synthesis of TiB2 powder by a self-propagating high-temperature synthesis technique. Mater Lett 58:733–738.  https://doi.org/10.1016/j.matlet.2003.06.003CrossRefGoogle Scholar
  45. 45.
    Khanra AK, Pathak LC, Mishra SK, Godkhindi MM (2005) Sintering of ultrafine zirconium diboride powder prepared by modified SHS technique. Adv Appl Ceram 104:282–284.  https://doi.org/10.1179/174367605X52077CrossRefGoogle Scholar
  46. 46.
    Khanra AK, Pathak LC, Godkhindi MM (2007) Carbothermal synthesis of zirconium diboride (ZrB2) whiskers. Adv Appl Ceram 106:155–160.  https://doi.org/10.1179/174367607X162019CrossRefGoogle Scholar
  47. 47.
    Kitiwan M, Ito A, Goto T (2014) Spark plasma sintering of TiN–TiB2 composites. J Eur Ceram Soc 34:197–203.  https://doi.org/10.1016/J.JEURCERAMSOC.2013.08.034CrossRefGoogle Scholar
  48. 48.
    Koide M, Jabri K, Saito A et al (2017) Effect of TiN addition on the properties of spark plasma sintered TiB2. J Ceram Soc Japan 125:413–415.  https://doi.org/10.2109/jcersj2.16330CrossRefGoogle Scholar
  49. 49.
    Latini A, Di Pascasio F, Gozzi D (2002) A new synthesis route to light lanthanide borides: borothermic reduction of oxides enhanced by electron beam bombardment. J Alloys Compd 346:311–313.  https://doi.org/10.1016/S0925-8388(02)00667-9CrossRefGoogle Scholar
  50. 50.
    Lee SJ, Kim DK (2008) The oxidation behavior of ZrB2 – based mixed boride. Key Eng Mater 403:253–255. Trans Tech Publications, Mie, JAPAN.  https://doi.org/10.4028/www.scientific.net/KEM.403.253
  51. 51.
    Lee YB, Park HC, Oh KD et al (2000) Self-propagating high-temperature synthesis of ZrB2 in the system ZrO2 -B2O3 -Fe2O3 -Al. J Mater Sci Lett 19:469–471CrossRefGoogle Scholar
  52. 52.
    Lin J, Yang Y, Zhang H, Gong J (2017) Effects of CNTs content on the microstructure and mechanical properties of spark plasma sintered TiB2-SiC ceramics. Ceram Int 43:1284–1289.  https://doi.org/10.1016/j.ceramint.2016.10.078CrossRefGoogle Scholar
  53. 53.
    Low I-M, Sakka Y (Yoshio), Hu CF (Chunfeng) (2013) MAX phases and ultra-high temperature ceramics for extreme environments. IGI GlobalGoogle Scholar
  54. 54.
    Ma J, Gu Y, Shi L et al (2003) Reduction–boronation route to chromium boride (CrB) nanorods. Chem Phys Lett 381:194–198.  https://doi.org/10.1016/j.cplett.2003.09.128CrossRefGoogle Scholar
  55. 55.
    Mahesh B, Sairam K, Sonber JK et al (2015) Sinterability studies of monolithic chromium diboride (CrB2) by spark plasma sintering. Int J Refract Met Hard Mater 52:66.  https://doi.org/10.1016/j.ijrmhm.2015.04.035CrossRefGoogle Scholar
  56. 56.
    Mashhadi M, Shambuli M, Safi S (2016) Effect of MoSi2 addition and particle size of SiC on pressureless sintering behavior and mechanical properties of ZrB2–SiC–MoSi2 composites. J Mater Res Technol 5:200–205.  https://doi.org/10.1016/J.JMRT.2015.10.003CrossRefGoogle Scholar
  57. 57.
    Matkovich VI (1977) Boron and refractory borides. In: Boron and refractory borides. Springer, Berlin/Heidelberg, pp 1–3CrossRefGoogle Scholar
  58. 58.
    Matsudaira T, Itoh H, Naka S, Hamamoto H (1989) Synthesis of niobium boride powder by solid state reaction between niobium and amorphous boron. J Less Common Met 155:207–214.  https://doi.org/10.1016/0022-5088(89)90229-4CrossRefGoogle Scholar
  59. 59.
