Advertisement

Manifestations of Nanomaterials in Development of Advanced Sensors for Defense Applications

  • Rohini Kitture
  • Sangeeta KaleEmail author
Living reference work entry

Abstract

In recent times, the global science and technology is dominated by research in the nanotechnology domain, especially to explore novel materials with exotic properties, which are attributed to their nano-size regimes. Typically explored examples are metals (gold, silver, copper, etc.), organic and inorganic materials (metal oxides, polymers), carbon (graphene, CNTs, etc.), and so on, typically, in their pure and composites forms. The polymers are playing a vital role in this domain, to make the polymer-based nanocomposites, which are used for different applications in textiles, pharmaceutical, chemical, instrumentation, aerospace, aeronautical, and mechanical domains of engineering. However, one particular domain, which has sought the maximum attention of these nanomaterials, is the sensors. Sensors are an integral part of any instrumentation, mechanical assembly, automobile engineering, heavy engineering, and drug delivery vehicles or in national surveillance gadgets or in any electromagnetic application unit, such as antennas and communication electronics. A need for smart, miniaturized, extremely sensitive, selective, and accurate sensor is always on anvil.

This chapter starts with a brief outline on the progress of science and technology, typically in the domain of sensors, for low-field and low-frequency (electric and magnetic fields and ultra-low-frequency signals) detections and chemical-biological hazardous environment detections. Various approaches for sensing, used in the authors’ laboratory, would be elaborated, namely, the radio-frequency sensing approach, optical fiber approach, metamaterial approach, and conventional resistive approach. The relationships of the obtained properties would be associated with the physics and chemistry at nano-level and their energy dynamics for sensing a particular physical parameter. The chapter will be closely related to defense applications, such as chemical and biological warfare (CBW) diagnostics and hazardous environmental detections, and electromagnetic shielding applications, along with low-frequency detections for sonar technology.

