Processing of Infrared Transparent Magnesium Aluminate Spinel

An Overview
  • Papiya Biswas
  • Roy JohnsonEmail author
  • Yashwant Ramachandra Mahajan
  • Gadhe Padmanabham
Living reference work entry


Transparent magnesium aluminate (MgAl2O4) spinel is a material of special interest due to its optical properties coupled with excellent mechanical properties. MgAl2O4 being cubic crystallography if processed under optimum conditions, effect of thickness on transparency can be minimized allowing fabrication of complex geometries for harsh environment. Further, broadband transparency from 0.4 μm to 6.0 μm is an added advantage in most of the applications. Transparent windows for armor and high Mach number missile domes are a few of the emerging applications in the strategic sector. Spinel is also used as the high-energy laser windows, as high-temperature furnace monitoring windows, and also as a part for nuclear fusion reactor power core insulations. In view of the significant scientific and technological importance, spinel is regarded as one of the futuristic transparent polycrystalline ceramics. Though spinel offers flexibility in processing through powder metallurgy route, the mechanical and optical properties are a strong function of starting powder properties and also dictated by the processing route and parameters. This chapter presents an overview on transparent spinel processing along with the comparative evaluation of various processing techniques.


Transparent ceramics Magnesium aluminate spinel Slip casting Spark plasma sintering, Flash sintering 


  1. 1.
    Li F-H, Li J-B, Lin H, Huang C-X, Lei M-Y, Du H-B (2010) Development of transparent MgAl2O4 spinel ceramics. Key Eng Mater 434–435:649–652CrossRefGoogle Scholar
  2. 2.
    Morita K, Kim BN, Hiraga K, Yoshida H (2008) Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scripta Mater 58:1114–1117CrossRefGoogle Scholar
  3. 3.
    Ramisetty M, Sastri S, Kashalikar U, Goldman LM, Nag N (2013) Transparent polycrystalline cubic spinels: protect and defend. Am Ceram Soc Bull 92:20–25Google Scholar
  4. 4.
    Chen F, Doty FP, Houk RJT, Loutfy RO, Volz HM, Yang P Characterizations of a hot-pressed polycrystalline spinel: Ce Scintillator. J Am Ceram Soc 93(2010):2399–2402Google Scholar
  5. 5.
    Harris DC (1999) Materials for Infrared Windows and Domes: Properties and Performance, SPIE, PM70.Google Scholar
  6. 6.
    Grujicic M, Bell WC, Pandurangan B (2012) Design and material selection guidelines and strategies for transparent armor systems. Mater Des 34:808–819CrossRefGoogle Scholar
  7. 7.
    Bausa LE, Vergara I, Garcia-Solé J, Strek W, Deren PJ (1990) Laser-excited luminescencein Ti-doped MgAl2O4 spinel. J Appl Phys 68:736–740CrossRefGoogle Scholar
  8. 8.
    Krishnan M, Brijesh T, Arora V, Biswas P, Rajeswai K, Suresh MB, Johnson R (2014) Transparent magnesium aluminate spinel: a prospective biomaterial for esthetic orthodontic brackets. J Mater Sci: Mater Med 25:2591–2599Google Scholar
  9. 9.
    Sharafat S, Ghoniem NM, Cooke PIH, Martin RC, Najmabadi F, Schultz KR, Wong CPC (1993) Materials analysis of the TITAN-I reversed-field-pinch fusion power core. Fusion Eng Des 23:99–113CrossRefGoogle Scholar
  10. 10.
    Maschio RD, Fabbri B, Fiori C (1988) Industrial application of refractories containing magnesium aluminate spinel. Inds Ceram 8:121–126.Google Scholar
  11. 11.
    Mathur S (2002) NATO ASI, vol 91. Kluwer, DordrechtGoogle Scholar
  12. 12.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New York, pp 656–667Google Scholar
  13. 13.