    McKenna PM (1936) Tantalum carbide: its relation to other hard refractory compounds. Ind Eng Chem 28:767CrossRefGoogle Scholar
  60. 60.
    Meléndez-Martínez JJ, Domínguez-Rodríguez A, Monteverde F et al (2002) Characterisation and high temperature mechanical properties of zirconium boride-based materials. J Eur Ceram Soc 22:2543–2549.  https://doi.org/10.1016/S0955-2219(02)00114-0CrossRefGoogle Scholar
  61. 61.
    Millet P, Hwang T (1996) Preparation of TiB2 and ZrB2. Influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia. J Mater Sci 31:351–355.  https://doi.org/10.1007/BF01139151CrossRefGoogle Scholar
  62. 62.
    Mishra SK, Das SK (2005) Sintering and microstructural behaviour of SHS produced zirconium diboride powder with the addition of C and TiC. Mater Lett 59:3467–3470.  https://doi.org/10.1016/j.matlet.2005.06.015CrossRefGoogle Scholar
  63. 63.
    Mishra SK, Pathak LC (2008) Effect of carbon and titanium carbide on sintering behaviour of zirconium diboride. J Alloys Compd 465:547–555.  https://doi.org/10.1016/J.JALLCOM.2007.11.004CrossRefGoogle Scholar
  64. 64.
    Mishra SK, Das S, Pathak LC (2004) Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis. Mater Sci Eng A 364:249–255.  https://doi.org/10.1016/j.msea.2003.08.021CrossRefGoogle Scholar
  65. 65.
    Mishra SK, Das SK, Sherbacov V (2007) Fabrication of Al2O3–ZrB2 in situ composite by SHS dynamic compaction: a novel approach. Compos Sci Technol 67:2447–2453.  https://doi.org/10.1016/j.compscitech.2006.12.017CrossRefGoogle Scholar
  66. 66.
    Moissan H (1894) Nouvelles Reserches sur le Chrome. C R Séances 119:185Google Scholar
  67. 67.
    Moissan H (1895) Préparation et Properiétès du Titane. C R Séances 120:290Google Scholar
  68. 68.
    Moissan H (1896) Reserches sur le tungsten. C R Séances 123:13Google Scholar
  69. 69.
    Monteverde F (2005) Progress in the fabrication of ultra-high-temperature ceramics: “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite. Compos Sci Technol 65:1869–1879.  https://doi.org/10.1016/j.compscitech.2005.04.003CrossRefGoogle Scholar
  70. 70.
    Mukherjee A, Uttam Jain SK, NK (2013) Rare earth borides synthesis by reduction distillation. BARC News Letter 20:155–158Google Scholar
  71. 71.
    Mukherjee A, Gulnar AK, Sahoo DK, Krishnamurthy N (2012) Gas solid techniques for preparation of pure lanthanum hexaboride. Rare Metals 31:285–289.  https://doi.org/10.1007/s12598-012-0507-6CrossRefGoogle Scholar
  72. 72.
    Muraoka Y, Yoshinaka M, Hirota K, Yamaguchi O (1996) Hot isostatic pressing of TiB2-ZrO2 (2 Mol% Y2O3) composite powders. Mater Res Bull 31:787–792.  https://doi.org/10.1016/0025-5408(96)00069-4CrossRefGoogle Scholar
  73. 73.
    Murthy TSRC (2004) Development and Characterization of TiB2 Based Materials for High Temperature Applications. Indian Institute of Technology Kanpur India (M.Tech. thesis)Google Scholar
  74. 74.
    Murthy TSRC (2014) Effect of Sinter Additives on the Consolidation and Properties of Titanium Diboride Composites. Homi Bhabha National Institute (Ph.D. thesis)Google Scholar
  75. 75.
    Murthy TSRC, Basu B, Balasubramaniam R et al (2006) Processing and properties of TiB2 with MoSi2 sinter-additive: a first report. J Am Ceram Soc 89:131–138.  https://doi.org/10.1111/j.1551-2916.2005.00652.xCrossRefGoogle Scholar
  76. 76.