Keywords

Nanomaterials Nanocomposites Electromagnetic shielding Sensors Optical fibers 

References

  1. 1.
    National Research Council (U.S.). Committee on New Sensor Technologies: Materials and Applications (1995) Expanding the vision of sensor materials. National Academy Press, Washington, DCGoogle Scholar
  2. 2.
    White RM (1987) A sensor classification scheme. IEEE Trans Ultrason Ferroelectr Freq Control 34(2):124–126CrossRefGoogle Scholar
  3. 3.
    Howard Courtney E, Smart sensors – Military & Aerospace Electronics Available https://www.militaryaerospace.com/communications/article/16706952/smart-sensors
  4. 4.
    Li H, Deng ZD, Carlson TJ (2012) Piezoelectric materials used in underwater acoustic transducers. Sens Lett 10(3–4):679–697CrossRefGoogle Scholar
  5. 5.
    Liu J-C, Cheng Y-T, Ho S-Y, Hung H-S, Chang S-H (2017) Fabrication and characterization of high-sensitivity underwater acoustic multimedia communication devices with thick composite PZT films. J Sensors 2017:1–7Google Scholar
  6. 6.
    Cranch GA, Nash PJ, Kirkendall CK (2003) Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sensors J 3(1):19–30CrossRefGoogle Scholar
  7. 7.
    Digonnet MJF, Vakoc BJ, Hodgson CW, Kino GS (2004) Acoustic fiber sensor arrays. Proc. SPIE Second European Workshop on Optical Fibre Sensors 5502:39Google Scholar
  8. 8.
    Giallorenzi T et al (1982) Optical fiber sensor technology. IEEE J Quantum Electron 18(4):626–665CrossRefGoogle Scholar
  9. 9.
    Digonnet MJF, Vakoc BJ, Hodgson CW, Kino GS (2004) Acoustic fiber sensor arrays, Conference Paper In: Second European workshop on optical fibre sensors. International Society for Optics and Photonics 5502:39–51.  https://doi.org/10.1117/12.566514
  10. 10.
    Nash P (1996) Review of interferometric optical fibre hydrophone technology. Sonar Navig IEE Proc – Radar 143(3):204CrossRefGoogle Scholar
  11. 11.
    Wang Z, Hu Y, Meng Z, Ni M, Luo H (2008) A fiber-optic hydrophone with an acoustic filter. Proc SPIE 6830:683011CrossRefGoogle Scholar
  12. 12.
    Wooler JPF, Crickmore RI (2007) Fiber-optic microphones for battlefield acoustics. Appl Opt 46(13):2486CrossRefGoogle Scholar
  13. 13.
    Hocker GB (1979) Fiber-optic sensing of pressure and temperature. Appl Opt 18(9):1445CrossRefGoogle Scholar
  14. 14.
    Hughes R, Jarzynski J (1980) Static pressure sensitivity amplification in interferometric fiber-optic hydrophones. Appl Opt 19(1):98CrossRefGoogle Scholar
  15. 15.
    Beverini N et al (2010) Fiber laser hydrophone for underwater acoustic surveillance and marine mammals monitoring. Proc SPIE 7994:79941DCrossRefGoogle Scholar
  16. 16.
    Yang F et al (2013) Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers. Opt Express 21(13):15514CrossRefGoogle Scholar
  17. 17.
    Pang M, Jin W (2009) Detection of acoustic pressure with hollow-core photonic bandgap fiber. Opt Express 17(13):11088CrossRefGoogle Scholar
  18. 18.
    Sadeghi J, Latifi H, Santos JL, Chenari Z, Ziaee F (2014) Behavior of a hollow core photonic crystal fiber under high radial pressure for downhole application. Appl Phys Lett 104(7):071910CrossRefGoogle Scholar
  19. 19.
    Qiu M, Zhang H, Liu B, Dong H, Yang C, Miao Y (2013) Acoustic birefringence suppression in a fiber acoustic grating employing solid-core photonic crystal fiber with hexagonal air-hole array cladding. Opt Eng 52(3):035008CrossRefGoogle Scholar
  20. 20.
    Jewart CM, Quintero SM, Braga AMB, Chen KP (2010) Design of a highly-birefringent microstructured photonic crystal fiber for pressure monitoring. Opt Express 18(25):25657CrossRefGoogle Scholar
  21. 21.
    Chen D, Hu G, Chen L (2011) Dual-core photonic crystal fiber for hydrostatic pressure sensing. IEEE Photon Technol Lett 23(24):1851–1853CrossRefGoogle Scholar
  22. 22.
    Liu Z, Tse M-LV, Wu C, Chen D, Lu C, Tam H-Y (2012) Intermodal coupling of supermodes in a twin-core photonic crystal fiber and its application as a pressure sensor. Opt Express 20(19):21749CrossRefGoogle Scholar