    Ramavath P, Biswas P, Rajeswari K, Suresh MB, Johnson R, Padmanabham G, Kumbhar CS, Chongdar TK, Gokhale NM (2014) Optical and mechanical properties of compaction and slip cast processed transparent polycrystalline spinel ceramics. Ceram Int 40:5575–5581CrossRefGoogle Scholar
  14. 14.
    Harris DC (2005) History of development of polycrystalline optical spinel in U.S. Proc SPIE 5786:1–22CrossRefGoogle Scholar
  15. 15.
    Mroz T, Goldman LM, Gledhill AD, Li D, Padture NP (2012) Nanostructured, infrared-transparent magnesium aluminate spinel with superior mechanical properties. Int J Appl Ceram Technol 9:83–90CrossRefGoogle Scholar
  16. 16.
    Biswas P, Ramavath P, Kumbhar CS, Patil DS, Chongdar TK, Gokhale NM, Johnson R, Mohan MK (2017) Effect of room and high temperature compaction on optical and mechanical properties of HIPed transparent spinel ceramics. Adv Eng Mater 19:1700111-1–1700111-7CrossRefGoogle Scholar
  17. 17.
    Liu J, Lv X, Li J, Jiang L (2016) Pressureless sintered magnesium aluminate spinel with enhanced mechanical properties obtained by the two-step sintering method. J Alloys Compd 680:133–138CrossRefGoogle Scholar
  18. 18.
    Meir S (2008) Fabrication of transparent magnesium aluminate spinel by the spark plasma sintering technique. Ben-Gurion University of the NegevGoogle Scholar
  19. 19.
    Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58:63–112CrossRefGoogle Scholar
  20. 20.
    Muan A, Osborn EF (1965) Phase equilibrium among oxides in steel making. Addison-Wesley, ReadingGoogle Scholar
  21. 21.
    Hallstedt B (1992) Thermodynamic assessment of the system MgO-Al2O3. J Am Ceram Soc 75:1497–1507CrossRefGoogle Scholar
  22. 22.
    Schmidtmeier D, Büchel G, Buhr A (2009) Magnesium aluminate spinel raw materials for high performance refractories for steel ladles. Ceram Mater 61:223–227Google Scholar
  23. 23.
    Bhaduri S, Bhaduri SB, Prisbrey KA (1999) Auto ignition synthesis of nanocrystalline Mg MgAl2O4 and related nanocomposites. J Mater Res 14:3571–3580CrossRefGoogle Scholar
  24. 24.
    Hokazono S, Manako K, Kato A (1992) The sintering behavior of spinel powders produced by a homogeneous precipitation technique. British Ceram Trans 91:77–79Google Scholar
  25. 25.
    Bratton RJ (1969) Coprecipitates yielding MgAl2O4 spinel powders. Ceram Bull 48:759–762Google Scholar
  26. 26.
    Bickmore CR, Waldner KF, Treadwell DR, Laine RM (1996) Ultrafine spinel powders by flame spray pyrolysis of a magnesium aluminum double alkoxide. J Am Ceram Soc 79:1419–1423CrossRefGoogle Scholar
  27. 27.
    Yamaguchi O, Omaki H, Shimizu K (1975) Formation of spinel hydroxides prepared by alkoxy-method. J Jpn Soc Powder Metall 22:202–204CrossRefGoogle Scholar
  28. 28.
    Pasquier J-F, Komarneni S, Roy R (1991) Synthesis of MgAl2O4 spinel: seeding effects on formation temperature. J Mater Sci 26:3797–3802CrossRefGoogle Scholar
  29. 29.
    Varnier O, Hovnanian N, Larbot A, Bergez P, Cot L, Charpin J (1994) Sol–gel synthesis of magnesium aluminum spinel from a heterometallic alkoxide. Mater Res Bull 29:479–488CrossRefGoogle Scholar
  30. 30.
    Wang CT, Lin LS, Yang SJ (1992) Preparation of MgAl2O4 spinel powders via freeze-drying of alkoxide precursors. J Am Ceram Soc 75:2240–2243CrossRefGoogle Scholar
  31. 31.