    Murthy TSRC, Basu B, Srivastava A et al (2006) Tribological properties of TiB2 and TiB2 – MoSi2 ceramic composites. J Eur Ceram Soc 26:1293.  https://doi.org/10.1016/j.jeurceramsoc.2005.01.054CrossRefGoogle Scholar
  77. 77.
    Murthy TSRC, Sonber JK, Subramanian C et al (2009) Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2. Int J Refract Met Hard Mater 27:976–984.  https://doi.org/10.1016/j.ijrmhm.2009.06.004CrossRefGoogle Scholar
  78. 78.
    Murthy TSRC, Sonber JK, Subramanian C et al (2012) Densification, characterization and oxidation studies of TiB2–WSi2 composite. Int J Refract Met Hard Mater 33:10–21.  https://doi.org/10.1016/j.ijrmhm.2012.02.002CrossRefGoogle Scholar
  79. 79.
    Murthy TSRC, Sonber JK, Subramanian C et al (2013) Densification, characterization and oxidation studies of (TiCr)B2+20% MoSi2. Int J Refract Met Hard Mater 37:12–28.  https://doi.org/10.1016/j.ijrmhm.2012.10.006CrossRefGoogle Scholar
  80. 80.
    Murthy TSRC, Sonber JK, Vishwanadh B et al (2016) Densification, characterization and oxidation studies of novel TiB2+EuB6 compounds. J Alloys Compd 670:85–95.  https://doi.org/10.1016/j.jallcom.2016.01.216CrossRefGoogle Scholar
  81. 81.
    Murthy TSRC, Sonber K, Sairam JK et al (2016) Development of refractory and rare earth metal borides & carbides for high temperature applications. Mater Today Proc 3:3104–3113.  https://doi.org/10.1016/j.matpr.2016.09.026CrossRefGoogle Scholar
  82. 82.
    Murthy TSRC, Ankata S, Sonber JK et al (2018) Microstructure, thermo-physical, mechanical and wear properties of in-situ formed boron carbide -zirconium diboride composite. Ceram Silikaty 62:15–30.  https://doi.org/10.13168/cs.2017.0041CrossRefGoogle Scholar
  83. 83.
    Nedunchezhian K, Aswath N, Thiruppathy M, Thirugnanamurthy S (2016) Boron neutron capture therapy – a literature review. J Clin Diagn Res 10:ZE01–ZE04.  https://doi.org/10.7860/JCDR/2016/19890.9024CrossRefGoogle Scholar
  84. 84.
    Niihara K (1971) The preparation and nonstoichiometry of samarium hexaboride. Bull Chem Soc Japan 44:963–967CrossRefGoogle Scholar
  85. 85.
    Nishiyama K, Nakamur T, Utsumi S et al (2009) Preparation of ultrafine boride powders by metallothermic reduction method. J Phys Conf Ser 176:012043.  https://doi.org/10.1088/1742-6596/176/1/012043CrossRefGoogle Scholar
  86. 86.
    Ohji T, Singh M, Singh D et al (2010) Advanced processing and manufacturing technologies for structural and multifunctional materials III: a collection of papers presented at the 33rd international conference on advanced ceramics and composites, January 18–23, 2009 Daytona Beach, Florida. WileyGoogle Scholar
  87. 87.
    Opeka MM, Talmy IG, Zaykoski JA (2004) Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 39:5887–5904.  https://doi.org/10.1023/B:JMSC.0000041686.21788.77CrossRefGoogle Scholar
  88. 88.
    Paderno YB, Ivanchenko LA, Bessaraba VI, Vereshchak VM (1975) Preparation of lanthanum hexaboride films by synthesis from the elements. Sov Powder Metall Met Ceram 14:515–516.  https://doi.org/10.1007/BF00823515CrossRefGoogle Scholar
  89. 89.
    Paul A, Jayaseelan DD, Venugopal S et al (2012) UHTC composites for hypersonic applications. Am Ceram Soc Bull 91:22–28Google Scholar
  90. 90.