  23. 23.
    Fu HY et al (2010) High pressure sensor based on photonic crystal fiber for downhole application. Appl Opt 49(14):2639CrossRefGoogle Scholar
  24. 24.
    Fávero FC et al (2010) Hydrostatic pressure sensing with high birefringence photonic crystal fibers. Sensors 10(11):9698–9711CrossRefGoogle Scholar
  25. 25.
    Pawar D, Rao C, Choubey R, Kale S (2016) Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections. Appl Phys Lett 108(4).  https://doi.org/10.1063/1.4940983CrossRefGoogle Scholar
  26. 26.
    Kong L, Yin X, Ye F, Li Q, Zhang L, Cheng L (2013) Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 Nanograins. J Phys Chem C 117(5):2135–2146CrossRefGoogle Scholar
  27. 27.
    Dang Z-M, Yuan J-K, Zha J-W, Zhou T, Li S-T, Hu G-H (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57(4):660–723CrossRefGoogle Scholar
  28. 28.
    Li N et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145CrossRefGoogle Scholar
  29. 29.
    Rao BVB, Yadav P, Aepuru R, Panda HS, Ogale S, Kale SN (2015) Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe3O4 nano-fillers: an interface-mediated superior dielectric and EMI shielding performance. Phys Chem Chem Phys 17(28):18353–18363CrossRefGoogle Scholar
  30. 30.
    Gregorio R, Cestari M, Bernardino FE (1996) Dielectric behaviour of thin films of β-PVDF/PZT and β-PVDF/BaTiO3 composites. J Mater Sci 31(11):2925–2930CrossRefGoogle Scholar
  31. 31.
    Suresh MB, Yeh T-H, Yu C-C, Chou C-C (2009) Dielectric and ferroelectric properties of Polyvinylidene fluoride (PVDF)-Pb0.52Zr0.48TiO3 (PZT) nano composite films. Ferroelectrics 381(1):80–86CrossRefGoogle Scholar
  32. 32.
    Zhang Q, Jiang S, Yang T (2012) Pyroelectric, dielectric, and piezoelectric properties of MnO2-doped (Na0.82 K0.18)0.5Bi0.5TiO3 lead-free ceramics. J Electroceram 29(1):8–11CrossRefGoogle Scholar
  33. 33.
    Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) Piezoelectric properties of ferroelectric PZT-polymer composites. J Phys D Appl Phys 34(4):487CrossRefGoogle Scholar
  34. 34.
    Choi YJ, Yoo M-J, Kang H-W, Lee H-G, Han SH, Nahm S (2013) Dielectric and piezoelectric properties of ceramic-polymer composites with 0–3 connectivity type. J Electroceram 30(1–2):30–35CrossRefGoogle Scholar
  35. 35.
    Vacche SD, Oliveira F, Leterrier Y, Michaud V, Damjanovic D, Manson J-AE (2012) The effect of processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties of P(VDF-TrFE)/BaTiO3 composites. J Mater Sci 47(11):4763–4774CrossRefGoogle Scholar
  36. 36.
    Date M, Fukuda E, Wendorff JH (1989) Nonlinear piezoelectricity in oriented films of PVDF and its copolymers. IEEE Trans Electr Insul 24(3):457–460CrossRefGoogle Scholar
  37. 37.
    Chanmal CV, Jog JP (2008) Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polym Lett 2:294–301CrossRefGoogle Scholar
  38. 38.
    Joseph N, Singh SK, Sirugudu RK, Murthy VRK, Ananthakumar S, Sebastian MT (2013) Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 48(4):1681–1687CrossRefGoogle Scholar
  39. 39.
    Aepuru R, Bhaskara Rao BV, Kale SN, Panda HS (2015) Unique negative permittivity of the pseudo conducting radial zinc oxide-poly(vinylidene fluoride) nanocomposite film: enhanced dielectric and electromagnetic interference shielding properties. Mater Chem Phys 167:61–69CrossRefGoogle Scholar
  40. 40.
    Bhaskara Rao BV, Kale N, Kothavale BS, Kale SN (2016) Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties. AIP Adv 6(6):065107CrossRefGoogle Scholar
  41. 41.
    Wang C et al (2013) Multichannel scan surface plasmon resonance biochip with stationary optics and baseline updating capability. J Biomed Opt 18(11):115002CrossRefGoogle Scholar
  42. 42.
    Oh BK, Lee W, Kim YK, Lee WH, Choi JW (2004) Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. J Biotechnol 111(1):1–8CrossRefGoogle Scholar