    Adak AK, Saha SK, Pramanik P (1997) Synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique. J Mater Sci Lett 16:234–235CrossRefGoogle Scholar
  32. 32.
    Goldstein A, Goldenberg A, Yeshurun Y, Hefez M (2008) Transparent MgAl2O4 spinel from a powder prepared by flame spray pyrolysis. J Am Ceram Soc 91:4141–4144CrossRefGoogle Scholar
  33. 33.
    Suarez M, Rocha V, Fernandez A, Menendez JL, Torrecillas R (2014) Synthesis and processing of spinel powders for transparent ceramics. Ceram Int 40:4065–4069CrossRefGoogle Scholar
  34. 34.
    Balabanov SS, Yavetskiy RP, Belyaev AV, Gavrishchuk EM, Drobotenko VV, Evdokimov II, Novikova AV, Palashov OV, Permin DA, Pimenov VG (2015) Fabrication of transparent MgAl2O4 ceramics by hot-pressing of sol-gel-derived nanopowders. Ceram Int 41: 13366–13371CrossRefGoogle Scholar
  35. 35.
    Reimanis IE, Kleebe HJ, Cook RL, DiGiovanni A (2004) Transparent spinel fabricated from novel powders: synthesis, microstructure and optical properties. In: Proceedings of defense security symposiumGoogle Scholar
  36. 36.
    Cook R, Kochis M, Reimanis I, Kleebe H-J (2005) A new powder production route for transparent spinel windows: powder synthesis and window properties. In: Proceedings of defense security symposium, SPIE 5786Google Scholar
  37. 37.
    Sutorik AC, Gilde G, Swab JJ, Cooper C, Gamble R, Shanholtz E (2012) The production of transparent MgAl2O4 ceramic using calcined powder mixtures of Mg(OH)2 and γ-Al2O3 or AlOOH. Int J Appl Ceram Technol 9:575–587CrossRefGoogle Scholar
  38. 38.
    Nam S, Lee M, Kim B-N, Lee Y, Kang S (2017) Morphology controlled co-precipitation method for nano structured transparent MgAl2O4. Ceram Int 43:15352–15359CrossRefGoogle Scholar
  39. 39.
    Ewais EMM, Besisa DHA, El-Amir AAM, El-Sheikh SM, Rayan DE (2015) Optical properties of nanocrystalline magnesium aluminate spinel synthesized from industrial wastes. J Alloys Compd 649:159–166CrossRefGoogle Scholar
  40. 40.
    Dericioglu AF, Boccaccini AR, Dlouhy I, Kagawa Y (2005) Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics. Mater Trans 46:996–1003CrossRefGoogle Scholar
  41. 41.
    Waetzig K, Krell A (2016) The effect of composition on the optical properties and hardness of transparent Al-rich MgO·nAl2O3 spinel ceramics. J Am Ceram Soc 99:946–953CrossRefGoogle Scholar
  42. 42.
    Shahbazi H, Shokrollahi H, Alhaji A (2017) Optimizing the gel-casting parameters in synthesis of MgAl2O4 spinel. J Alloys Compd 712:732–741CrossRefGoogle Scholar
  43. 43.
    Sutorik AC, Gilde G, Cooper C, Wright J, Hilton C (2012) The effect of varied amounts of LiF sintering aid on the transparency of alumina rich spinel ceramic with the composition MgO·1.5 Al2O3. J Am Ceram Soc 95:1807–1810CrossRefGoogle Scholar
  44. 44.
    Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92:358–364CrossRefGoogle Scholar
  45. 45.
    El-Amir AAM, Ewais EMM, Abdel-Aziem AR, Ahmed A, El-Anadouli BEH (2016) Nano-alumina powders/ceramics derived from aluminum foil waste at low temperature for various industrial applications. J Environ Manag 183:121–125CrossRefGoogle Scholar
  46. 46.