    Paul A, Binner JGP, Vaidhyanathan B et al (2016) Heat flux mapping of oxyacetylene flames and their use to characterise Cf-HfB2 composites. Adv Appl Ceram 115:158–165CrossRefGoogle Scholar
  91. 91.
    Peshev P, Bliznakov G (1968) On the borothermic preparation of titanium, zirconium and hafnium diborides. J Less Common Met 14:23–32.  https://doi.org/10.1016/0022-5088(68)90199-9CrossRefGoogle Scholar
  92. 92.
    Raju K, Sonber JK, Murthy TSRC et al (2018) Densification, microstructural evolution, mechanical properties and oxidation study of CrB2 + EuB6 composite. J Mater Eng Perform 27:2457–2465.  https://doi.org/10.1007/s11665-018-3354-2CrossRefGoogle Scholar
  93. 93.
    Ran S, Van der Biest O, Vleugels J (2010) ZrB2 powders synthesis by Borothermal reduction. J Am Ceram Soc 93:1586–1590.  https://doi.org/10.1111/j.1551-2916.2010.03747.xCrossRefGoogle Scholar
  94. 94.
    Rangaraj L, Divakar C, Jayaram V (2008) Processing of refractory metal borides, carbides and nitrides. Key Eng Mater 395:69–88.  https://doi.org/10.4028/www.scientific.net/KEM.395.69CrossRefGoogle Scholar
  95. 95.
    Reddy V, Sonber JK, Sairam K et al (2015) Densification and mechanical properties of CrB2+MoSi2 based novel composites. Ceram Int 41:7611–7617.  https://doi.org/10.1016/j.ceramint.2015.02.086CrossRefGoogle Scholar
  96. 96.
    Sairam K, Sonber JK, Murthy TSRC et al (2012) Development of B4C–HfB2 composites by reaction hot pressing. Int J Refract Met Hard Mater 35:32–40.  https://doi.org/10.1016/j.ijrmhm.2012.03.004CrossRefGoogle Scholar
  97. 97.
    Sairam K, Sonber JK, Murthy TSRC et al (2014) Reaction spark plasma sintering of niobium diboride. Int J Refract Met Hard Mater 43:259.  https://doi.org/10.1016/j.ijrmhm.2013.12.011CrossRefGoogle Scholar
  98. 98.
    Sairam K, Sonber JK, Murthy TSRC et al (2014) Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int J Refract Met Hard Mater 42:185.  https://doi.org/10.1016/j.ijrmhm.2013.09.004CrossRefGoogle Scholar
  99. 99.
    Sairam K, Sonber JK, Murthy TSRC et al (2016) Pressureless sintering of chromium diboride using spark plasma sintering facility. Int J Refract Met Hard Mater 58:165.  https://doi.org/10.1016/j.ijrmhm.2016.05.002CrossRefGoogle Scholar
  100. 100.
    Sani E, Mercatelli L, Meucci M et al (2017) Lanthanum hexaboride for solar energy applications. Sci Rep 7:1–7.  https://doi.org/10.1038/s41598-017-00749-wCrossRefGoogle Scholar
  101. 101.
    Sani E, Meucci M, Mercatelli L et al (2017) Titanium diboride ceramics for solar thermal absorbers. Sol Energy Mater Sol Cells 169:313–319.  https://doi.org/10.1016/j.solmat.2017.05.038CrossRefGoogle Scholar
  102. 102.
    Sciti D, Silvestroni L, Nygren M (2008) Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid. J Eur Ceram Soc 28:1287–1296.  https://doi.org/10.1016/J.JEURCERAMSOC.2007.09.043CrossRefGoogle Scholar
  103. 103.
    Setoudeh N, Welham NJ (2006) Formation of zirconium diboride (ZrB2) by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg. J Alloys Compd 420:225–228.  https://doi.org/10.1016/J.JALLCOM.2005.07.083CrossRefGoogle Scholar
  104. 104.
    Silvestroni L, Sciti D (2007) Effects of MoSi2 additions on the properties of Hf– and ZrB2 composites produced by pressureless sintering. Scr Mater 57:165–168.  https://doi.org/10.1016/j.scriptamat.2007.02.040CrossRefGoogle Scholar
  105. 105.