  43. 43.
    Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJ (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20(12):2555–2565CrossRefGoogle Scholar
  44. 44.
    Viveros L, Paliwal S, McCrae D, Wild J, Simonian A (2006) A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents. Sensors Actuators B Chem 115(1):150–157CrossRefGoogle Scholar
  45. 45.
    Fritz J et al (2000) Translating biomolecular recognition into nanomechanics. Science 288(5464):316–318CrossRefGoogle Scholar
  46. 46.
    Lee H-J, Lee H-S, Yoo K-H, Yook J-G (2010) DNA sensing using split-ring resonator alone at microwave regime. J Appl Phys 108(1):014908CrossRefGoogle Scholar
  47. 47.
    Guan WJ, Li Y, Chen YQ, Zhang XB, Hu GQ (2005) Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes. Biosens Bioelectron 21(3):508–512CrossRefGoogle Scholar
  48. 48.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52CrossRefGoogle Scholar
  49. 49.
    Murphy L (2006) Biosensors and bioelectrochemistry. Curr Opin Chem Biol 10(2):177–184CrossRefGoogle Scholar
  50. 50.
    Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892CrossRefGoogle Scholar
  51. 51.
    Janshoff A, Galla H-J, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors – an alternative to optical biosensors? Angew Chem Int Ed 39(22):4004–4032CrossRefGoogle Scholar
  52. 52.
    Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257CrossRefGoogle Scholar
  53. 53.
    Ziegler C (2004) Nanotechnologies for the biosciences. Anal Bioanal Chem 379(7):903–903Google Scholar
  54. 54.
    Singh A, Kaushik A, Kumar R, Nair M, Bhansali S (2014) Electrochemical sensing of cortisol: a recent update. Appl Biochem Biotechnol 174(3):1115–1126CrossRefGoogle Scholar
  55. 55.
    Abayomi LA, Terry LA, White SF, Warner PJ (2006) Development of a disposable pyruvate biosensor to determine pungency in onions (Allium cepa L.). Biosens Bioelectron 21(11):2176–2179CrossRefGoogle Scholar
  56. 56.
    Muhammad-Tahir Z, Alocilja EC (2004) A disposable biosensor for pathogen detection in fresh produce samples. Biosyst Eng 2(88):145–151CrossRefGoogle Scholar
  57. 57.
    Winter W, Höhne GWH (2003) Chip-calorimeter for small samples. Thermochim Acta 403(1):43–53CrossRefGoogle Scholar
  58. 58.
    Sun J, Huang M, Yang J-J, Li T-H, Lan Y-Z (2011) A microring resonator based negative permeability metamaterial sensor. Sensors 11(8):8060–8071CrossRefGoogle Scholar
  59. 59.
    Bhansali S, Vasudev A (2012) Mems for biomedical applications. Woodhead Publishing Series in Biomaterials. Elsevier Science. ISBN 978-0-85709-627-2Google Scholar
  60. 60.
    Chen T, Li S, Sun H (2012) Metamaterials application in sensing. Sensors 12(3):2742–2765CrossRefGoogle Scholar
  61. 61.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969CrossRefGoogle Scholar
  62. 62.
    Horestani AK, Fumeaux C, Al-Sarawi SF, Abbott D (2013) Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sensors J 13(4):1153–1160CrossRefGoogle Scholar
  63. 63.
    Naqui J, Durán-Sindreu M, Martín F (2011) Novel sensors based on the symmetry properties of split ring resonators (SRRs). Sensors 11(8):7545–7553CrossRefGoogle Scholar
  64. 64.
    Horestani AK, Abbott D, Fumeaux C (2013) Rotation sensor based on horn-shaped split ring resonator. IEEE Sensors J 13(8):3014–3015CrossRefGoogle Scholar
  65. 65.
    Withayachumnankul W, Jaruwongrungsee K, Tuantranont A, Fumeaux C, Abbott D (2013) Metamaterial-based microfluidic sensor for dielectric characterization. Sensors Actuators A Phys 189:233–237CrossRefGoogle Scholar
  66. 66.
    Rawat V, Dhobale S, Kale SN (2014) Ultra-fast selective sensing of ethanol and petrol using microwave-range metamaterial complementary split-ring resonators. J Appl Phys 116(16):164106CrossRefGoogle Scholar
  67. 67.