    Mohan SK, Sarkar R (2016) Effect of in situ generated nascent magnesia and alumina from nitrateprecursor on reaction sintered magnesium aluminate spinel. Mater Des 110:145–156CrossRefGoogle Scholar
  47. 47.
    Liu Q, Jiang N, Li J, Sun K, Pan Y, Guo J (2016) Highly transparent AlON ceramics sintered from powder synthesized by carbothermal reduction nitridation. Ceram Int 42:8290–8295CrossRefGoogle Scholar
  48. 48.
    Jabbarzare S, Abdellahi M, Ghayour H, Chami A, Hejazian S (2016) Mechanochemically assisted synthesis of yttrium ferrite ceramic and its visible light photocatalytic and magnetic properties. J Alloys Compd 688:1125–1130CrossRefGoogle Scholar
  49. 49.
    Kracker M, Thieme C, Häßler J, Rüssel C (2016) Sol–gel powder synthesis and preparation of ceramics with high- and low-temperature polymorphs of BaxSr1-xZn2Si2O7 (x = 1 and 0.5): a novel approach to obtain zero thermal expansion. J Eur Ceram Soc 36:2097–2107CrossRefGoogle Scholar
  50. 50.
    Zhang W, Lu TC, Wei N, Shi YL, Ma BY, Luo H, Zhang ZB, Deng J, Guan ZG, Zhang HR, Li CN, Niu RH (2015) Co-precipitation synthesis and vacuum sintering of Nd:YAG powders for transparent ceramics. Mater Res Bull 70:365–372CrossRefGoogle Scholar
  51. 51.
    Krell A, Hutzler T, Klimke J (2014) Defect strategies for an improved optical quality of transparent ceramics. Opt Mater 38:61–74CrossRefGoogle Scholar
  52. 52.
    Kong LB, Huang Y, Que W, Zhang T, Li S, Zhang J, Dong Z, Tang D (2015) Transparent ceramics. Springer International Publisher. Topics in mining, Metallurgical and materials engineering, Series Editor: Carlos P. BergmannCrossRefGoogle Scholar
  53. 53.
    Olhero SM, Ganesh I, Torres PMC, Ferreira JMF (2008) Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing. Langmuir 24:9525–9530CrossRefGoogle Scholar
  54. 54.
    Ganesh I, Sundararajan G, Ferreira JMF (2011) Aqueous slip casting and hydrolysis assisted solidification of MgAl2O4 spinel. Adv Appl Ceram 110:63–69CrossRefGoogle Scholar
  55. 55.
    Shafeiey A, Enayati MH, Al-Haji A (2017) The effect of slip casting parameters on the green density of MgAl2O4 spinel. Ceram Int 43:6069–6074CrossRefGoogle Scholar
  56. 56.
    Kim J-M, Kim H-N, Park Y-J, Ko J-W, Lee J-W, Kim H-D (2016) Microstructure and optical properties of transparent MgAl2O4 prepared by Ca-infiltrated slip-casting and sinter-HIP process. J Eur Ceram Soc 36:2027–2034CrossRefGoogle Scholar
  57. 57.
    Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-μm Al2O3 for transparent armour applications. J Eur Ceram Soc 29:275–281CrossRefGoogle Scholar
  58. 58.
    Zhang P, Liu P, Sun Y, Wang J, Wang Z, Wang S, Zhang J (2015) Aqueous gelcasting of the transparent MgAl2O4 spinel ceramics. J Alloys Compd 646:833–836CrossRefGoogle Scholar
  59. 59.
    Tokariev O, Gestel TV, Bram M, Malzbender J (2013) Strength enhancement of transparent spinel ceramics. Mater Lett 107:364–366CrossRefGoogle Scholar
  60. 60.
    Tokariev O, Schnetter L, Beck T, Malzbender J (2013) Grain size effect on the mechanical properties of transparent spinel ceramics. J Eur Ceram Soc 33:749–757CrossRefGoogle Scholar
  61. 61.