    Silvestroni L, Sciti D (2011) Densification of ZrB2-TaSi2 and HfB2-TaSi2 ultra-high-temperature ceramic composites. J Am Ceram Soc 94:1920–1930.  https://doi.org/10.1111/j.1551-2916.2010.04317.xCrossRefGoogle Scholar
  106. 106.
    Singh N, Saini SM, Nautiyal T, Auluck S (2007) Electronic structure and optical properties of rare earth hexaborides RB 6 (R = La, Ce, Pr, Nd, Sm, Eu, Gd). J Phys Condens Matter 19:346226.  https://doi.org/10.1088/0953-8984/19/34/346226CrossRefGoogle Scholar
  107. 107.
    Sonber JK (2015) Studies on synthesis, densification and oxidation of zirconium diboride based materials. Homi Bhabha National Institute, PhD ThesisGoogle Scholar
  108. 108.
    Sonber JK, Murthy Ksajkc TSRC (2016) Effect Of Ndb6 addition on Densification and Properties of ZrB2. Ceram Silikaty 60:41–47.  https://doi.org/10.13168/cs.2016.0006CrossRefGoogle Scholar
  109. 109.
    Sonber JK, Suri AK (2011) Synthesis and consolidation of zirconium diboride: review. Adv Appl Ceram 110:321–334.  https://doi.org/10.1179/1743676111Y.0000000008CrossRefGoogle Scholar
  110. 110.
    Sonber JK, Murthy TSRC, Subramanian C et al (2009) Investigation on synthesis, pressureless sintering and hot pressing of chromium diboride. Int J Refract Met Hard Mater 27:912.  https://doi.org/10.1016/j.ijrmhm.2009.05.008CrossRefGoogle Scholar
  111. 111.
    Sonber JK, Murthy TSRC, Subramanian C et al (2010) Investigations on synthesis of HfB2 and development of a new composite with TiSi2. Int J Refract Met Hard Mater 28:201–210.  https://doi.org/10.1016/j.ijrmhm.2009.09.005CrossRefGoogle Scholar
  112. 112.
    Sonber JK, Murthy TSRC, Subramanian C et al (2011) Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2. Int J Refract Met Hard Mater 29:21.  https://doi.org/10.1016/j.ijrmhm.2010.06.007CrossRefGoogle Scholar
  113. 113.
    Sonber JK, Murthy TSRC, Subramanian C et al (2012) Effect of CrSi2 and HfB2 addition on densification and properties of ZrB2. Int J Refract Met Hard Mater 31:125.  https://doi.org/10.1016/j.ijrmhm.2011.10.001CrossRefGoogle Scholar
  114. 114.
    Sonber JK, Murthy TSRC, Subramanian C et al (2012) Effect of EuB6 addition on densification and properties of ZrB2. Int J Refract Met Hard Mater 35:96–101.  https://doi.org/10.1016/j.ijrmhm.2012.04.012CrossRefGoogle Scholar
  115. 115.
    Sonber JK, Murthy TSRC, Subramanian C et al (2013) Synthesis, Densification and Characterization of Boron Carbide. Trans Indian Ceram Soc 72:100.  https://doi.org/10.1080/0371750X.2013.817755CrossRefGoogle Scholar
  116. 116.
    Sonber JK, Murthy TSRC, Subramanian C et al (2013) Processing methods for ultra-high temperature ceramics. In: MAX phases and ultra-high temperature ceramics for extreme environments. IGI Global, Hershey.  https://doi.org/10.4018/978-1-4666-4066-5.ch006CrossRefGoogle Scholar
  117. 117.
    Sonber JK, Murthy TSRC, Subramanian C et al (2013) Synthesis, densification and characterization of EuB6. Int J Refract Met Hard Mater 38:67–72.  https://doi.org/10.1016/j.ijrmhm.2012.12.010CrossRefGoogle Scholar
  118. 118.
    Sonber JK, Murthy TSRC, Subramanian C et al (2014) Effect of WSi2 addition on densification and properties of ZrB2. Adv Appl Ceram 113:114.  https://doi.org/10.1179/1743676113Y.0000000125CrossRefGoogle Scholar
  119. 119.