    Melik R, Unal E, Perkgoz NK, Puttlitz C, Demir HV (2010) Metamaterial-based wireless RF-MEMS strain sensors. Conference Proceedings In: 2010 IEEE SENSORS. IEEE pp 2173–2176.  https://doi.org/10.1109/ICSENS.2010.5690582
  68. 68.
    Li J et al (2013) Flexible terahertz metamaterials for dual-axis strain sensing. Opt Lett 38(12):2104–2106CrossRefGoogle Scholar
  69. 69.
    Schueler M, Mandel C, Puentes M, Jakoby R (2012) Metamaterial inspired microwave sensors. IEEE Microw Mag 13(2):57–68CrossRefGoogle Scholar
  70. 70.
    Schüßler M, Mandel C, Puentes M, Jakoby R (2011) Capacitive level monitoring of layered fillings in vessels using composite right/left-handed transmission lines. Conference Proceedings In: 2011 IEEE MTT-S International Microwave Symposium. IEEE pp 1–1.  https://doi.org/10.1109/MWSYM.2011.5973159
  71. 71.
    Boybay MS, Ramahi OM (2007) Double negative metamaterials for subsurface detection. Conference Proceedings In: 29th annual international conference of the IEEE engineering in medicine and biology society. IEEE pp 3485–3488.  https://doi.org/10.1109/IEMBS.2007.4353081
  72. 72.
    Ebrahimi A, Withayachumnankul W, Al-Sarawi S, Abbott D (2014) High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sensors J 14(5):1345–1351CrossRefGoogle Scholar
  73. 73.
    Rawat V, Kitture R, Kumari D, Rajesh H, Banerjee S, Kale SN (2016) Hazardous materials sensing: an electrical metamaterial approach. J Magn Magn Mater 415:77–81CrossRefGoogle Scholar
  74. 74.
    Rawat V, Nadkarni V, Kale SN, Hingane S, Wani S, Rajguru C (2015) Calibration and optimization of a metamaterial sensor for hybrid fuel detection. Conference Proceedings In: 2nd international symposium on physics and technology of sensors (ISPTS). IEEE pp 257–259.  https://doi.org/10.1109/ISPTS.2015.7220124
  75. 75.
    Zarifi MH, Farsinezhad S, Abdolrazzaghi M, Daneshmand M, Shankar K (2016) Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays. Nanoscale 8(14):7466–7473CrossRefGoogle Scholar
  76. 76.
    Kaushik A, Kumar R, Arya SK, Nair M, Malhotra BD, Bhansali S (2015) Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem Rev 115(11):4571–4606CrossRefGoogle Scholar
  77. 77.
    Lee H-J et al (2012) A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules. Sensors Actuators B Chem 169:26–31CrossRefGoogle Scholar
  78. 78.
    Clark AW, Glidle A, Cumming DRS, Cooper JM (2009) Plasmonic split-ring resonators as dichroic nanophotonic DNA biosensors. J Am Chem Soc 131(48):17615–17619CrossRefGoogle Scholar
  79. 79.
    RoyChoudhury S, Rawat V, Jalal AH, Kale SN, Bhansali S (2016) Recent advances in metamaterial split-ring-resonator circuits as biosensors and therapeutic agents. Biosens Bioelectron 86:595–608CrossRefGoogle Scholar
  80. 80.
    Rawat V, Nadkarni V, Kale SN (2016) High sensitive electrical metamaterial sensor for fuel adulteration detection. Def Sci J 66(4):421–424CrossRefGoogle Scholar
  81. 81.
    Rawat V, Kitture R, Kumari D, Rajesh H, Banerjee S, Kale SN (2016) Hazardous materials sensing: an electrical metamaterial approach. J Magn Magn Mater 415:77–81CrossRefGoogle Scholar
  82. 82.
    Kitture R, Pawar D, Rao CN, Choubey RK, Kale SN (2017) Nanocomposite modified optical fiber: a room temperature, selective H2S gas sensor: studies using ZnO-PMMA. J Alloys Compd 695:2091–2096CrossRefGoogle Scholar
  83. 83.
    Singh AK, Patil SB, Nakate UT, Gurav KV (2013) Effect of Pd and Au sensitization of bath deposited flowerlike TiO2 thin films on CO sensing and photocatalytic properties. J Chem. [Online]. Available: https://www.hindawi.com/journals/jchem/2013/370578/. Accessed 17 Nov 2018
  84. 84.
    Trung DD et al (2014) Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J Hazard Mater 265:124–132CrossRefGoogle Scholar
  85. 85.
    Guo J, Zhang J, Zhu M, Ju D, Xu H, Cao B (2014) High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors Actuators B Chem 199:339–345CrossRefGoogle Scholar
  86. 86.