    Krell A, Hutzler T, Klimke J, Potthoff A (2010) Fine-grained transparent spinel windows by the processing of different nanopowders. J Am Ceram Soc 93:2656–2666CrossRefGoogle Scholar
  62. 62.
    Gajdowski C, Böhmler J, Lorgouilloux Y, Lemonnier S, d’Astorg S, Barraud E, Leriche A (2017) Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: from opaque to transparent ceramics. J Eur Ceram Soc 37:5347–5351CrossRefGoogle Scholar
  63. 63.
    Tsukuma K (2006) Transparent MgAl2O4 spinel ceramics produced by HIP post-sintering. J Ceram Soc Jpn 114:802–806CrossRefGoogle Scholar
  64. 64.
    Shimada M, Endo T, Saito T, Sato T (1996) Fabrication of transparent spine1 polycrystalline materials. Mater Lett 28:413–415CrossRefGoogle Scholar
  65. 65.
    Bratton RJ (1974) Translucent sintered MgA12O4. J Am Ceram Soc 57:283–286CrossRefGoogle Scholar
  66. 66.
    Krell A, Bales A (2011) Grain size-dependent hardness of transparent magnesium aluminate spinel. Int J Appl Ceram Technol 8:1108–1114CrossRefGoogle Scholar
  67. 67.
    Esposito L, Piancastelli A, Miceli P, Martelli S (2015) A thermodynamic approach to obtaining transparent spinel (MgAl2O4) by hot pressing. J Eur Ceram Soc 35:651–661CrossRefGoogle Scholar
  68. 68.
    Villalobos GR, Sanghera JS, Agarwal ID (2005) Degradation of magnesium aluminum spinel by lithium fluoride sintering aid. J Am Ceram Soc 88:1321–1322CrossRefGoogle Scholar
  69. 69.
    Gilde G, Patel P, Patterson P (2005) Evaluation of hot pressing and hot isostatic pressing parameters on the optical properties of spinel. J Am Ceram Soc 88:2747–2751CrossRefGoogle Scholar
  70. 70.
    Esposito L, Piancastelli A, Martelli S (2013) Production and characterization of transparent MgAl2O4 prepared by hot pressing. J Eur Ceram Soc 33:737–747CrossRefGoogle Scholar
  71. 71.
    Goldstein A, Raethel J, Katz M, Berlin M, Galun E (2016) Transparent MgAl2O4/LiF ceramics by hot-pressing: host–additive interaction mechanisms issue revisited. J Eur Ceram Soc 36:1731–1742CrossRefGoogle Scholar
  72. 72.
    Morita K, Kim B-N, Yoshida H, Hiraga K, Sakka Y (2015) Influence of spark plasma sintering (SPS) conditions on transmission of MgAl2O4 spinel. J Am Ceram Soc 98:378–385CrossRefGoogle Scholar
  73. 73.
    Bernard-Granger G, Benameur N, Guizard C, Nygren M (2009) Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scripta Mater 60:164–167CrossRefGoogle Scholar
  74. 74.
    Morita K, Kim B-N, Yoshida H, Hiraga K, Sakka Y (2016) Influence of pre- and post-annealing on discoloration of MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS). J Eur Ceram Soc 36:2961–2968CrossRefGoogle Scholar
  75. 75.
    Morita K, Kim B-N, Yoshida H, Hiraga K (2009) Spark plasma sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal. J Am Ceram Soc 92:1208–1216CrossRefGoogle Scholar
  76. 76.
    Morita K, Kim B-N, Yoshida H, Zhang H, Hiraga K, Sakka Y (2012) Effect of loading schedule on densification of MgAl2O4 spinel during spark plasma sintering (SPS) processing. J Eur Ceram Soc 32:2303–2309CrossRefGoogle Scholar
  77. 77.
    Kim B-N, Morita K, Lim J-H, Hiraga K, Yoshida H (2010) Effects of preheating of powder before spark plasma sintering of transparent MgAl2O4 spinel. J Am Ceram Soc 93:2158–2160CrossRefGoogle Scholar
  78. 78.