    Sonber JK, Sairam K, Murthy TSRC et al (2014) Synthesis, densification and oxidation study of lanthanum hexaboride. J Eur Ceram Soc 34:1155.  https://doi.org/10.1016/j.jeurceramsoc.2013.11.023CrossRefGoogle Scholar
  120. 120.
    Sonber JK, Murthy TSRC, Sairam K et al (2016) Effect of TiSi2 addition on densification of cerium hexaboride. Ceram Int 42:891–896.  https://doi.org/10.1016/j.ceramint.2015.09.015CrossRefGoogle Scholar
  121. 121.
    Sonber JK, Murthy TSRC, Sairam K et al (2017) Development and tribological properties of SiC fibre reinforced CrB2 composite. J Aust Ceram Soc 53:309–317.  https://doi.org/10.1007/s41779-017-0039-5CrossRefGoogle Scholar
  122. 122.
    Sonber JK, Murthy TSRC, Sairam K, Kain V (2017) Sintering and oxidation of GdB4 synthesized by B4C reduction method. J Korean Ceram Soc 54:121–127.  https://doi.org/10.4191/kcers.2017.54.2.02CrossRefGoogle Scholar
  123. 123.
    Starr TL, Hablutzel N (2005) Measurement of gas transport through Fiber preforms and densified composites for chemical vapor infiltration. J Am Ceram Soc 81:1298–1304.  https://doi.org/10.1111/j.1151-2916.1998.tb02481.xCrossRefGoogle Scholar
  124. 124.
    Stollery JL (1972) Hypersonic flight. Nature 240:133.  https://doi.org/10.1038/240133a0CrossRefGoogle Scholar
  125. 125.
    Su K, Sneddon LG (1991) Polymer-precursor routes to metal borides: synthesis of titanium boride (TiB2) and zirconium boride (ZrB2). Chem Mater 3:10–12.  https://doi.org/10.1021/cm00013a005CrossRefGoogle Scholar
  126. 126.
    Subramanian C, Murthy TSRC, Suri AK (2007) Synthesis and consolidation of titanium diboride. Int J Refract Met Hard Mater 25:345.  https://doi.org/10.1016/j.ijrmhm.2006.09.003CrossRefGoogle Scholar
  127. 127.
    Sun C-N, Gupta MC (2008) Laser sintering of ZrB2. J Am Ceram Soc 91:1729–1731.  https://doi.org/10.1111/j.1551-2916.2008.02369.xCrossRefGoogle Scholar
  128. 128.
    Sun C-N, Baldridge T, Gupta MC (2009) Fabrication of ZrB2–Zr cermet using laser sintering technique. Mater Lett 63:2529–2531.  https://doi.org/10.1016/j.matlet.2009.08.059CrossRefGoogle Scholar
  129. 129.
    Suri AK, Subramanian C, Sonber JK, Murthy TSRC (2010) Synthesis and consolidation of boron carbide: a review. Int Mater Rev 55:4.  https://doi.org/10.1179/095066009X12506721665211CrossRefGoogle Scholar
  130. 130.
    Tucker SA, Moody HR (1902) The preparation of some new metal borides. J Chem Soc 81:14CrossRefGoogle Scholar
  131. 131.
    Vishwanadh B, Murthy TSRC, Arya A et al (2016) Synthesis and phase transformation mechanism of Nb2C carbide phases. J Alloys Compd 671:424–434.  https://doi.org/10.1016/j.jallcom.2016.02.092CrossRefGoogle Scholar
  132. 132.
    Wang H-L, Wang C-A, Chen D-L et al (2010) Preparation and characterization of ZrB2-SiC ultra-high temperature ceramics by microwave sintering. Front Mater Sci China 4:276–280.  https://doi.org/10.1007/s11706-010-0091-3CrossRefGoogle Scholar
  133. 133.
    Wang X-F, Xiang H-M, Sun X et al (2015) Porous YbB 6 ceramics prepared by in situ reaction between Yb2O3 and B4C combined with partial sintering. J Am Ceram Soc 98:2234–2239.  https://doi.org/10.1111/jace.13606CrossRefGoogle Scholar
  134. 134.