    Chandrasekaran G, Sundararaj A, Therese HA, Jeganathan K (2015) Ni-catalysed WO3 nanostructures grown by electron beam rapid thermal annealing for NO2 gas sensing. J Nanopart Res 17(7):292CrossRefGoogle Scholar
  87. 87.
    Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Jpn 7(1):63–75CrossRefGoogle Scholar
  88. 88.
    Xu J, Pan Q, Shun Y, Tian Z (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sensors Actuators B Chem 66(1):277–279CrossRefGoogle Scholar
  89. 89.
    Feng P, Wan Q, Wang TH (2005) Contact-controlled sensing properties of flowerlike ZnO nanostructures. Appl Phys Lett 87(21):213111CrossRefGoogle Scholar
  90. 90.
    Wan Q et al (2004) Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl Phys Lett 84(18):3654–3656CrossRefGoogle Scholar
  91. 91.
    Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871CrossRefGoogle Scholar
  92. 92.
    Huang J, Wan Q (2009) Gas sensors based on semiconducting metal oxide one-dimensional nanostructures. Sensors 9(12):9903–9924CrossRefGoogle Scholar
  93. 93.
    Choi KJ, Jang HW (2010) One-dimensional oxide nanostructures as gas-sensing materials: review and issues. Sensors 10(4):4083–4099CrossRefGoogle Scholar
  94. 94.
    Park GC, Hwang SM, Lim JH, Joo J (2014) Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method. Nanoscale 6(3):1840–1847CrossRefGoogle Scholar
  95. 95.
    Oh E et al (2009) High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sensors Actuators B Chem 141(1):239–243CrossRefGoogle Scholar
  96. 96.
    Rashid J, Barakat MA, Salah N, Habib SS (2015) ZnO-nanoparticles thin films synthesized by RF sputtering for photocatalytic degradation of 2-chlorophenol in synthetic wastewater. J Ind Eng Chem 23:134–139CrossRefGoogle Scholar
  97. 97.
    Adolph D, Tingberg T, Ive T (2015) Growth of ZnO(0001) on GaN(0001)/4H-SiC buffer layers by plasma-assisted hybrid molecular beam epitaxy. J Cryst Growth 426:129–134CrossRefGoogle Scholar
  98. 98.
    Krunks M, Dedova T, Oja Açik I (2006) Spray pyrolysis deposition of zinc oxide nanostructured layers. Thin Solid Films 515(3):1157–1160CrossRefGoogle Scholar
  99. 99.
    Dedova T et al Chemical spray deposition of zinc oxide nanostructured layers from zinc acetate solutions. Phys Status Solidi A 205(10):2355–2359CrossRefGoogle Scholar
  100. 100.
    Ilican S, Caglar M (2007) The effect of deposition parameters on the physical propertties of CdxZn1-xS films deposited by spray pyrolysis method. J Optoelectr Adve Mater 09(5):1414–1417.  https://doi.org/10.1007/s10853-012-6362-xCrossRefGoogle Scholar
  101. 101.
    Zou AL et al (2016) Ethanol sensing with Au-modified ZnO microwires. Sensors Actuators B Chem 227:65–72CrossRefGoogle Scholar
  102. 102.
    Kaneti YV et al (2015) Experimental and theoretical studies on noble metal decorated tin oxide flower-like nanorods with high ethanol sensing performance. Sensors Actuators B Chem 219:83–93CrossRefGoogle Scholar
  103. 103.
    Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sensors Actuators B Chem 209:180–185CrossRefGoogle Scholar
  104. 104.
    Wang Y et al (2014) Room-temperature hydrogen sensor based on grain-boundary controlled Pt decorated In2O3 nanocubes. Sensors Actuators B Chem 201:351–359CrossRefGoogle Scholar
  105. 105.
    Van Tong P, Hoa ND, Van Duy N, Le DTT, Van Hieu N (2016) Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles. Sensors Actuators B Chem 223:453–460CrossRefGoogle Scholar
  106. 106.
    Jin W, Yan S, Chen W, Yang S, Zhao C, Dai Y (2014) Preparation and gas sensing property of Ag-supported vanadium oxide nanotubes. Funct Mater Lett 07(03):1450031CrossRefGoogle Scholar
  107. 107.
    Şennik E, Alev O, Öztürk ZZ (2016) The effect of Pd on the H2 and VOC sensing properties of TiO2 nanorods. Sensors Actuators B Chem 229:692–700CrossRefGoogle Scholar
  108. 108.