    Sokol M, Kalabukhov S, Dariel MP, Frage N (2014) High-pressure spark plasma sintering (SPS) of transparent polycrystalline magnesium aluminate spinel (PMAS). J Eur Ceram Soc 34:4305–4310CrossRefGoogle Scholar
  79. 79.
    Bonnefont G (2012) Fine-grained transparent MgAl2O4 spinel obtained by spark plasma sintering of commercially available nanopowders. Ceram Int 38:131–140CrossRefGoogle Scholar
  80. 80.
    Rajeswari K, Biswas P, Johnson R, Prabhudesai S, Sharma VK, Mitra S, Mukhopadhayay R (2014) Effect of surface passivation in spinel slurry towards hydrolysis: neutron scattering and rheological studies. J Dispers Sci Technol 35:1442–1448CrossRefGoogle Scholar
  81. 81.
    Rozenburg K, Reimanis IE (2008) Sintering kinetics of MgAl2O4 spinel doped with LiF. J Am Ceram Soc 91:444–450CrossRefGoogle Scholar
  82. 82.
    Reddy KPR, Cooper AR (1981) Oxygen diffusion in magnesium aluminate spinel. J Am Ceram Soc 64:368–371CrossRefGoogle Scholar
  83. 83.
    Frost HJ, Ashby MF (1982) Olivines and spinels: Mg2SiO4 and MgAl2O4 (Chapter 15). Deformation-mechanism maps, the plasticity and creep of metals and ceramics. PhD thesis, Pergamon Press, Oxford, UKGoogle Scholar
  84. 84.
    Suárez M, Fernández A, Menéndez JL, Torrecillas R, Kessel HU, Hennicke J, Kirchner R, Kessel T (2013) Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. In: Ertug B (ed) Sintering applications. ISBN 978-953-51-0974-7Google Scholar
  85. 85.
    Chen XJ, Khor KA, Yu LG (2003) Preparation yttria-stabilized zirconia electrolyte by spark-plasma sintering. Mater Sci Eng A 341:43–46CrossRefGoogle Scholar
  86. 86.
    Shen Z, Johnsson M, Zhao Z, Nygren M (2002) Spark plasma sintering of alumina. J Am Ceram Soc 85:1921–9023CrossRefGoogle Scholar
  87. 87.
    Frage N, Cohen S, Meir S, Kalabukhov S, Darie MP (2007) Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel. J Mater Sci 42:3273–3275CrossRefGoogle Scholar
  88. 88.
    Morita K, Kim BN, Hiraga K, Yoshida H (2008) Fabrication of transparent MgAl2O4 spinel polycrystals by spark plasma sintering processing. Scripta Mater 58:1114–1117CrossRefGoogle Scholar
  89. 89.
    Jiang DT, Hulbert DM, Anselmi-Tamburini U, Ng T, Land D, Mukherjee AM (2008) Optically transparent polycrystalline Al2O3 produced by spark plasma sintering. J Am Ceram Soc 91:151–154CrossRefGoogle Scholar
  90. 90.
    Morita K, Kim BN, Yoshida H, Higara K, Sakka Y (2015) Influence of spark-plasma-sintering (SPS) conditions on transmission of MgAl2O4 spinel. J Am Ceram Soc 98:378–385CrossRefGoogle Scholar
  91. 91.
    Morita K, Kim BN, Yoshida H, Higara K, Sakka Y (2015) Spectroscopic study of the discoloration of transparent MgAl2O4 spinel fabricated by spark-plasma sintering (SPS) processing. Acta Mater 84:9–19CrossRefGoogle Scholar
  92. 92.
    Anselmi-Tamburini U, Woolman JN, Munir ZA (2007) Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Funct Mater 17:3267–3273CrossRefGoogle Scholar
  93. 93.