    Watson KD, Toguri JM (1991) The wettability of carbon/TiB2 composite materials by aluminum in cryolite melts. Metall Trans B 22:617–621.  https://doi.org/10.1007/BF02679016CrossRefGoogle Scholar
  135. 135.
    Wedekind E (1913) Synthese von Boriden im elektrischen Vakuumofen. Berichte der Dtsch Chem Gesellschaft 46:1198–1207.  https://doi.org/10.1002/cber.191304601155CrossRefGoogle Scholar
  136. 136.
    Xie Y, Sanders TH, Speyer RF (2008) Solution-based synthesis of submicrometer ZrB 2 and ZrB2 –TaB2. J Am Ceram Soc 91:1469–1474.  https://doi.org/10.1111/j.1551-2916.2008.02288.xCrossRefGoogle Scholar
  137. 137.
    Yan Y, Huang Z, Dong S, Jiang D (2006) New route to synthesize ultra-fine zirconium Diboride powders using inorganic/organic hybrid precursors. J Am Ceram Soc 89:3585–3588.  https://doi.org/10.1111/j.1551-2916.2006.01269.xCrossRefGoogle Scholar
  138. 138.
    Yang X, Wang P, Wang Z et al (2017) Microstructure, mechanical and thermionic emission properties of a directionally solidi fi ed LaB6 -VB2 eutectic composite. Mater Des 133:299–306.  https://doi.org/10.1016/j.matdes.2017.07.069CrossRefGoogle Scholar
  139. 139.
    Yeh CL, Chen WH (2006) Preparation of niobium borides NbB and NbB2 by self-propagating combustion synthesis. J Alloys Compd 420:111–116.  https://doi.org/10.1016/J.JALLCOM.2005.10.031CrossRefGoogle Scholar
  140. 140.
    Yoshio S, Maki K, Adachi K et al (2016) Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations. J Chem Phys 144:234702.  https://doi.org/10.1063/1.4953849CrossRefGoogle Scholar
  141. 141.
    Yu Y, Wang S, Li W, Chen Z (2018) Low temperature synthesis of LaB6 nanoparticles by a molten salt route. Powder Technol 323:203–207.  https://doi.org/10.1016/j.powtec.2017.09.049CrossRefGoogle Scholar
  142. 142.
    Zamora V, Ortiz AL, Guiberteau F, Nygren M (2013) On the enhancement of the spark-plasma sintering kinetics of ZrB 2-SiC powder mixtures subjected to high-energy co-ball-milling. Ceram Int 39:4191–4204.  https://doi.org/10.1016/j.ceramint.2012.11.001CrossRefGoogle Scholar
  143. 143.
    Zhao H, He Y, Jin Z (1995) Preparation of zirconium boride powder. J Am Ceram Soc 78:2534–2536.  https://doi.org/10.1111/j.1151-2916.1995.tb08696.xCrossRefGoogle Scholar
  144. 144.
    Zhao Y, Wang L-J, Zhang G-J et al (2009) Effect of holding time and pressure on properties of ZrB2–SiC composite fabricated by the spark plasma sintering reactive synthesis method. Int J Refract Met Hard Mater 27:177–180.  https://doi.org/10.1016/j.ijrmhm.2008.02.003CrossRefGoogle Scholar
  145. 145.
    Zhou SL, Zhang JX, Bao LH et al (2014) Enhanced thermionic emission properties in textured two-phase LaB6-BaB6 system prepared by spark plasma sintering. J Alloys Compd 611:130–134.  https://doi.org/10.1016/j.jallcom.2014.05.067CrossRefGoogle Scholar
  146. 146.
    Zhu S, Fahrenholtz WG, Hilmas GE et al (2008) Microwave sintering of a ZrB2–B4C particulate ceramic composite. Compos Part A Appl Sci Manuf 39:449–453.  https://doi.org/10.1016/j.compositesa.2008.01.003CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Materials Processing and Corrosion Engineering Division/Department of Atomic Energy, Materials GroupBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Section editors and affiliations

  • Tetsuji NODA

There are no affiliations available

Personalised recommendations