    Salunkhe RR, Dhawale DS, Patil UM, Lokhande CD (2009) Improved response of CdO nanorods towards liquefied petroleum gas (LPG): effect of Pd sensitization. Sensors Actuators B Chem 136(1):39–44CrossRefGoogle Scholar
  109. 109.
    Kumar R, Al-Dossary O, Kumar G, Umar A (2015) Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett 7(2):97–120CrossRefGoogle Scholar
  110. 110.
    Wei A, Pan L, Huang W (2011) Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B 176(18):1409–1421CrossRefGoogle Scholar
  111. 111.
    Dey (2018) Semiconductor metal oxide gas sensors: a review. Mater Sci Eng B 229:206–217.  https://doi.org/10.1016/J.MSEB.2017.12.036CrossRefGoogle Scholar
  112. 112.
    Mirzaei A, Kim SS, Kim HW (2018) Resistance-based H2S gas sensors using metal oxide nanostructures: a review of recent advances. J Hazard Mater 357:314–331CrossRefGoogle Scholar
  113. 113.
    Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sensors Actuators A Phys 267:242–261CrossRefGoogle Scholar
  114. 114.
    Nakate UT, Bulakhe RN, Lokhande CD, Kale SN (2016) Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties. Appl Surf Sci 371:224–230CrossRefGoogle Scholar
  115. 115.
    Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107(6):2709–2724CrossRefGoogle Scholar
  116. 116.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  117. 117.
    Hongsith N, Wongrat E, Kerdcharoen T, Choopun S (2010) Sensor response formula for sensor based on ZnO nanostructures. Sensors Actuators B Chem 144(1):67–72CrossRefGoogle Scholar
  118. 118.
    Kung MC, Davis RJ, Kung HH (2007) Understanding au-catalyzed low-temperature CO oxidation. J Phys Chem C 111(32):11767–11775CrossRefGoogle Scholar
  119. 119.
    Xiang Q et al (2010) Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C 114(5):2049–2055CrossRefGoogle Scholar
  120. 120.
    Thakur HV, Nalawade SM, Gupta S, Kitture R, Kale SN (2011) Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection. Appl Phys Lett 99(16):161101CrossRefGoogle Scholar
  121. 121.
    Tackett R, Sudakar C, Naik R, Lawes G, Rablau C, Vaishnava PP (2008) Magnetic and optical response of tuning the magnetocrystalline anisotropy in Fe3O4 nanoparticle ferrofluids by co doping. J Magn Magn Mater 320(21):2755–2759CrossRefGoogle Scholar
  122. 122.
    Kruse T, Krauthäuser H-G, Spanoudaki A, Pelster R (2003) Agglomeration and chain formation in ferrofluids: two-dimensional x-ray scattering. Phys Rev B 67(9):094206CrossRefGoogle Scholar
  123. 123.
    Gupta S, Nalawade SM, Hatamie S, Thakur HV, Kale SN (2011) Sensitive, weak magnetic field sensor based on cobalt nanoparticles deposited in micro-tunnels of PM-PCF optical fiber. AIP Conf Proc 1391(1):437–439CrossRefGoogle Scholar
  124. 124.
    Potok T, Phillips L, Pollock R, Loebl A, Sheldon F (2003) Suitability of agent-based systems for command and control in fault-tolerant, safety-critical responsive decision networks. In: ISCA PDCS, pp 1283–1290Google Scholar
  125. 125.
    Shostack A, Stewart A (2008) The new school of information security, 1st edn. Addison-Wesley Professional, Upper Saddle RiverGoogle Scholar
  126. 126.
    Wysopal C, Nelson L, Dustin E, Zovi DD (2006) The art of software security testing: identifying software security flaws (Symantec Press). Pearson Education. ISBN: 0321304861Google Scholar
  127. 127.
    Koscher K et al (2010) Experimental security analysis of a modern automobile. Conference Proceedings In: 2010 IEEE symposium on security and privacy. IEEE pp 447–462.  https://doi.org/10.1109/SP.2010.34

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsDefence Institute of Advanced Technology (Deemed University)Girinagar, PuneIndia
  2. 2.SpringerNature Scientific Technology and Publishing SolutionsMagarpatta City, PuneIndia

Section editors and affiliations

  • Himadri Sekhar Maiti
    • 1
    • 2
  1. 1.CSIR-Central Glass and Ceramic Research InstituteKolkataIndia
  2. 2.Govt. College of Engg. and Ceramic TechnologyKolkataIndia

Personalised recommendations