    Biswas P, Chakravarty D, Suresh MB, Johnson R, Mohan MK (2016) Fabrication of graphite contamination free polycrystalline transparent MgAl2O4 spinel by spark plasma sintering using platinum foil. Ceram Int 42:17920–17923CrossRefGoogle Scholar
  94. 94.
    Cologna M, Rashkova B, Raj R (2010) Flash sintering of nanograin zirconia in <5 s at 850°C. J Am Ceram Soc 93:3556–3559CrossRefGoogle Scholar
  95. 95.
    Todd RI, Zapata-Solvas E, Bonilla RS, Sneddon T, Wilshaw PR (2015) Electrical characteristics of flash sintering: thermal runaway of joule heating. J Eur Ceram Soc 35:1865–1877CrossRefGoogle Scholar
  96. 96.
    Raj R, Cologna M, Francis JSC (2011) Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J Am Ceram Soc 94:1941–1965CrossRefGoogle Scholar
  97. 97.
    Dancer CEJ (2016) Flash sintering of ceramic materials. Mater Res Express 3:102001–102026CrossRefGoogle Scholar
  98. 98.
    Prette ALG, Cologna M, Sglavo VM, Raj R (2011) Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J Power Sources 196:2061–2065CrossRefGoogle Scholar
  99. 99.
    Yang D, Raj R, Conrad H (2010) Enhanced sintering rate of zirconia (3Y-TZP) through the effect of a weak DC electric field on grain growth. J Am Ceram Soc 93:2935–2937CrossRefGoogle Scholar
  100. 100.
    Cologna M, Francis JSC, Raj R (2011) Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J Eur Ceram Soc 31:2827–2837CrossRefGoogle Scholar
  101. 101.
    Yu M, Grasso S, Mckinnon R, Saunders T, Reece MJ (2017) Review of flash sintering: materials, mechanisms and modeling. Adv Appl Ceram 116:24–60CrossRefGoogle Scholar
  102. 102.
    Yoshida H, Sakka Y, Yamamoto T, Lebrun JM, Raj R (2014) Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. J Eur Ceram Soc 34:991–1000CrossRefGoogle Scholar
  103. 103.
    Jha SK, Raj R (2014) The effect of electric field on sintering and electrical conductivity of titania. J Am Ceram Soc 97:527–534CrossRefGoogle Scholar
  104. 104.
    Martinelli JR, Sonder E, Weeks RA, Zuhr RA (1986) Mobility of cations in magnesium aluminate spinel. Phys Rev B 33:5698–5701CrossRefGoogle Scholar
  105. 105.
    Bates JL, Garnier JE (1981) Electrical conductivity of MgAl2O4 and Y3Al5O12. J Am Ceram Soc 64:C138–C141CrossRefGoogle Scholar
  106. 106.
    Sonder E (1983) Ionic transference numbers and electrical conduction in MgAl2O4 spinel. J Am Ceram Soc 66:50–53CrossRefGoogle Scholar
  107. 107.
    Yoshida H, Biswas P, Johnson R, Mohan MK (2017) Flash-sintering of magnesium aluminate spinel (MgAl2O4) ceramics. J Am Ceram Soc 100:554–562CrossRefGoogle Scholar
  108. 108.
    Qin W, Majidi H, Yun J, van Benthem K (2016) Electrode effects on microstructure formation during FLASH sintering of yttrium-stabilized zirconia. J Am Ceram Soc 99:2253–2259CrossRefGoogle Scholar
  109. 109.
    Biswas P, Rajeswari K, Ramavath P, Johnson R, Maiti HS (2013) Fabrication of transparent spinel honeycomb structures by methyl cellulose based thermal gelation processing. J Am Ceram Soc 96:3042–3045Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Papiya Biswas
    • 1
  • Roy Johnson
    • 1
    Email author
  • Yashwant Ramachandra Mahajan
    • 1
  • Gadhe Padmanabham
    • 1
  1. 1.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Section editors and affiliations

  • Roy Johnson
    • 1
  1. 1.Centre for Knowledge Management of Nanoscience and TechnologyInternational Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Personalised recommendations